Single Particle Motion

Size: px
Start display at page:

Download "Single Particle Motion"

Transcription

1 Single Particle Motion Overview Electromagnetic fields, Lorentz-force, gyration and guiding center, drifts, adiabatic invariants. Pre-requisites: Energy density of the particle population smaller than energy density of the field, All spatial and temporal changes in the fields are small/slow compared to the characteristic scales of particle motion. 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 1

2 Application: Radiation Belts 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 2

3 Single Particle Motion: Overview 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 3

4 Electromagnetic Fields 1: Pre-requisite: vacuum, ε=µ=1. Maxwell s laws: Gauß law of the electric field Gauß law of the magnetic field Faraday s law Ampere s law Magnetic flux 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 4

5 Electromagnetic Fields 2: Transition differential to integral form: Gauß theorem: Stokes theorem: Transformation of electromagnetic fields: general: Non-relativistic: 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 5

6 Electromagnetic Fields 3: Generalized form of Ohm s law: Energy density in the electromagnetic field: multiply Faraday by B and integrate over V: rewrite (energy density now on the left hand side): Energy density electromagnetic field Poynting vector (energy flux density) >0: Ohmic losses, <0: sources In matter: 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 6

7 Lorentz Force Lorentz force (general form, all electromagnetic fields) Vanishing electric field (first integral of motion; elementary, only numerical exercise) 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 7

8 Gyration 1: Lorentz force (equation of motion): Equation of motion (components): Cyclotron frequency: Larmor radius: Example: T=1keV, B=1T; electrons: v=1.87e6 km, r=0.1 mm,ω=1.8e11/s; protons: v=4.37e5 km, r=4.6 mm, ω=1e8/s 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 8

9 Useful Definitions: Magnetic rigidity: Pitch angle: Magnetic moment: 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 9

10 Gyration 2: Relativistic quantities: Example: proton with 1E20 ev, B = 3E-10 T, r = 1E21 m Local gyro radius: 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 10

11 Drift in Electromagnetic Fields Guiding center: General drift: Electric field perpendicular to magnetic field: Gravitational plus magnetic field: Gradient drift: Curvature drift: 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 11

12 General Form of Drift Idea: transformation into a frame of reference in which motion is reduced to: Arithmetics (F B): Result: gyration in the new frame of reference general equation for the drift velocity: 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 12

13 Drifts Summarized 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 13

14 Drift with Changes in Energy Drift leads particles to a different potential acceleration 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 14

15 Adiabatic Invariants Pre-requisite: spatial and temporal changes in the fields small compared to the corresponding scales of particle motion: Gyration (time): Field-parallel motion: Gyro orbit (radius): Magnetic moment: Longitudinal invariant: Flux invariant: 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 15

16 Magnetic Mirrors Basics: the magnetic moment is constant Restoring force in the mirror point because magnetic field line not perpendicular to the plane of gyration 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 16

17 Magnetic Bottle Two magnetic mirrors combined: Oscillation of the guiding center between the mirror points Application: radiation belts (particles trapped inside the magnetosphere) Application longitudinal invariant: 1st order Fermi acceleration 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 17

18 Application: Radiation Belts 1. Magnetic moment µ 2. Longitudinal invariant 3. Flux invariant 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 18

19 Time Scales: Magnetosphere Gyration: khz Longitudinal oscillation: seconds Drift: 15 min (1000 s) 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 19

20 Dynamics of the Radiation Belts L-Shell: distance field line to center of Earth in equatorial plane Intensity on fixed field line (L-shell) shows strong temporal variations In particular rather abrupt depletion followed by a slower recovery of the particle population 14/04/2005 Space Physics SS Chap. 2: Single Particle Motion 20

Single particle motion

Single particle motion Single particle motion Plasma is a collection of a very large number of charged particles moving in, and giving rise to, electromagnetic fields. Before going to the statistical descriptions, let us learn

More information

Single particle motion and trapped particles

Single particle motion and trapped particles Single particle motion and trapped particles Gyromotion of ions and electrons Drifts in electric fields Inhomogeneous magnetic fields Magnetic and general drift motions Trapped magnetospheric particles

More information

Single Particle Motion in a Magnetized Plasma

Single Particle Motion in a Magnetized Plasma Single Particle Motion in a Magnetized Plasma Aurora observed from the Space Shuttle Bounce Motion At Earth, pitch angles are defined by the velocity direction of particles at the magnetic equator, therefore:

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Charged particle motion in external fields

Charged particle motion in external fields Chapter 2 Charged particle motion in external fields A (fully ionized) plasma contains a very large number of particles. In general, their motion can only be studied statistically, taking appropriate averages.

More information

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS

CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS In this and in the following two chapters we investigate the motion of charged particles in the presence of electric and magnetic

More information

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Department of applied physics, Aalto University March 8, 2016 Hamiltonian versus Newtonian mechanics Newtonian mechanics:

More information

8.2.2 Rudiments of the acceleration of particles

8.2.2 Rudiments of the acceleration of particles 430 The solar wind in the Universe intergalactic magnetic fields that these fields should not perturb them. Their arrival directions should thus point back to their sources in the sky, which does not appear

More information

Lecture 2: Plasma particles with E and B fields

Lecture 2: Plasma particles with E and B fields Lecture 2: Plasma particles with E and B fields Today s Menu Magnetized plasma & Larmor radius Plasma s diamagnetism Charged particle in a multitude of EM fields: drift motion ExB drift, gradient drift,

More information

Motion of Charged Particles in Fields

Motion of Charged Particles in Fields Chapter Motion of Charged Particles in Fields Plasmas are complicated because motions of electrons and ions are determined by the electric and magnetic fields but also change the fields by the currents

More information

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Module No. # 01 Lecture No. # 22 Adiabatic Invariance of Magnetic Moment and Mirror Confinement Today, we

More information

Radiation belt particle dynamics

Radiation belt particle dynamics Radiation belt particle dynamics Prepared by Kevin Graf Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global AWESOME Network Basic Motion Motion of charged particle q in presence

More information

Accelerator Physics, BAU, First Semester, (Saed Dababneh).

Accelerator Physics, BAU, First Semester, (Saed Dababneh). Accelerator Physics 501503746 Course web http://nuclear.bau.edu.jo/accelerators/ edu or http://nuclear.dababneh.com/accelerators/ com/accelerators/ 1 Grading Mid-term Exam 25% Projects 25% Final Exam 50%

More information

1.2 Which parameters are used to characterize a plasma? Briefly discuss their physical meaning.

1.2 Which parameters are used to characterize a plasma? Briefly discuss their physical meaning. Solutions to Exercises 3 rd edition Space Physics 1 Chapter 1 1.1 Define a plasma. Discuss the importance of the density. Is there a limit for the relative or the absolute size of the neutral component?

More information

[variable] = units (or dimension) of variable.

[variable] = units (or dimension) of variable. Dimensional Analysis Zoe Wyatt wyatt.zoe@gmail.com with help from Emanuel Malek Understanding units usually makes physics much easier to understand. It also gives a good method of checking if an answer

More information

Transformers. slide 1

Transformers. slide 1 Transformers an alternating emf V1 through the primary coil causes an oscillating magnetic flux through the secondary coil and, hence, an induced emf V2. The induced emf of the secondary coil is delivered

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

Longitudinal dynamics Yannis PAPAPHILIPPOU CERN

Longitudinal dynamics Yannis PAPAPHILIPPOU CERN Longitudinal dynamics Yannis PAPAPHILIPPOU CERN United States Particle Accelerator School, University of California - Santa-Cruz, Santa Rosa, CA 14 th 18 th January 2008 1 Outline Methods of acceleration

More information

Chapter Three: Propagation of light waves

Chapter Three: Propagation of light waves Chapter Three Propagation of Light Waves CHAPTER OUTLINE 3.1 Maxwell s Equations 3.2 Physical Significance of Maxwell s Equations 3.3 Properties of Electromagnetic Waves 3.4 Constitutive Relations 3.5

More information

cos 6 λ m sin 2 λ m Mirror Point latitude Equatorial Pitch Angle Figure 5.1: Mirror point latitude as function of equatorial pitch angle.

cos 6 λ m sin 2 λ m Mirror Point latitude Equatorial Pitch Angle Figure 5.1: Mirror point latitude as function of equatorial pitch angle. Chapter 5 The Inner Magnetosphere 5.1 Trapped Particles The motion of trapped particles in the inner magnetosphere is a combination of gyro motion, bounce motion, and gradient and curvature drifts. In

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

Magnetospheric Physics - Homework, 02/21/ Local expansion of B: Consider the matrix B = (1)

Magnetospheric Physics - Homework, 02/21/ Local expansion of B: Consider the matrix B = (1) Magnetospheric Physics - Homework, //4 4. Local expansion of B: Consider the matrix B α x γ δ x γ α y δ y β x β y α z () with constant parameters α i, β i, δ i, γ, and γ for the expansion of the magnetic

More information

Special relativity and light RL 4.1, 4.9, 5.4, (6.7)

Special relativity and light RL 4.1, 4.9, 5.4, (6.7) Special relativity and light RL 4.1, 4.9, 5.4, (6.7) First: Bremsstrahlung recap Braking radiation, free-free emission Important in hot plasma (e.g. coronae) Most relevant: thermal Bremsstrahlung What

More information

Intermission Page 343, Griffith

Intermission Page 343, Griffith Intermission Page 343, Griffith Chapter 8. Conservation Laws (Page 346, Griffith) Lecture : Electromagnetic Power Flow Flow of Electromagnetic Power Electromagnetic waves transport throughout space the

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron - Potentials - Liénard-Wiechart Potentials - Larmor s Formula - Dipole Approximation - Beginning of Cyclotron & Synchrotron Maxwell s equations in a vacuum become A basic feature of these eqns is the existence

More information

Magnetism II. Physics 2415 Lecture 15. Michael Fowler, UVa

Magnetism II. Physics 2415 Lecture 15. Michael Fowler, UVa Magnetism II Physics 2415 Lecture 15 Michael Fowler, UVa Today s Topics Force on a charged particle moving in a magnetic field Path of a charged particle moving in a magnetic field Torque on a current

More information

Gyrokinetic simulations of magnetic fusion plasmas

Gyrokinetic simulations of magnetic fusion plasmas Gyrokinetic simulations of magnetic fusion plasmas Tutorial 2 Virginie Grandgirard CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. email: virginie.grandgirard@cea.fr

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

Classical Electrodynamics

Classical Electrodynamics Classical Electrodynamics Third Edition John David Jackson Professor Emeritus of Physics, University of California, Berkeley JOHN WILEY & SONS, INC. Contents Introduction and Survey 1 I.1 Maxwell Equations

More information

Exercises in field theory

Exercises in field theory Exercises in field theory Wolfgang Kastaun April 30, 2008 Faraday s law for a moving circuit Faradays law: S E d l = k d B d a dt S If St) is moving with constant velocity v, it can be written as St) E

More information

Motion of a charged particle in an EM field

Motion of a charged particle in an EM field Department of physics Seminar - 4 th year Motion of a charged particle in an EM field Author: Lojze Gačnik Mentor: Assoc. Prof. Tomaž Gyergyek Ljubljana, November 2011 Abstract In this paper I will present

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell Chapter 14 MAXWELL S EQUATONS ntroduction Electrodynamics before Maxwell Maxwell s displacement current Maxwell s equations: General Maxwell s equations in vacuum The mathematics of waves Summary NTRODUCTON

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 9. Synchrotron Radiation Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Useful reminders relativistic terms, and simplifications for very high velocities

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67

More information

Basics of Radiation Fields

Basics of Radiation Fields Basics of Radiation Fields Initial questions: How could you estimate the distance to a radio source in our galaxy if you don t have a parallax? We are now going to shift gears a bit. In order to understand

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

Appendix C: Magnetic Coordinate Definitions and Nomenclature

Appendix C: Magnetic Coordinate Definitions and Nomenclature Appendix C: Magnetic Coordinate Definitions and Nomenclature This appendix presents definitions of various magnetic coordinates. The intent is not only to collect the definitions in one place, but also

More information

Science Overview. Vassilis Angelopoulos, ELFIN PI

Science Overview. Vassilis Angelopoulos, ELFIN PI Science Overview Vassilis Angelopoulos, ELFIN PI Science Overview-1 MPDR, 2/12/2015 RADIATION BELTS: DISCOVERED IN 1958, STILL MYSTERIOUS Explorer 1, 1958 Time Magazine, May 4, 1959 Science Overview-2

More information

TEACHER CERTIFICATION STUDY GUIDE

TEACHER CERTIFICATION STUDY GUIDE Table of Contents Pg. Domain I. Mechanics Vectors (properties; addition and subtraction)... 129H1 Vector multiplication (dot and cross product)... 130H3 Motion along a straight line (displacement, velocity,

More information

Gravity and action at a distance

Gravity and action at a distance Gravitational waves Gravity and action at a distance Newtonian gravity: instantaneous action at a distance Maxwell's theory of electromagnetism: E and B fields at distance D from charge/current distribution:

More information

Space Plasma Physics Thomas Wiegelmann, 2012

Space Plasma Physics Thomas Wiegelmann, 2012 Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description

More information

Maxwell's Equations and Conservation Laws

Maxwell's Equations and Conservation Laws Maxwell's Equations and Conservation Laws 1 Reading: Jackson 6.1 through 6.4, 6.7 Ampère's Law, since identically. Although for magnetostatics, generally Maxwell suggested: Use Gauss's Law to rewrite continuity

More information

Part III. Interaction with Single Electrons - Plane Wave Orbits

Part III. Interaction with Single Electrons - Plane Wave Orbits Part III - Orbits 52 / 115 3 Motion of an Electron in an Electromagnetic 53 / 115 Single electron motion in EM plane wave Electron momentum in electromagnetic wave with fields E and B given by Lorentz

More information

RBSP Mission: Understanding Particle Acceleration and Electrodynamics of the Inner Magnetosphere

RBSP Mission: Understanding Particle Acceleration and Electrodynamics of the Inner Magnetosphere RBSP Mission: Understanding Particle Acceleration and Electrodynamics of the Inner Magnetosphere A. Y. Ukhorskiy JHU/APL My God, space is radioactive! Ernie Ray, 1958 Спутник II, III [Vernov et al., 1959]

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University Introduction to electron and photon beam physics Zhirong Huang SLAC and Stanford University August 03, 2015 Lecture Plan Electron beams (1.5 hrs) Photon or radiation beams (1 hr) References: 1. J. D. Jackson,

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 6. Relativistic Covariance & Kinematics Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Practise, practise, practise... mid-term, 31st may, 9.15-11am As we

More information

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics CHAPTER 12 ELECTRODYNAMICS & RELATIVITY Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 Outlines 1. The special theory of relativity 2. Relativistic Mechanics 3. Relativistic

More information

Chapter Topic Subtopic

Chapter Topic Subtopic Specification of the test on Physics for Unified National Testing and Complex Testing (Approved for use in the Unified National Testing and Complex Testing from 2018) The document was developed in accordance

More information

Global Monitoring of the Terrestrial Ring Current

Global Monitoring of the Terrestrial Ring Current Global Monitoring of the Terrestrial Ring Current Stefano Orsini Istituto di Fisica dello Spazio Interplanetario, CNR ROMA, Italy with the fruitful help of Anna Milillo and of all other colleagues of the

More information

ELECTROHYDRODYNAMICS IN DUSTY AND DIRTY PLASMAS

ELECTROHYDRODYNAMICS IN DUSTY AND DIRTY PLASMAS ELECTROHYDRODYNAMICS IN DUSTY AND DIRTY PLASMAS Gravito-Electrodynamics and EHD by HIROSHI KIKUCHI Institute for Environmental Electromagnetics, Tokyo, Japan KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON

More information

Plasmas as fluids. S.M.Lea. January 2007

Plasmas as fluids. S.M.Lea. January 2007 Plasmas as fluids S.M.Lea January 2007 So far we have considered a plasma as a set of non intereacting particles, each following its own path in the electric and magnetic fields. Now we want to consider

More information

Relativistic Solar Electrons - where and how are they formed?

Relativistic Solar Electrons - where and how are they formed? Relativistic Solar Electrons - where and how are they formed? Ilan Roth Space Sciences, UC Berkeley Nonlinear Processes in Astrophysical Plasmas Kavli Institute for Theoretical Physics Santa Barbara September

More information

Experiments with a Supported Dipole

Experiments with a Supported Dipole Experiments with a Supported Dipole Reporting Measurements of the Interchange Instability Excited by Electron Pressure and Centrifugal Force Introduction Ben Levitt and Dmitry Maslovsky Collisionless Terrella

More information

Electromagnetic Waves

Electromagnetic Waves Chapter 32 Electromagnetic Waves PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 32 To learn why a light

More information

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT.

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Electromagnetic

More information

Methods of plasma description Particle motion in external fields

Methods of plasma description Particle motion in external fields Methods of plasma description (suggested reading D.R. Nicholson, chap., Chen chap., 8.4) Charged particle motion in eternal electromagnetic (elmg) fields Charged particle motion in self-consistent elmg

More information

E or B? It Depends on Your Perspective

E or B? It Depends on Your Perspective E or B? It Depends on Your Perspective Alec sees a moving charge, and he knows that this creates a magnetic field. From Brittney s perspective, the charge is at rest, so the magnetic field is zero. Is

More information

Electromagnetic Fields. Lecture 2. Fundamental Laws

Electromagnetic Fields. Lecture 2. Fundamental Laws Electromagnetic Fields Lecture 2 Fundamental Laws Laws of what? Electric field... is a phenomena that surrounds electrically charged objects or that which is in the presence of a time-varying magnetic

More information

For the magnetic field B called magnetic induction (unfortunately) M called magnetization is the induced field H called magnetic field H =

For the magnetic field B called magnetic induction (unfortunately) M called magnetization is the induced field H called magnetic field H = To review, in our original presentation of Maxwell s equations, ρ all J all represented all charges, both free bound. Upon separating them, free from bound, we have (dropping quadripole terms): For the

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

Fundamentals of Plasma Physics

Fundamentals of Plasma Physics Fundamentals of Plasma Physics Springer Science+Business Media, LLC J.A. Bittencourt Fundamentals of Plasma Physics Third Edition Springer J. A. Bittencourt National Institute for Space Research (INPE)

More information

Physics 42 Exam 3 Spring 2016 Name: M T W

Physics 42 Exam 3 Spring 2016 Name: M T W Physics 42 Exam 3 Spring 2016 Name: M T W Conceptual Questions & Shorty (2 points each) 1. Which magnetic field causes the observed force? 2. If released from rest, the current loop will move a. upward

More information

Magnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law.

Magnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law. Magnetic Fields Charge q as source Gauss s Law Electric field E F = q E Faraday s Law Ampere-Maxwell Law Current I as source Magnetic field B Ampere s Law F = q v B Force on q in the field Force on q v

More information

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. 2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. Chapter 21 Electric Charge 21-1 What Is Physics? 21-2

More information

Basic plasma physics

Basic plasma physics Basic plasma physics SPAT PG Lectures Jonathan Eastwood 10-14 October 2016 Aims Provide new PhD students in SPAT and the SPC section with an overview of the most important principles in space plasma physics,

More information

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop.

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop. Displacement current British physicist James C. Maxwell gave final shape to all phenomenon connecting electricity and magnetism. He noticed an inconsistency in Ampere s Law connecting Electric current

More information

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants. PHYSICS 253 SAMPLE FINAL EXAM Name Student Number CHECK ONE: Instructor 1 10:00 Instructor 2 1:00 Note that problems 1-19 are worth 2 points each, while problem 20 is worth 15 points and problems 21 and

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

PROBLEM SET. Heliophysics Summer School. July, 2013

PROBLEM SET. Heliophysics Summer School. July, 2013 PROBLEM SET Heliophysics Summer School July, 2013 Problem Set for Shocks and Particle Acceleration There is probably only time to attempt one or two of these questions. In the tutorial session discussion

More information

Planetary Magnetospheres: Homework Problems

Planetary Magnetospheres: Homework Problems Planetary Magnetospheres: Homework Problems s will be posted online at http://www.ucl.ac.uk/ ucapnac 1. In classical electromagnetic theory, the magnetic moment µ L associated with a circular current loop

More information

RBSP Mission: Understanding Particle Acceleration and Electrodynamics of the Inner Magnetosphere. A. Y. Ukhorskiy, B. Mauk, N.

RBSP Mission: Understanding Particle Acceleration and Electrodynamics of the Inner Magnetosphere. A. Y. Ukhorskiy, B. Mauk, N. RBSP Mission: Understanding Particle Acceleration and Electrodynamics of the Inner Magnetosphere A. Y. Ukhorskiy, B. Mauk, N. Fox JHU/APL My God, space is radioactive! Ernie Ray, 1958 Спутник II, III [Vernov

More information

SATELLITE ABSORPTION OF ENERGETIC PARTICLES

SATELLITE ABSORPTION OF ENERGETIC PARTICLES CHRIS P. PARANICAS and ANDREW F. CHENG SATELLITE ABSORPTION OF ENERGETIC PARTICLES Planetary satellites and rings are found within the magnetospheres of the outer planets and have important effects on

More information

PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010

PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010 PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010 1. An electric dipole is formed from two charges ±q separated by a distance b. For large distances r b from the dipole, the electric potential falls like

More information

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6.

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6. Chapter 19 Magnetism 1. Magnets 2. Earth s Magnetic Field 3. Magnetic Force 4. Magnetic Torque 5. Motion of Charged Particles 6. Amperes Law 7. Parallel Conductors 8. Loops and Solenoids 9. Magnetic Domains

More information

Waves in plasmas. S.M.Lea

Waves in plasmas. S.M.Lea Waves in plasmas S.M.Lea 17 1 Plasma as an example of a dispersive medium We shall now discuss the propagation of electromagnetic waves through a hydrogen plasm an electrically neutral fluid of protons

More information

Introduction to Electromagnetic Theory

Introduction to Electromagnetic Theory Introduction to Electromagnetic Theory Lecture topics Laws of magnetism and electricity Meaning of Maxwell s equations Solution of Maxwell s equations Electromagnetic radiation: wave model James Clerk

More information

Maxwell Equations: Electromagnetic Waves

Maxwell Equations: Electromagnetic Waves Maxwell Equations: Electromagnetic Waves Maxwell s Equations contain the wave equation The velocity of electromagnetic waves: c = 2.99792458 x 10 8 m/s The relationship between E and B in an EM wave Energy

More information

PHYSICS LECTURES ON. 'ftt/tatt DEFINITIVE EDITION VOLUME II FEYNMAN LEIGHTON SANDS. Addison Wesley PEARSON

PHYSICS LECTURES ON. 'ftt/tatt DEFINITIVE EDITION VOLUME II FEYNMAN LEIGHTON SANDS. Addison Wesley PEARSON 'ftt/tatt LECTURES ON PHYSICS DEFINITIVE EDITION FEYNMAN LEIGHTON SANDS PEARSON Addison Wesley San Francisco Boston New York CapeTown Hong Kong London Madrid MexicoCity Montreal Munich Paris Singapore

More information

Chapter 11. Radiation. How accelerating charges and changing currents produce electromagnetic waves, how they radiate.

Chapter 11. Radiation. How accelerating charges and changing currents produce electromagnetic waves, how they radiate. Chapter 11. Radiation How accelerating charges and changing currents produce electromagnetic waves, how they radiate. 11.1.1 What is Radiation? Assume a radiation source is localized near the origin. Total

More information

Intermission on Page 343

Intermission on Page 343 Intermission on Page 343 Together with the force law, All of our cards are now on the table, and in a sense my job is done. In the first seven chapters we assembled electrodynamics piece by piece, and

More information

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Module - 4 Time Varying Field Lecture - 30 Maxwell s Equations In the last lecture we had introduced

More information

Chapter 5. Magnetostatics

Chapter 5. Magnetostatics Chapter 5. Magnetostatics 5.4 Magnetic Vector Potential 5.1.1 The Vector Potential In electrostatics, E Scalar potential (V) In magnetostatics, B E B V A Vector potential (A) (Note) The name is potential,

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

Final Exam - PHYS 611 Electromagnetic Theory. Mendes, Spring 2013, April

Final Exam - PHYS 611 Electromagnetic Theory. Mendes, Spring 2013, April NAME: Final Exam - PHYS 611 Electromagnetic Theory Mendes, Spring 2013, April 24 2013 During the exam you can consult your textbooks (Melia, Jackson, Panofsky/Phillips, Griffiths), the print-outs of classnotes,

More information

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements. PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion

More information

Students are required to pass a minimum of 15 AU of PAP courses including the following courses:

Students are required to pass a minimum of 15 AU of PAP courses including the following courses: School of Physical and Mathematical Sciences Division of Physics and Applied Physics Minor in Physics Curriculum - Minor in Physics Requirements for the Minor: Students are required to pass a minimum of

More information

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

!#$%$!&'()$('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS LONGITUDINAL BEAM DYNAMICS Elias Métral BE Department CERN The present transparencies are inherited from Frank Tecker (CERN-BE), who gave this course last year and who inherited them from Roberto Corsini

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction The book Introduction to Modern Physics: Theoretical Foundations starts with the following two paragraphs [Walecka (2008)]: At the end of the 19th century, one could take pride in

More information

Electromagnetic waves in free space

Electromagnetic waves in free space Waveguide notes 018 Electromagnetic waves in free space We start with Maxwell s equations for an LIH medum in the case that the source terms are both zero. = =0 =0 = = Take the curl of Faraday s law, then

More information

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work Chapter 8. Conservation Laws 8.3 Magnetic Forces Do No Work 8.2 Momentum of EM fields 8.2.1 Newton's Third Law in Electrodynamics Consider two charges, q 1 and q 2, moving with speeds v 1 and v 2 magnetic

More information

Chapter 12. Magnetism and Electromagnetism

Chapter 12. Magnetism and Electromagnetism Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

More information