The Physics of Field-Aligned Currents

Size: px
Start display at page:

Download "The Physics of Field-Aligned Currents"

Transcription

1 The Physics of Field-Aligned Currents Andrew N. Wright UNIVERSITY OF ST ANDREWS

2 Magnetospheric Current Circuit There is a rich structure of currents flowing parallel (j ) and perpendicular (j ) to the magnetic field (B). Magnetopause current Ring current Ionospheric currents Region 1 and 2 currents ULF Alfvén waves Magnetopause current Region 1 current Ionospheric Pedersen current Region 2 current Partial ring current [Figure from NASA GSFC.] View from tail First Prev Next Last Go Back Full Screen Close Quit

3 Quasi-Neutrality and Current Continuity The Ampère-Maxwell equation states Taking the divergence yields B/µ 0 = j + ε 0 E t. E 0 = j + ε 0. t Using Gauss s Law, E = ρ /ε 0 (where ρ = net charge density) we find Quasi-neutrality (ρ 0) j + ρ t = 0. j 0: Currents are self-closing. The displacement current (ε 0 E/ t) is neglected. ρ 0 means (n e n i )/n e 1. Debye length is ε 0 kt e /e 2 n e 100 m (magnetosphere), 0.01 m (ionosphere).

4 Some Magnetohydrodynamic Driving Mechanisms Imposed velocity shear [Rönnmark, GRL, 1998] Fundamental standing (ULF) Alfvén wave Axisymmetric oscillation of magnetic shells b φ and u φ components only j and j currents

5 Generation of j (MHD description) Single fluid MHD momentum equation ρ dv dt = j B p + F Solve for j ( j = ρ dv ) dt + p F B B 2 Since j = 0 we find j j s + j = 0, j = along B j ds The field-aligned current (j ) flows to maintain quasi-neutrality (ρ 0)

6 What is j microscopically? Net drift of charged particles parallel to B Consider the parallel component of the equation of motion for a charged particle (uniform B), dv dt = qe m. E can be used to establish a field-aligned current. Since m e /m i 1 the electrons are more mobile, and carry most of the parallel current: j ev e In MHD m e /m i 0: electrons are represented by a massless charge-neutralizing fluid (E 0) To generate j requires E How does E arise? Causal interpretation in ideal MHD difficult since E/ t has been neglected

7 Guiding centre description of particle motion Particles execute a circular trajectory about B whose centre drifts. Valid when Gyroradius background scale length Gyroperiod background timescale Guiding centre drifts parallel to B arise from E and magnetic mirror force m dv dt = qe + µ B The magnetic moment µ = mv 2 /2B is a constant of motion. Guiding centre drifts perpendicular to B (can depend upon q, m and energy) arise from Grad B drift B curvature drift Polarization drift (E(t)) E B drift

8 Generation of j (particle description) In general, given E(r, t) and B(r, t), electrons and ions drift relative to one another current can flow net charge density is likely to develop ρ 0 As ρ becomes non-zero, E and E change to satisfy and influence the particle motion Effect of even a small E : E = ρ /ε 0 electrons are accelerated parallel to B j is established parallel electron motion acts to reduce ρ the plasma remains quasi-neutral (ρ 0) Interestingly, E still satisfies B/µ 0 = j + ε 0 E t, even though the last term is still negligible. First Prev Next Last Go Back Full Screen Close Quit

9 Ring Current and Standing Alfvén Wave j v e v e electrons j E +ve E v i j E ve E j j electrons electrons j j ions j E E v e B 0 B 0 v e electrons j Looking earthward from the tail Warm ion cloud drifts westward Slight charge imbalance generates E, electron motion and j Snapshot of Alfvén wave current circuit E(t) in equatorial region produces polarization drift Ions drift across L-shells leading to charge imbalance and subsequent j

10 To steal ideas from one person is plagiarism... To steal from many is research.

11 Magnetosphere-Ionosphere Equilibrium Near the Earth A simple equilibrium has a total ion number density comprising: constant magnetospheric contribution (n M 1 cm 3 ) exponentially decreasing ionospheric contribution (n I cm 3, scale height km) If n = n I + n M and B is dipolar, B/n has a peak at a few thousand km altitude below B/n peak: B/n exp(+r/h) above B/n peak: B/n 1/r 3 First Prev Next Last Go Back Full Screen Close Quit

12 Upward and Downward Currents and the Auroral Acceleration Region Upward Current: magnetospheric electrons precepitated visible aurora Downward Current: ionospheric electrons evacuated to magnetosphere Current-Voltage (energy) relations for upward and downward currents? [Marklund et al., Nature, 2001.]

13 Gyrotropic Electron Vlasov Equation: f(s, v, v, t) Retains information of ionospheric and magnetospheric electron populations f t + v f s ( ee m e + v2 2B B s ) f v + v v 2B B s f v = 0 s = field-aligned coordinate. For a steady current E = φ E = φ/ s. Constants of motion are total energy: W = 1 2 m ev 2 eφ magnetic moment: µ = m e v 2 /2B Solve for f(s, v, v ) with v (W, µ), v (W, µ) Liouville s Theorem (f is constant along an electron trajectory) n e = n i φ(s) and j = e v fd 3 v Solution relates current flow to potential drop along the field line

14 Upward Current (downgoing electrons) Assuming a potential drop φ m : map magnetospheric electrons down to the ionosphere using W and µ to identify the loss cone. Calculate j at the ionosphere in terms of φ m : ( kt j n 0 e 1 eφ ) m 2πm e kt The Knight relation [Planet. Space Sci., 1973]. Useful for interpreting data (electron energies) Good for incorporating in global modelels Knight s solution says little about quasi-neutrality or φ(s) variation E needed to overcome mirror force v Where does acceleration occur? E e v e acceleration region

15 Upward Current Quasi-Neutral Solution Quasi-neutral solution for previous B/n variation gives [Cran-McGreehin, 2006] Plots of normalized potential and E along B. (Ionosphere at s = 0) Below B/n peak, ambipolar E traps ionospheric electrons Above B/n peak, E helps precitating electrons overcome the mirror force adjust mirroring magnetospheric electrons to maintain quasi-neutrality

16 Downward Current (upgoing electrons) Some ionospheric electrons are accelerated upward into the magnetosphere Ionosphere Magnetosphere Velocity parallel to B Beam l m lc l e l p l 0 [Cran-McGreehin and Wright, JGR, 2005a,b] Field-aligned coordinate is l. Important locations are l p : location of the B/n peak l c : ionospheric electron trapping point/beam emergence height

17 Downward Current Quasi-Neutral Solution Quasi-neutral solution for previous B/n variation gives [Cran-McGreehin and Wright, JGR, 2005a,b] Plots of normalized potential and E along B. (Ionosphere at s = 0) Electron acceleration is centred around the B/n peak Ionospheric j of µam 2 correspond to potential drops along B of kev

18 Analytical Current-Voltage Relation (Downward Current) The potential drop (φ m ) depends upon j and n at the B/n peak, as well as the magnetospheric electron temperature (T ) [Cran-McGreehin and Wright, JGR, 2005b] If j 2 p m e/2kt n 2 pe 2 < 1.7 then φ m 3 2 ( j 2 p m1/2 e n p e 5/2 kt ) ( ) 1 j 4 p m2 3 ekt n 4 pe 7 + j2 p m e 6n 2 pe 3 If j 2 p m e/2kt n 2 pe 2 > 1.7 then φ m kt e ln ( j 2 p m e n 2 pe 2 kt Approximations accurate to at least 5% May only need one or two terms ) + j2 p m e 2n 2 pe 3 + kt e

19 A conclusion is what you come to when you re tired of thinking. First Prev Next Last Go Back Full Screen Close Quit

20 Conclusion and Summary Field aligned currents are an integral part of the magnetosphere arise from both large scale driving and internal particle drifts carried mainly by electrons (accelerated by E ) Downgoing electrons excite the aurora Details of φ(s) and E (s) are different for upward and downward currents (but B/n peak location is important) Analytical Current-Voltage relations available

21 Future Work Allow ions to move and modify background density Address time-dependence Combine large and small scale physics of acceleration region (FAST) Other acceleration mechanisms (wave-particle interactions?) Interpret with governing equations

22 Optical auroral emissions: CANOPUS First Prev Next Last Go Back Full Screen Close Quit LATITUDE (EDFL) MPA (Altitude at 110 km) UT/ nm 9.4 kr 0.2 kr TIME (MINUTE) Auroral emissions are modulated with the Alfvén wave period [Xu, Liu, Samson] Emissions excited by kev energy electron precipitation Electron acceleration is an integral part of the Alfven wave Electron energization not described in single fluid MHD Latitudinal scale 200 km

23 FAST: Field-Aligned Electron Motion and j Downward j : upward moving ionospheric electron beam Upward j : downward moving magnetospheric electron beam

Global MHD Eigenmodes of the Outer Magnetosphere

Global MHD Eigenmodes of the Outer Magnetosphere Global MHD Eigenmodes of the Outer Magnetosphere Andrew Wright UNIVERSITY OF ST ANDREWS Magnetospheric Structure: Cavities and Waveguides The Earth s magnetosphere is structured by magnetic fields and

More information

Single Particle Motion in a Magnetized Plasma

Single Particle Motion in a Magnetized Plasma Single Particle Motion in a Magnetized Plasma Aurora observed from the Space Shuttle Bounce Motion At Earth, pitch angles are defined by the velocity direction of particles at the magnetic equator, therefore:

More information

Wave-particle interactions in dispersive shear Alfvèn waves

Wave-particle interactions in dispersive shear Alfvèn waves Wave-particle interactions in dispersive shear Alfvèn waves R. Rankin and C. E. J. Watt Department of Physics, University of Alberta, Edmonton, Canada. Outline Auroral electron acceleration in short parallel

More information

Single particle motion and trapped particles

Single particle motion and trapped particles Single particle motion and trapped particles Gyromotion of ions and electrons Drifts in electric fields Inhomogeneous magnetic fields Magnetic and general drift motions Trapped magnetospheric particles

More information

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

Uppsala universitet Institutionen för astronomi och rymdfysik Anders Eriksson

Uppsala universitet Institutionen för astronomi och rymdfysik Anders Eriksson Tentamen för Rymdfysik I 2006-08-15 Uppsala universitet Institutionen för astronomi och rymdfysik Anders Eriksson Please write your name on all papers, and on the first page your address, e-mail and phone

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas Single particle motion

More information

cos 6 λ m sin 2 λ m Mirror Point latitude Equatorial Pitch Angle Figure 5.1: Mirror point latitude as function of equatorial pitch angle.

cos 6 λ m sin 2 λ m Mirror Point latitude Equatorial Pitch Angle Figure 5.1: Mirror point latitude as function of equatorial pitch angle. Chapter 5 The Inner Magnetosphere 5.1 Trapped Particles The motion of trapped particles in the inner magnetosphere is a combination of gyro motion, bounce motion, and gradient and curvature drifts. In

More information

Relationship of Oscillating Aurora to Substorms and Magnetic Field Line Resonances

Relationship of Oscillating Aurora to Substorms and Magnetic Field Line Resonances Proceedings ICS-6, 2002 Relationship of Oscillating Aurora to Substorms and Magnetic Field Line Resonances James A. Wanliss and Robert Rankin Department of Physics, University of Alberta Edmonton, AB,

More information

Global Monitoring of the Terrestrial Ring Current

Global Monitoring of the Terrestrial Ring Current Global Monitoring of the Terrestrial Ring Current Stefano Orsini Istituto di Fisica dello Spazio Interplanetario, CNR ROMA, Italy with the fruitful help of Anna Milillo and of all other colleagues of the

More information

Single particle motion

Single particle motion Single particle motion Plasma is a collection of a very large number of charged particles moving in, and giving rise to, electromagnetic fields. Before going to the statistical descriptions, let us learn

More information

Electron pressure effects on driven auroral Alfvén waves

Electron pressure effects on driven auroral Alfvén waves JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010610, 2005 Electron pressure effects on driven auroral Alfvén waves Jörgen Vedin and Kjell Rönnmark Department of Physics, Umeå University,

More information

SW103: Lecture 2. Magnetohydrodynamics and MHD models

SW103: Lecture 2. Magnetohydrodynamics and MHD models SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1

More information

Charged particle motion in external fields

Charged particle motion in external fields Chapter 2 Charged particle motion in external fields A (fully ionized) plasma contains a very large number of particles. In general, their motion can only be studied statistically, taking appropriate averages.

More information

Image credit: NASA/JPL

Image credit: NASA/JPL Image credit: NASA/JPL Aleia Paan Dr. Carol Pat Dr. Kurt Retherford 1 Motivation Investigation of the connection between the variabilit in Ganmede footprint brightness and in Ganmede s auroral emissions

More information

Plasma collisions and conductivity

Plasma collisions and conductivity e ion conductivity Plasma collisions and conductivity Collisions in weakly and fully ionized plasmas Electric conductivity in non-magnetized and magnetized plasmas Collision frequencies In weakly ionized

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

Earth s Magnetosphere

Earth s Magnetosphere Earth s Magnetosphere General Description of the Magnetosphere Shape Pressure Balance The Earth s Magnetic Field The Geodynamo, Magnetic Reversals, Discovery Current Systems Chapman Ferraro Cross Tail

More information

Plasma Interactions with Electromagnetic Fields

Plasma Interactions with Electromagnetic Fields Plasma Interactions with Electromagnetic Fields Roger H. Varney SRI International June 21, 2015 R. H. Varney (SRI) Plasmas and EM Fields June 21, 2015 1 / 23 1 Introduction 2 Particle Motion in Fields

More information

ESS 200C Aurorae. Lecture 15

ESS 200C Aurorae. Lecture 15 ESS 200C Aurorae Lecture 15 The record of auroral observations dates back thousands of years to Greek and Chinese documents. The name aurora borealis (latin for northern dawn) was coined in 1621 by P.

More information

Magnetic Reconnection

Magnetic Reconnection Magnetic Reconnection? On small scale-lengths (i.e. at sharp gradients), a diffusion region (physics unknown) can form where the magnetic field can diffuse through the plasma (i.e. a breakdown of the frozenin

More information

Fluid equations, magnetohydrodynamics

Fluid equations, magnetohydrodynamics Fluid equations, magnetohydrodynamics Multi-fluid theory Equation of state Single-fluid theory Generalised Ohm s law Magnetic tension and plasma beta Stationarity and equilibria Validity of magnetohydrodynamics

More information

The role Alfvén waves in the generation of Earth polar auroras

The role Alfvén waves in the generation of Earth polar auroras The role Alfvén waves in the generation of Earth polar auroras Fabrice Mottez Laboratoire Univers et THéories (LUTH) - Obs. Paris-Meudon - CNRS - Univ. Paris Diderot Abstract. The acceleration of electrons

More information

qb 3 B ( B) r 3 e r = 3 B r e r B = B/ r e r = 3 B ER 3 E r 4

qb 3 B ( B) r 3 e r = 3 B r e r B = B/ r e r = 3 B ER 3 E r 4 Magnetospheric Physics - Homework solution, /8/14 18 Gradient and curvature drift (a) A single proton has a parallel and perpendicular energy of 1 kev. Compute (B B) /B 3 and determine the instantaneous

More information

Ionosphères planétaires (introduction)

Ionosphères planétaires (introduction) Ionosphères planétaires (introduction) email: arnaud.zaslavsky@obspm.fr Structure de l atmosphère terrestre Temperature gradients determined by IR radiation from Earth (low altitude Troposhere) And from

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

Plasmas as fluids. S.M.Lea. January 2007

Plasmas as fluids. S.M.Lea. January 2007 Plasmas as fluids S.M.Lea January 2007 So far we have considered a plasma as a set of non intereacting particles, each following its own path in the electric and magnetic fields. Now we want to consider

More information

Tentamen för kursen Rymdfysik (1FA255)

Tentamen för kursen Rymdfysik (1FA255) Tentamen för kursen Rymdfysik (1FA255) 2017-10-24 Uppsala universitet Institutionen för fysik och astronomi Avdelningen för astronomi och rymdfysik Anders Eriksson Answers should be provided in Swedish

More information

The Structure of the Magnetosphere

The Structure of the Magnetosphere The Structure of the Magnetosphere The earth s magnetic field would resemble a simple magnetic dipole, much like a big bar magnet, except that the solar wind distorts its shape. As illustrated below, the

More information

AURORA: GLOBAL FEATURES

AURORA: GLOBAL FEATURES AURORA: GLOBAL FEATURES Jean-Claude Gérard LPAP Université de Liège OUTLINE - collisional processes involved in the aurora - remote sensing of auroral electron energy - Jupiter - Saturn MOP meeting - 2011

More information

Magnetospherically-Generated Ionospheric Electric Fields

Magnetospherically-Generated Ionospheric Electric Fields Magnetospherically-Generated Ionospheric Electric Fields Stanislav Sazykin Rice University sazykin@rice.edu June 26, 2005 Sazykin--Ionospheric E-Fields--CEDAR Student Workshop 1 Overall Magnetospheric

More information

Figure 1.1: Ionization and Recombination

Figure 1.1: Ionization and Recombination Chapter 1 Introduction 1.1 What is a Plasma? 1.1.1 An ionized gas A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons and ions are separately free. When does

More information

In-Situ vs. Remote Sensing

In-Situ vs. Remote Sensing In-Situ vs. Remote Sensing J. L. Burch Southwest Research Institute San Antonio, TX USA Forum on the Future of Magnetospheric Research International Space Science Institute Bern, Switzerland March 24-25,

More information

The chiming of Saturn s magnetosphere at planetary periods

The chiming of Saturn s magnetosphere at planetary periods The chiming of Saturn's magnetosphere at planetary periods. Gabby Provan with help from David Andrews and Stan Cowley The chiming of Saturn s magnetosphere at planetary periods G. Provan, D. J. Andrews

More information

A Note on A-C Effects on MHD Dynamo in the Earth's Low-Latitude Magnetospheric Boundary Layer. Senkichi SHIBUYA

A Note on A-C Effects on MHD Dynamo in the Earth's Low-Latitude Magnetospheric Boundary Layer. Senkichi SHIBUYA Research Note J. Geomag. Geoelectr., 43, 65-70,1991 A Note on A-C Effects on MHD Dynamo in the Earth's Low-Latitude Magnetospheric Boundary Layer Senkichi SHIBUYA Faculty of Science, Yamagata University,

More information

PROBLEM SET. Heliophysics Summer School. July, 2013

PROBLEM SET. Heliophysics Summer School. July, 2013 PROBLEM SET Heliophysics Summer School July, 2013 Problem Set for Shocks and Particle Acceleration There is probably only time to attempt one or two of these questions. In the tutorial session discussion

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Motion of Charged Particles in Fields

Motion of Charged Particles in Fields Chapter Motion of Charged Particles in Fields Plasmas are complicated because motions of electrons and ions are determined by the electric and magnetic fields but also change the fields by the currents

More information

The Auroral Zone: Potential Structures in Field and Density Gradients

The Auroral Zone: Potential Structures in Field and Density Gradients The Auroral Zone: Potential Structures in Field and Density Gradients David Schriver May 8, 2007 Global Kinetic Modeling: week 10 Foreshock (week 3) Auroral zone (week 7) (week 8) Radiation Belt (week

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas! The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas! Single particle motion

More information

Single Particle Motion

Single Particle Motion Single Particle Motion Overview Electromagnetic fields, Lorentz-force, gyration and guiding center, drifts, adiabatic invariants. Pre-requisites: Energy density of the particle population smaller than

More information

Discussion of Magnetosphere-ionosphere coupling at Jupiter

Discussion of Magnetosphere-ionosphere coupling at Jupiter Discussion of Magnetosphere-ionosphere coupling at Jupiter arry H. Mauk The Johns Hopkins University Applied Physics Laboratory Fran agenal University of Colorado LASP Auroral Workshop; 7-8 March 2016;

More information

Magnetospheric Physics - Homework, 02/21/ Local expansion of B: Consider the matrix B = (1)

Magnetospheric Physics - Homework, 02/21/ Local expansion of B: Consider the matrix B = (1) Magnetospheric Physics - Homework, //4 4. Local expansion of B: Consider the matrix B α x γ δ x γ α y δ y β x β y α z () with constant parameters α i, β i, δ i, γ, and γ for the expansion of the magnetic

More information

Electrics. Electromagnetism

Electrics. Electromagnetism Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Gyrokinetic simulations of magnetic fusion plasmas

Gyrokinetic simulations of magnetic fusion plasmas Gyrokinetic simulations of magnetic fusion plasmas Tutorial 2 Virginie Grandgirard CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. email: virginie.grandgirard@cea.fr

More information

Heliophysics in Atmospheres

Heliophysics in Atmospheres Heliophysics in Atmospheres Thermosphere-Ionosphere Response to Geomagnetic Storms Tim Fuller-Rowell NOAA Space Weather Prediction Center and CIRES University of Colorado Atmospheres Gravitationally bound

More information

Chapter 12. Magnetism and Electromagnetism

Chapter 12. Magnetism and Electromagnetism Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

More information

Simulating the Ionosphere, one electron at a time.

Simulating the Ionosphere, one electron at a time. Simulating the Ionosphere, one electron at a time. Meers Oppenheim CEDAR June 2016 Research supported by NSF, NASA, AFRL, and DOE Grants What? Plasma Physics Particle-in-Cell Simulations Two Examples:

More information

Solar-Wind/Magnetosphere Coupling

Solar-Wind/Magnetosphere Coupling Solar-Wind/Magnetosphere Coupling Joe Borovsky Space Science Institute --- University of Michigan 1. Get a feeling for how the coupling works 2. Get an understanding of how reconnection works 3. Look at

More information

Modeling Interactions between the Magnetosphere, Ionosphere & Thermosphere. M.Wiltberger NCAR/HAO

Modeling Interactions between the Magnetosphere, Ionosphere & Thermosphere. M.Wiltberger NCAR/HAO Modeling Interactions between the Magnetosphere, Ionosphere & Thermosphere M.Wiltberger NCAR/HAO Outline Overview of MIT circuit Modeling Magnetospheric impacts on the Ionosphere Energetic Particle Fluxes

More information

TURBULENT TRANSPORT THEORY

TURBULENT TRANSPORT THEORY ASDEX Upgrade Max-Planck-Institut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical

More information

David versus Goliath 1

David versus Goliath 1 David versus Goliath 1 or A Comparison of the Magnetospheres between Jupiter and Earth 1 David and Goliath is a story from the Bible that is about a normal man (David) who meets a giant (Goliath) Tomas

More information

and another with a peak frequency ω 2

and another with a peak frequency ω 2 Physics Qualifying Examination Part I 7-Minute Questions September 13, 2014 1. A sealed container is divided into two volumes by a moveable piston. There are N A molecules on one side and N B molecules

More information

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Department of applied physics, Aalto University March 8, 2016 Hamiltonian versus Newtonian mechanics Newtonian mechanics:

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Millikan determined the charge on individual oil droplets using an arrangement as represented in the diagram. The plate voltage necessary to hold a charged droplet stationary

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

Lecture Note 1. 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter)

Lecture Note 1. 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Lecture Note 1 1.1 Plasma 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Recall: Concept of Temperature A gas in thermal equilibrium

More information

EECS 117 Lecture 13: Method of Images / Steady Currents

EECS 117 Lecture 13: Method of Images / Steady Currents EECS 117 Lecture 13: Method of Images / Steady Currents Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 217 Lecture 13 p. 1/21 Point Charge Near Ground Plane Consider

More information

UNH Modeling for RENU2

UNH Modeling for RENU2 UNH Modeling for RENU2 RENU 2 Science Team Meeting I Brent Sadler University of New Hampshire (Model: Antonius Otto, UAF) 1 CHAMP satellite Plot showing 8 orbits of the CHAMP satellite, at 400 km altitude,

More information

Plasma Physics Prof. Vijayshri School of Sciences, IGNOU. Lecture No. # 38 Diffusion in Plasmas

Plasma Physics Prof. Vijayshri School of Sciences, IGNOU. Lecture No. # 38 Diffusion in Plasmas Plasma Physics Prof. Vijayshri School of Sciences, IGNOU Lecture No. # 38 Diffusion in Plasmas In today s lecture, we will be taking up the topic diffusion in plasmas. Diffusion, why do you need to study

More information

Ring current formation influenced by solar wind substorm conditions

Ring current formation influenced by solar wind substorm conditions Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009ja014909, 2010 Ring current formation influenced by solar wind substorm conditions M. D. Cash, 1 R. M. Winglee, 1

More information

Nonlinear stability of the near-earth plasma sheet during substorms

Nonlinear stability of the near-earth plasma sheet during substorms 9 Nonlinear stability of the near-earth plasma sheet during substorms P. Dobias, J. A. Wanliss, and J. C. Samson 1. Introduction Abstract: We analyze a nonlinear stability of the near-earth plasma sheet

More information

Physics For Scientists and Engineers A Strategic Approach 3 rd Edition, AP Edition, 2013 Knight

Physics For Scientists and Engineers A Strategic Approach 3 rd Edition, AP Edition, 2013 Knight For Scientists and Engineers A Strategic Approach 3 rd Edition, AP Edition, 2013 Knight To the Advanced Placement Topics for C *Advanced Placement, Advanced Placement Program, AP, and Pre-AP are registered

More information

ρ c (2.1) = 0 (2.3) B = 0. (2.4) E + B

ρ c (2.1) = 0 (2.3) B = 0. (2.4) E + B Chapter 2 Basic Plasma Properties 2.1 First Principles 2.1.1 Maxwell s Equations In general magnetic and electric fields are determined by Maxwell s equations, corresponding boundary conditions and the

More information

Magnetism is associated with charges in motion (currents):

Magnetism is associated with charges in motion (currents): Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an

More information

Toroidal confinement devices

Toroidal confinement devices Toroidal confinement devices Dr Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th January 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 20) Last time... Power

More information

Space Plasma Physics at the University of Minnesota

Space Plasma Physics at the University of Minnesota Space Plasma Physics at the University of Minnesota Faculty: Cindy Cattell, Bob Lysak, John Wygant, Paul Kellogg (emeritus) Research Scientists: Yan Song, John Dombeck Recent Graduates: Jim Crumley (St.

More information

Time Series of Images of the Auroral Substorm

Time Series of Images of the Auroral Substorm ESS 7 Lecture 13 October 27, 2010 Substorms Time Series of Images of the Auroral Substorm This set of images in the ultra-violet from the Polar satellite shows changes that occur during an auroral substorm.

More information

A.G. PEETERS UNIVERSITY OF BAYREUTH

A.G. PEETERS UNIVERSITY OF BAYREUTH IN MEMORIAM GRIGORY PEREVERZEV A.G. PEETERS UNIVERSITY OF BAYREUTH ESF Workshop (Garching 2013) Research areas Grigory Pereverzev. Current drive in magnetized plasmas Transport (ASTRA transport code) Wave

More information

A Study of 3-Dimensional Plasma Configurations using the Two-Fluid Plasma Model

A Study of 3-Dimensional Plasma Configurations using the Two-Fluid Plasma Model A Study of 3-Dimensional Plasma Configurations using the Two-Fluid Plasma Model B. Srinivasan, U. Shumlak Aerospace and Energetics Research Program University of Washington IEEE International Conference

More information

Basic plasma physics

Basic plasma physics Basic plasma physics SPAT PG Lectures Jonathan Eastwood 10-14 October 2016 Aims Provide new PhD students in SPAT and the SPC section with an overview of the most important principles in space plasma physics,

More information

Variations of Ion Drifts in the Ionosphere at Low- and Mid- Latitudes

Variations of Ion Drifts in the Ionosphere at Low- and Mid- Latitudes Variations of Ion Drifts in the Ionosphere at Low- and Mid- Latitudes Edgardo E. Pacheco Jicamarca Radio Observatory Jul, 2014 Outline Motivation Introduction to Ionospheric Electrodynamics Objectives

More information

Fundamentals of Plasma Physics

Fundamentals of Plasma Physics Fundamentals of Plasma Physics Definition of Plasma: A gas with an ionized fraction (n i + + e ). Depending on density, E and B fields, there can be many regimes. Collisions and the Mean Free Path (mfp)

More information

Stability of the High-Latitude Reconnection Site for Steady. Lockheed Martin Advanced Technology Center, Palo Alto, CA

Stability of the High-Latitude Reconnection Site for Steady. Lockheed Martin Advanced Technology Center, Palo Alto, CA Page 1 Stability of the High-Latitude Reconnection Site for Steady Northward IMF S. A. Fuselier, S. M. Petrinec, K. J. Trattner Lockheed Martin Advanced Technology Center, Palo Alto, CA Abstract: The stability

More information

Chapter 8 Geospace 1

Chapter 8 Geospace 1 Chapter 8 Geospace 1 Previously Sources of the Earth's magnetic field. 2 Content Basic concepts The Sun and solar wind Near-Earth space About other planets 3 Basic concepts 4 Plasma The molecules of an

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields A Brief History of Magnetism 13 th century BC Chinese used a compass Uses a magnetic needle Probably an invention of Arabic or Indian origin 800 BC Greeks Discovered magnetite

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A10, 1283, doi: /2000ja000190, 2002

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A10, 1283, doi: /2000ja000190, 2002 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A10, 1283, doi:10.1029/2000ja000190, 2002 Dynamic fluid kinetic (DyFK) simulation of auroral ion transport: Synergistic effects of parallel potentials, transverse

More information

Lecture 2. Introduction to plasma physics. Dr. Ashutosh Sharma

Lecture 2. Introduction to plasma physics. Dr. Ashutosh Sharma Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 2. Introduction to plasma physics Dr. Ashutosh Sharma Zoltán

More information

Magnetospheric Currents at Quiet Times

Magnetospheric Currents at Quiet Times Magnetospheric Currents at Quiet Times Robert L. McPherron Institute of Geophysics and Planetary Physics University of California Los Angeles Los Angeles, CA 90095-1567 e-mail: rmcpherron@igpp.ucla.edu

More information

CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS

CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS In this and in the following two chapters we investigate the motion of charged particles in the presence of electric and magnetic

More information

Introduction to the Sun-Earth system Steve Milan

Introduction to the Sun-Earth system Steve Milan Introduction to the Sun-Earth system Steve Milan steve.milan@ion.le.ac.uk The solar-terrestrial system Corona is so hot that the Sun s gravity cannot hold it down it flows outwards as the solar wind A

More information

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics APPENDIX Z. USEFUL FORMULAS 1 Appendix Z Useful Formulas APPENDIX Z. USEFUL FORMULAS 2 Key Vector Relations A B = B A, A B = B A, A A = 0, A B C) = A B) C A B C) = B A C) C A B), bac-cab rule A B) C D)

More information

Describe qualitatively some of the phenomena associated with currents and potential drops in the auroral zones.

Describe qualitatively some of the phenomena associated with currents and potential drops in the auroral zones. Chapter 17 Auroral Physics As described in Lectures 14 to 16, Earth s auroral regions are coupled to the solar wind, magnetosphere, and ionosphere and are therefore the site of a number of space weather

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

Basics of electromagnetic response of materials

Basics of electromagnetic response of materials Basics of electromagnetic response of materials Microscopic electric and magnetic field Let s point charge q moving with velocity v in fields e and b Force on q: F e F qeqvb F m Lorenz force Microscopic

More information

Evgeny Mishin. Physics of the Geospace Response to Powerful HF Radio Waves. Space Vehicles Directorate Air Force Research Laboratory

Evgeny Mishin. Physics of the Geospace Response to Powerful HF Radio Waves. Space Vehicles Directorate Air Force Research Laboratory Physics of the Geospace Response to Powerful HF Radio Waves HAARP-Resonance Workshop, 8-9 November 2011 Evgeny Mishin Space Vehicles Directorate Air Force Research Laboratory Integrity Service Excellence

More information

Estimates of the Suprathermal O + outflow characteristic energy and relative location in the auroral oval

Estimates of the Suprathermal O + outflow characteristic energy and relative location in the auroral oval Estimates of the Suprathermal O + outflow characteristic energy and relative location in the auroral oval L. Andersson, W. K. Peterson and K. M. McBryde Laboratory for Atmospheric and Space Physics, University

More information

Introduction to the Sun and the Sun-Earth System

Introduction to the Sun and the Sun-Earth System Introduction to the Sun and the Sun-Earth System Robert Fear 1,2 R.C.Fear@soton.ac.uk 1 Space Environment Physics group University of Southampton 2 Radio & Space Plasma Physics group University of Leicester

More information

Sub-Auroral Electric Fields: An Inner Magnetosphere Perspective

Sub-Auroral Electric Fields: An Inner Magnetosphere Perspective Sub-Auroral Electric Fields: An Inner Magnetosphere Perspective Bob Spiro Rice University 2005 GEM/CEDAR Tutorial 1 Introduction/Outline Introduction/Outline Importance of Sub-Auroral E-Fields Early Models

More information

Properties of Alfvén Waves in the Magnetotail Below 9 R E and Their Relation to Auroral Acceleration and Major Geomagnetic Storms

Properties of Alfvén Waves in the Magnetotail Below 9 R E and Their Relation to Auroral Acceleration and Major Geomagnetic Storms Properties of Alfvén Waves in the Magnetotail Below 9 R E and Their Relation to Auroral Acceleration and Major Geomagnetic Storms A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY

More information

The Physics of Space Plasmas

The Physics of Space Plasmas The Physics of Space Plasmas Magnetic Storms, Substorms and the Generalized Ohm s Law William J. Burke 27 November 2012 University of Massachusetts, Lowell Lecture 10 Geomagnetic Storms: (continued ) Large

More information

A Correlation Study of Steady Magnetospheric Convection in the Northern and Southern Hemispheres

A Correlation Study of Steady Magnetospheric Convection in the Northern and Southern Hemispheres A Correlation Study of Steady Magnetospheric Convection in the Northern and Southern Hemispheres Caroline M. McElhenny 1, Dr. Anna DeJong 1 1 Christopher Newport University Abstract: The purpose of this

More information

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics Magnetostatics Magnetic Fields We saw last lecture that some substances, particularly iron, possess a property we call magnetism that exerts forces on other magnetic materials We also saw that t single

More information

Hybrid magnetohydrodynamic-kinetic electron closure methods and shear Alfvén waves in nonuniform plasmas

Hybrid magnetohydrodynamic-kinetic electron closure methods and shear Alfvén waves in nonuniform plasmas PHYSICS OF PLASMAS 1, 04105 005 Hybrid magnetohydrodynamic-kinetic electron closure methods and shear Alfvén waves in nonuniform plasmas P. A. Damiano a and A. N. Wright Mathematical Institute, University

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

Plasma pressure generated auroral current system: A case study

Plasma pressure generated auroral current system: A case study GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051211, 2012 Plasma pressure generated auroral current system: A case study S. B. Mende, 1 S. L. England, 1 and H. U. Frey 1 Received 2 February

More information

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland Magnetic Reconnection: explosions in space and astrophysical plasma J. F. Drake University of Maryland Magnetic Energy Dissipation in the Universe The conversion of magnetic energy to heat and high speed

More information