LECTURE 3 3.1Rules of Vector Differentiation

Size: px
Start display at page:

Download "LECTURE 3 3.1Rules of Vector Differentiation"

Transcription

1 LETURE 3 3.1Rules of Vector Differentiation We hae defined three kinds of deriaties inoling the operator grad( ) i j k, x y z 1 3 di(., x y z curl( i x 1 j y k z 3 d The good news is that you can apply all the usual formualae for differentiation with dx replced by proided you are careful. This is because grad and curl are ectors, wherer as di is a scalar. Also di and curl apply to ector fields, where as grad applies to scalar fields. In this lecture we look at more complicated identities inoling ector operators. The main thing to appreciate it that the operators behae both as ectors and as differential operators, so that the usual rules of taking the deriatie of, say, a product must be obsered. Let (r) u and (r) be ector fields, f (r) and g (r) be scalar fields and and be constants. 1 Differentiation is Linear grad( f g) f g grad ( f ) grad( g) di( u di( di( curl( u curl( curl( grad( fg) fgrad( g) ggrad( f ) di( f fdi( grad( f ).( curl( f fxu ( f ) xu fcurl ( grad( f ) x( Vector Product Rule di( ux. curl( u. curl( curl ( u u( di( ) ( di( ) (. ) u ( u. ) grad( u. ( u. ) (. ) u u curl( curl( 3. Vector Multiple Operations di( grad( f )). ( f ) f curl ( grad( f )) x( f ) 0

2 di ( curl( ). x( 0 curl( curl( ) (.( u Example: James lerk Maxwell established a set of four ector equations which are fundamental to working out how electromagnetic waes propagate. The entire telecommunications industry is built on these. did di B 0 curle B t curlh J D t In addition, we can assume the following, B r 0 H, J E, D r 0E, where all the scalars are constants. Now show that in a material with zero free charge density, 0, and with zero conductiity, 0, the electric field E must be a solution of the wae equation E E r0 r 0( ) t Example: Let 3 3xyz i xy j x yzk, 3x yz Find (i) di ( (ii) curl ( (iii). grad ( ) and hence (i di( ( curl(. 3. Line Integrals We are used to calculating integrals with respect to a set of coordinate axes, usually artesian. For b example Area under a cure f (x) between a and b = f ( x) dx a In this section we will generalize this idea to line integrals which are entirely analogous to the aboe idea. Here, we allow the axis of the integral to be an arbitrary cure in space and the function f will ary along that line. As an example of this, suppose that the temperature of our body at a particular time is T(x,y, z). Now suppose we wish to calculate the aerage temperature of the blood in a particular ein. This ein traces out a cure through our body and we wish to aerage the temperature along that cure. This inoles a line integral like the ones we will consider here. We will consider two types of line integrals: integrals of scalar functions and integrals of ector functions. As we will see, once we hae parameterized the integral using t on [a,b], the integral in both cases reduces to an ordinary integral oer [a,b]. This can be ealuated using integration rules. Line integrals of scalar functions Suppose we wish to integrate f (x,y, z) along a cure. Letting s be the arclength along the cure, we wish to find

3 f (x,y,z)ds. The arc length s has units of length and the integral aboe is the area under the cure along that cure. Howeer, the integral as it is written aboe cannot be ealuated since we do not hae an expression for x, y and z along. To get this, suppose that the cure is parameterized using the parameter t, then we can write the integral aboe as 1 t t0 ds f ( x(, y(, z( ). Where we hae used the hain Rule, and t ranges from t0 to t1. Where r( = x(i +y(j+z(k is the parametric form of the cure. Examples of line integrals of scalar functions An important special case of the line integral aboe is where f (x,y, z) =1, which defines the arc length of the cure. Another important application is when f (x,y, z) represents the linear density (mass per unit distance), for example along a wire. Then the line integral defines the total mass of the wire. To ensure the integral is defined, we assume that the cure is smooth, or piecewise smooth, ie continuous with finitely many smooth pieces. The alue of the scalar line integral is independent of the parameterization used to define. In particular, the integral has the same alue if the direction (orientation) of the parameterization is reersed. If is a closed path, sometimes is written instead of Following results hold for line integral. 1. kfds k fds. ( f g) ds fds gds 3. ( f g ) ds fds c 1 gds 1. The line integral of a ector function Suppose a particle is moed along a cure from r(a) to r(b) by a force F(r). What is the work done W by the force F on the particle? W b a F. dr This expression holds for any ector function, not just force as in the deriation aboe. Some notes about this line integral are listed below. To ensure the integral is defined, we assume that is smooth or piecewise smooth. The alue of the line integral of a ector function is independent of the parameterization used to define the cure as long as the direction (orientation) is the same. If the direction is reersed, then the alue of the integral is multiplied by 1. If is a closed path then is often written The line integral has the following properties:

4 a. kfds k Fds b. ( F G) ds Fds Gds c. ( F G ) ds Fds c Parametrisation of ures 1 1 Gds The key to ealuating such integrals is to define a single co-ordinate t that parametrises the cure. onsider the cures in D. For some cures it is obious how to do this, eg. Use the x-coordinate as the parameter: Straight line y a bx x t, y a bt or r( ( t, a b Parabola y a bx x t, y a bt or r( ( t, a bt ) For other cures one can use an angular formulation ircle x y a x a cost, y asin t or r( ( acost, asin and dr( ( asin t, acos x y Ellipse 1 x a cost, y bsin t or a b r( ( acost, bsin and dr( ( asin t, bcos x a x b x c Straight line r = a + bt or t(say) l m n Therefore x a lt, y b mt, z c nt Helix (shape of light spring) r ( acost, asin t, c Here a is the radius of the helix and a b = tan, where is the helix angle. Ealuation of work Integrals 1 parametrise the cure as r( ( x(, y(, z( ) work the limits a and b on t. 3 ealuate the ector field along the (x,y,z)=(x(,y(,z(), form the dot product and integrate w.r.t t: ( r). dr tb ta dx( dy( dz( ( x(, y(, z(. i j k Example1: Find the work done moing a particle from (0,0,0) to (1,1,1) in the field F (x y ) i 3xy j k along the straight path 1, the straight line joining (0,0,0) to (1,1,1) and parametrically gien by x= t, y =t, z = t 3. Example: Find the work done moing a particle from (0,0,0) to (1,1,1) in the field 3 F ( xy z ) i x j 3xz k along the following paths a) the straight path 1, the straight line joining (0,0,0) to (1,1,1). b) the path composed of the three straight lines joining (0,0,0) to (1,0,0) to (1,1,0) to (1,1,1).

5 Note that both answers are same as they would be for any cure joining (0,0,0) and (1,1,1). This is because the aboe force field F is conseratie. 3.5 onseratie Vector fields and independence of path Recall from lecture, a ector field is conseratie in a region, if its circulation along eery closed cure in the region is zero. i.e. curl( 0 The Fundamental Theorem of Line Integrals Let F be a conseratie ector field with potential function f, and be any smooth cure starting at the point A and ending at the point B. Then To proe the fundamental theorem of line integrals we will use the following outcome of the chain rule: If r( = x(i + y(j is a ector alued function, then d f(r() = fx x'( + f y y'(we are now ready to proe the theorem. We hae Theorem: The necessary and sufficient condition for a continuous ector field F to be conseratie (or irrotational) in a simply connected region R is F that it is the gradient of a scaler field. Example: Find the work done by the ector field F(x,y) = (x -3y)i + (3y - 3x)j along the cure indicated in the graph below

6 Independence of Path and losed ures Example: Find the work done by the ector field F(x,y) = (cos x + y)i + (x+ e sin y )j + (sin(cos z))k along the closed cure shown below Theorem: onseratie Vector Fields and losed ures Let F be a ector field with components that hae continuous first order partial deriaties and let be a piecewise smooth cure. Then the following three statements are equialent 1. F is conseratie.. is independent of path. 3. for all closed cures. Example: alculate curl (F) for the force field F taken in worked in preious example, hence show that the field is conseratie. Find the scalar field and hence calculate the work done in moing from (1,-,1) to (3,1,4). Remarks The course is also true; if the work integral is independent of path taken between any two points then there must exist a scalar potential function such that F.

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Created by T. Madas LINE INTEGRALS. Created by T. Madas LINE INTEGRALS LINE INTEGRALS IN 2 DIMENSIONAL CARTESIAN COORDINATES Question 1 Evaluate the integral ( x + 2y) dx, C where C is the path along the curve with equation y 2 = x + 1, from ( ) 0,1 to ( )

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-A Fall 014 Motion in Two and Three Dimensions Lectures 4,5 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-1D Spring 013 Motion in Two and Three Dimensions Lectures 5,6,7 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

r t t x t y t z t, y t are zero, then construct a table for all four functions. dy dx 0 and 0 dt dt horizontal tangent vertical tangent

r t t x t y t z t, y t are zero, then construct a table for all four functions. dy dx 0 and 0 dt dt horizontal tangent vertical tangent 3. uggestions for the Formula heets Below are some suggestions for many more formulae than can be placed easily on both sides of the two standard 8½"" sheets of paper for the final examination. It is strongly

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

16.2 Line Integrals. Lukas Geyer. M273, Fall Montana State University. Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall / 21

16.2 Line Integrals. Lukas Geyer. M273, Fall Montana State University. Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall / 21 16.2 Line Integrals Lukas Geyer Montana State University M273, Fall 211 Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall 211 1 / 21 Scalar Line Integrals Definition f (x) ds = lim { s i } N f (P i ) s

More information

Vector Fields and Line Integrals The Fundamental Theorem for Line Integrals

Vector Fields and Line Integrals The Fundamental Theorem for Line Integrals Math 280 Calculus III Chapter 16 Sections: 16.1, 16.2 16.3 16.4 16.5 Topics: Vector Fields and Line Integrals The Fundamental Theorem for Line Integrals Green s Theorem Curl and Divergence Section 16.1

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

231 Outline Solutions Tutorial Sheet 4, 5 and November 2007

231 Outline Solutions Tutorial Sheet 4, 5 and November 2007 31 Outline Solutions Tutorial Sheet 4, 5 and 6. 1 Problem Sheet 4 November 7 1. heck that the Jacobian for the transformation from cartesian to spherical polar coordinates is J = r sin θ. onsider the hemisphere

More information

Directional Derivative and the Gradient Operator

Directional Derivative and the Gradient Operator Chapter 4 Directional Derivative and the Gradient Operator The equation z = f(x, y) defines a surface in 3 dimensions. We can write this as z f(x, y) = 0, or g(x, y, z) = 0, where g(x, y, z) = z f(x, y).

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

Directional Derivatives in the Plane

Directional Derivatives in the Plane Directional Derivatives in the Plane P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Directional Derivatives in the Plane April 10, 2017 1 / 30 Directional Derivatives in the Plane Let z =

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

Math Exam IV - Fall 2011

Math Exam IV - Fall 2011 Math 233 - Exam IV - Fall 2011 December 15, 2011 - Renato Feres NAME: STUDENT ID NUMBER: General instructions: This exam has 16 questions, each worth the same amount. Check that no pages are missing and

More information

Magnetic Fields Part 3: Electromagnetic Induction

Magnetic Fields Part 3: Electromagnetic Induction Magnetic Fields Part 3: Electromagnetic Induction Last modified: 15/12/2017 Contents Links Electromagnetic Induction Induced EMF Induced Current Induction & Magnetic Flux Magnetic Flux Change in Flux Faraday

More information

21.60 Worksheet 8 - preparation problems - question 1:

21.60 Worksheet 8 - preparation problems - question 1: Dynamics 190 1.60 Worksheet 8 - preparation problems - question 1: A particle of mass m moes under the influence of a conseratie central force F (r) =g(r)r where r = xˆx + yŷ + zẑ and r = x + y + z. A.

More information

EE2007: Engineering Mathematics II Vector Calculus

EE2007: Engineering Mathematics II Vector Calculus EE2007: Engineering Mathematics II Vector Calculus Ling KV School of EEE, NTU ekvling@ntu.edu.sg Rm: S2-B2b-22 Ver 1.1: Ling KV, October 22, 2006 Ver 1.0: Ling KV, Jul 2005 EE2007/Ling KV/Aug 2006 EE2007:

More information

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem Green s Theorem MATH 311, alculus III J. obert Buchanan Department of Mathematics Fall 2011 Main Idea Main idea: the line integral around a positively oriented, simple closed curve is related to a double

More information

(b) Find the interval of convergence of the series whose n th term is ( 1) n (x+2)

(b) Find the interval of convergence of the series whose n th term is ( 1) n (x+2) Code No: R5112 Set No. 1 I B.Tech Supplimentary Examinations, Aug/Sep 27 MATHEMATICS-I ( Common to Civil Engineering, Electrical & Electronic Engineering, Mechanical Engineering, Electronics & Communication

More information

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length. Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u

More information

Review Questions for Test 3 Hints and Answers

Review Questions for Test 3 Hints and Answers eview Questions for Test 3 Hints and Answers A. Some eview Questions on Vector Fields and Operations. A. (a) The sketch is left to the reader, but the vector field appears to swirl in a clockwise direction,

More information

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2) Dynamics ( 동역학 ) Ch. Motion of Translating Bodies (. &.) Motion of Translating Bodies This chapter is usually referred to as Kinematics of Particles. Particles: In dynamics, a particle is a body without

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED GCE UNIT 76/ MATHEMATICS (MEI Mechanics MONDAY MAY 7 Additional materials: Answer booklet (8 pages Graph paper MEI Examination Formulae and Tables (MF Morning Time: hour minutes INSTRUCTIONS TO

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd First Semester Year :

University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd First Semester Year : Uniersity of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : nd First Semester Year : 16-17 VECTOR FUNCTIONS SECTION 13. Ideal Projectile Motion Ideal Projectile

More information

4B. Line Integrals in the Plane

4B. Line Integrals in the Plane 4. Line Integrals in the Plane 4A. Plane Vector Fields 4A-1 Describe geometrically how the vector fields determined by each of the following vector functions looks. Tell for each what the largest region

More information

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

ENGI 4430 Line Integrals; Green s Theorem Page 8.01 ENGI 4430 Line Integrals; Green s Theorem Page 8.01 8. Line Integrals Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence

More information

Math Divergence and Curl

Math Divergence and Curl Math 23 - Divergence and Curl Peter A. Perry University of Kentucky November 3, 28 Homework Work on Stewart problems for 6.5: - (odd), 2, 3-7 (odd), 2, 23, 25 Finish Homework D2 due tonight Begin Homework

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. MTH 34 Solutions to Exam April 9th, 8 Name: Section: Recitation Instructor: INSTRUTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show

More information

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3 M7Q Multivariable alculus Spring 7 Review Problems for Exam Exam covers material from Sections 5.-5.4 and 6.-6. and 7.. As you prepare, note well that the Fall 6 Exam posted online did not cover exactly

More information

y (m)

y (m) 4 Spring 99 Problem Set Optional Problems Physics February, 999 Handout Sinusoidal Waes. sinusoidal waes traeling on a string are described by wae Two Waelength is waelength of wae?ofwae? In terms of amplitude

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 94 5. - Gradient, Divergence, Curl Page 5. 5. The Gradient Operator A brief review is provided here for the gradient operator in both Cartesian and orthogonal non-cartesian coordinate systems. Sections

More information

Vector Calculus handout

Vector Calculus handout Vector Calculus handout The Fundamental Theorem of Line Integrals Theorem 1 (The Fundamental Theorem of Line Integrals). Let C be a smooth curve given by a vector function r(t), where a t b, and let f

More information

One side of each sheet is blank and may be used as scratch paper.

One side of each sheet is blank and may be used as scratch paper. Math 244 Spring 2017 (Practice) Final 5/11/2017 Time Limit: 2 hours Name: No calculators or notes are allowed. One side of each sheet is blank and may be used as scratch paper. heck your answers whenever

More information

Chapter 1: Kinematics of Particles

Chapter 1: Kinematics of Particles Chapter 1: Kinematics of Particles 1.1 INTRODUCTION Mechanics the state of rest of motion of bodies subjected to the action of forces Static equilibrium of a body that is either at rest or moes with constant

More information

Lecture 5 Charge Density & Differential Charge. Sections: 2.3, 2.4, 2.5 Homework: See homework file

Lecture 5 Charge Density & Differential Charge. Sections: 2.3, 2.4, 2.5 Homework: See homework file Lecture 5 Charge Density & Differential Charge Sections: 2.3, 2.4, 2.5 Homework: See homework file Point Charge as an Approximation charge occupies a finite olume and may hae arying density a charged body

More information

Summary of various integrals

Summary of various integrals ummary of various integrals Here s an arbitrary compilation of information about integrals Moisés made on a cold ecember night. 1 General things o not mix scalars and vectors! In particular ome integrals

More information

Created by T. Madas VECTOR OPERATORS. Created by T. Madas

Created by T. Madas VECTOR OPERATORS. Created by T. Madas VECTOR OPERATORS GRADIENT gradϕ ϕ Question 1 A surface S is given by the Cartesian equation x 2 2 + y = 25. a) Draw a sketch of S, and describe it geometrically. b) Determine an equation of the tangent

More information

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

ENGI 4430 Line Integrals; Green s Theorem Page 8.01 ENGI 443 Line Integrals; Green s Theorem Page 8. 8. Line Integrals Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

EE2007: Engineering Mathematics II Vector Calculus

EE2007: Engineering Mathematics II Vector Calculus EE2007: Engineering Mathematics II Vector Calculus Ling KV School of EEE, NTU ekvling@ntu.edu.sg Rm: S2-B2b-22 Ver 1.1: Ling KV, October 22, 2006 Ver 1.0: Ling KV, Jul 2005 EE2007/Ling KV/Aug 2006 My part:

More information

Arnie Pizer Rochester Problem Library Fall 2005 WeBWorK assignment VectorCalculus1 due 05/03/2008 at 02:00am EDT.

Arnie Pizer Rochester Problem Library Fall 2005 WeBWorK assignment VectorCalculus1 due 05/03/2008 at 02:00am EDT. Arnie Pizer Rochester Problem Library Fall 005 WeBWorK assignment Vectoralculus due 05/03/008 at 0:00am EDT.. ( pt) rochesterlibrary/setvectoralculus/ur V.pg onsider the transformation T : x = 35 35 37u

More information

5. Suggestions for the Formula Sheets

5. Suggestions for the Formula Sheets 5. uggestions for the Formula heets Below are some suggestions for many more formulae than can be placed easily on both sides of the two standard 8½" " sheets of paper for the final examination. It is

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

MULTIVARIABLE CALCULUS

MULTIVARIABLE CALCULUS MULTIVARIABLE CALCULUS JOHN QUIGG Contents 13.1 Three-Dimensional Coordinate Systems 2 13.2 Vectors 3 13.3 The Dot Product 5 13.4 The Cross Product 6 13.5 Equations of Lines and Planes 7 13.6 Cylinders

More information

f. D that is, F dr = c c = [2"' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2"' dt = 2

f. D that is, F dr = c c = [2' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2' dt = 2 SECTION 16.4 GREEN'S THEOREM 1089 X with center the origin and radius a, where a is chosen to be small enough that C' lies inside C. (See Figure 11.) Let be the region bounded by C and C'. Then its positively

More information

LECTURE 2: CROSS PRODUCTS, MULTILINEARITY, AND AREAS OF PARALLELOGRAMS

LECTURE 2: CROSS PRODUCTS, MULTILINEARITY, AND AREAS OF PARALLELOGRAMS LECTURE : CROSS PRODUCTS, MULTILINEARITY, AND AREAS OF PARALLELOGRAMS MA1111: LINEAR ALGEBRA I, MICHAELMAS 016 1. Finishing up dot products Last time we stated the following theorem, for which I owe you

More information

Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems Chapter 15. i j k Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

More information

The Gradient and Directional Derivative - (12.6)

The Gradient and Directional Derivative - (12.6) Te Gradient and Directional Deriatie - (.6). Directional Deriaties Definition: Te directional deriatie of f x,y at te point a,b andintedirectionofteunit ector u u,u, denoted as D u f a,b, is defined by

More information

Multivariable Calculus

Multivariable Calculus Math Spring 05 BY: $\ Ron Buckmire Multivariable alculus Worksheet 6 TITLE Path-Dependent Vector Fields and Green s Theorem URRENT READING Mcallum, Section 8.4 HW # (DUE Wednesday 04/ BY 5PM) Mcallum,

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

EE2007: Engineering Mathematics II Vector Calculus

EE2007: Engineering Mathematics II Vector Calculus EE2007: Engineering Mathematics II Vector Calculus Ling KV School of EEE, NTU ekvling@ntu.edu.sg Rm: S2-B2a-22 Ver: August 28, 2010 Ver 1.6: Martin Adams, Sep 2009 Ver 1.5: Martin Adams, August 2008 Ver

More information

Ma 1c Practical - Solutions to Homework Set 7

Ma 1c Practical - Solutions to Homework Set 7 Ma 1c Practical - olutions to omework et 7 All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth Edition) Exercise 7.4.. Find the area of the portion of the unit sphere that is cut

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35. Rutgers Uniersit Department of Phsics & Astronom 01:750:271 Honors Phsics I Fall 2015 Lecture 4 Page 1 of 35 4. Motion in two and three dimensions Goals: To stud position, elocit, and acceleration ectors

More information

Math 31CH - Spring Final Exam

Math 31CH - Spring Final Exam Math 3H - Spring 24 - Final Exam Problem. The parabolic cylinder y = x 2 (aligned along the z-axis) is cut by the planes y =, z = and z = y. Find the volume of the solid thus obtained. Solution:We calculate

More information

Vector Calculus - GATE Study Material in PDF

Vector Calculus - GATE Study Material in PDF Vector Calculus - GATE Study Material in PDF In previous articles, we have already seen the basics of Calculus Differentiation and Integration and applications. In GATE 2018 Study Notes, we will be introduced

More information

52. The Del Operator: Divergence and Curl

52. The Del Operator: Divergence and Curl 52. The Del Operator: Divergence and Curl Let F(x, y, z) = M(x, y, z), N(x, y, z), P(x, y, z) be a vector field in R 3. The del operator is represented by the symbol, and is written = x, y, z, or = x,

More information

Line, surface and volume integrals

Line, surface and volume integrals www.thestudycampus.com Line, surface and volume integrals In the previous chapter we encountered continuously varying scalar and vector fields and discussed the action of various differential operators

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

ARNOLD PIZER rochester problib from CVS Summer 2003

ARNOLD PIZER rochester problib from CVS Summer 2003 ARNOLD PIZER rochester problib from VS Summer 003 WeBWorK assignment Vectoralculus due 5/3/08 at :00 AM.( pt) setvectoralculus/ur V.pg onsider the transformation T : x 8 53 u 45 45 53v y 53 u 8 53 v A.

More information

Math Review for Exam 3

Math Review for Exam 3 1. ompute oln: (8x + 36xy)ds = Math 235 - Review for Exam 3 (8x + 36xy)ds, where c(t) = (t, t 2, t 3 ) on the interval t 1. 1 (8t + 36t 3 ) 1 + 4t 2 + 9t 4 dt = 2 3 (1 + 4t2 + 9t 4 ) 3 2 1 = 2 3 ((14)

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

Math 5BI: Problem Set 9 Integral Theorems of Vector Calculus

Math 5BI: Problem Set 9 Integral Theorems of Vector Calculus Math 5BI: Problem et 9 Integral Theorems of Vector Calculus June 2, 2010 A. ivergence and Curl The gradient operator = i + y j + z k operates not only on scalar-valued functions f, yielding the gradient

More information

6. Vector Integral Calculus in Space

6. Vector Integral Calculus in Space 6. Vector Integral alculus in pace 6A. Vector Fields in pace 6A-1 Describegeometricallythefollowingvectorfields: a) xi +yj +zk ρ b) xi zk 6A-2 Write down the vector field where each vector runs from (x,y,z)

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Find parametric equations for the tangent line of the graph of r(t) = (t, t + 1, /t) when t = 1. Solution: A point on this line is r(1) = (1,,

More information

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

(x,y) 4. Calculus I: Differentiation

(x,y) 4. Calculus I: Differentiation 4. Calculus I: Differentiation 4. The eriatie of a function Suppose we are gien a cure with a point lying on it. If the cure is smooth at then we can fin a unique tangent to the cure at : If the tangent

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad 1 P a g e INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 04 Name : Mathematics-II Code : A0006 Class : II B. Tech I Semester Branch : CIVIL Year : 016 017 FRESHMAN ENGINEERING

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad MECHANICAL ENGINEERING TUTORIAL QUESTION BANK

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 Mathematics-II A30006 II-I B. Tech Freshman Engineering Year 016 017 Course Faculty MECHANICAL ENGINEERING

More information

Final Exam Review Sheet : Comments and Selected Solutions

Final Exam Review Sheet : Comments and Selected Solutions MATH 55 Applied Honors alculus III Winter Final xam Review heet : omments and elected olutions Note: The final exam will cover % among topics in chain rule, linear approximation, maximum and minimum values,

More information

Lecture 11: Arclength and Line Integrals

Lecture 11: Arclength and Line Integrals Lecture 11: Arclength and Line Integrals Rafikul Alam Department of Mathematics IIT Guwahati Parametric curves Definition: A continuous mapping γ : [a, b] R n is called a parametric curve or a parametrized

More information

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes Integral ector Theorems 9. Introduction arious theorems exist relating integrals involving vectors. Those involving line, surface and volume integrals are introduced here. They are the multivariable calculus

More information

6.1.1 Angle between Two Lines Intersection of Two lines Shortest Distance from a Point to a Line

6.1.1 Angle between Two Lines Intersection of Two lines Shortest Distance from a Point to a Line CHAPTER 6 : VECTORS 6. Lines in Space 6.. Angle between Two Lines 6.. Intersection of Two lines 6..3 Shortest Distance from a Point to a Line 6. Planes in Space 6.. Intersection of Two Planes 6.. Angle

More information

Section 4.3 Vector Fields

Section 4.3 Vector Fields Section 4.3 Vector Fields DEFINITION: A vector field in R n is a map F : A R n R n that assigns to each point x in its domain A a vector F(x). If n = 2, F is called a vector field in the plane, and if

More information

Print Your Name: Your Section:

Print Your Name: Your Section: Print Your Name: Your Section: Mathematics 1c. Practice Final Solutions This exam has ten questions. J. Marsden You may take four hours; there is no credit for overtime work No aids (including notes, books,

More information

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0) eview Exam Math 43 Name Id ead each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must show your

More information

Lecture Wise Questions from 23 to 45 By Virtualians.pk. Q105. What is the impact of double integration in finding out the area and volume of Regions?

Lecture Wise Questions from 23 to 45 By Virtualians.pk. Q105. What is the impact of double integration in finding out the area and volume of Regions? Lecture Wise Questions from 23 to 45 By Virtualians.pk Q105. What is the impact of double integration in finding out the area and volume of Regions? Ans: It has very important contribution in finding the

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. V9. Surface Integrals Surface

More information

Math 53: Worksheet 9 Solutions

Math 53: Worksheet 9 Solutions Math 5: Worksheet 9 Solutions November 1 1 Find the work done by the force F xy, x + y along (a) the curve y x from ( 1, 1) to (, 9) We first parametrize the given curve by r(t) t, t with 1 t Also note

More information

Integral Vector Calculus

Integral Vector Calculus ontents 29 Integral Vector alculus 29.1 Line Integrals Involving Vectors 2 29.2 Surface and Volume Integrals 34 29.3 Integral Vector Theorems 54 Learning outcomes In this Workbook you will learn how to

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 4. Line Integrals in the

More information

9.7 Gradient of a Scalar Field. Directional Derivative. Mean Value Theorem. Special Cases

9.7 Gradient of a Scalar Field. Directional Derivative. Mean Value Theorem. Special Cases SEC. 9.7 Gradient of a Scalar Field. Directional Derivative 395 Mean Value Theorems THEOREM Mean Value Theorem Let f(x, y, z) be continuous and have continuous first partial derivatives in a domain D in

More information

Status: Unit 2, Chapter 3

Status: Unit 2, Chapter 3 1 Status: Unit, Chapter 3 Vectors and Scalars Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication by a Scalar Adding Vectors by Components Unit Vectors Vector Kinematics Projectile

More information

CHAPTER 3 : VECTORS. Definition 3.1 A vector is a quantity that has both magnitude and direction.

CHAPTER 3 : VECTORS. Definition 3.1 A vector is a quantity that has both magnitude and direction. EQT 101-Engineering Mathematics I Teaching Module CHAPTER 3 : VECTORS 3.1 Introduction Definition 3.1 A ector is a quantity that has both magnitude and direction. A ector is often represented by an arrow

More information

F S (2) (3) D 2. 1 Stefan Sint, see also

F S (2) (3) D 2. 1 Stefan Sint, see also Note I.6 1 These are Conor Houghton s notes from 6 to whom many thanks! I have just edited a few minor things and corrected some typos. The pictures are in separate files and have also been drawn by Conor.

More information

MATH The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input,

MATH The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input, MATH 20550 The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input, F(x 1,, x n ) F 1 (x 1,, x n ),, F m (x 1,, x n ) where each

More information

Lecture 4: Partial and Directional derivatives, Differentiability

Lecture 4: Partial and Directional derivatives, Differentiability Lecture 4: Partial and Directional derivatives, Differentiability Rafikul Alam Department of Mathematics IIT Guwahati Differential Calculus Task: Extend differential calculus to the functions: Case I:

More information

10.9 Stokes's theorem

10.9 Stokes's theorem 09 tokes's theorem This theorem transforms surface integrals into line integrals and conversely, line integrals into surface integrals Hence, it generalizes Green's theorem in the plane of ec 04 Equation

More information

(a) 0 (b) 1/4 (c) 1/3 (d) 1/2 (e) 2/3 (f) 3/4 (g) 1 (h) 4/3

(a) 0 (b) 1/4 (c) 1/3 (d) 1/2 (e) 2/3 (f) 3/4 (g) 1 (h) 4/3 Math 114 Practice Problems for Test 3 omments: 0. urface integrals, tokes Theorem and Gauss Theorem used to be in the Math40 syllabus until last year, so we will look at some of the questions from those

More information

Derivatives and Integrals

Derivatives and Integrals Derivatives and Integrals Definition 1: Derivative Formulas d dx (c) = 0 d dx (f ± g) = f ± g d dx (kx) = k d dx (xn ) = nx n 1 (f g) = f g + fg ( ) f = f g fg g g 2 (f(g(x))) = f (g(x)) g (x) d dx (ax

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Name : Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and can e printed and given to the instructor

More information

Multivariable Calculus

Multivariable Calculus Multivariable alculus Jaron Kent-Dobias May 17, 2011 1 Lines in Space By space, we mean R 3. First, conventions. Always draw right-handed axes. You can define a L line precisely in 3-space with 2 points,

More information

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017 MA101: CALCULUS PART A

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017 MA101: CALCULUS PART A A B1A003 Pages:3 (016 ADMISSIONS) Reg. No:... Name:... APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 017 MA101: CALCULUS Ma. Marks: 100 Duration: 3 Hours PART

More information

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electromagnetic I Chapter 3 Vector Calculus Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Differential Length, Area, and Volume This chapter deals with integration

More information

Math 144 Activity #9 Introduction to Vectors

Math 144 Activity #9 Introduction to Vectors 144 p 1 Math 144 ctiity #9 Introduction to Vectors Often times you hear people use the words speed and elocity. Is there a difference between the two? If so, what is the difference? Discuss this with your

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

Problem Solving 1: Line Integrals and Surface Integrals

Problem Solving 1: Line Integrals and Surface Integrals A. Line Integrals MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 1: Line Integrals and Surface Integrals The line integral of a scalar function f ( xyz),, along a path C is

More information

x 1. x n i + x 2 j (x 1, x 2, x 3 ) = x 1 j + x 3

x 1. x n i + x 2 j (x 1, x 2, x 3 ) = x 1 j + x 3 Version: 4/1/06. Note: These notes are mostly from my 5B course, with the addition of the part on components and projections. Look them over to make sure that we are on the same page as regards inner-products,

More information