Created by T. Madas VECTOR OPERATORS. Created by T. Madas

Size: px
Start display at page:

Download "Created by T. Madas VECTOR OPERATORS. Created by T. Madas"

Transcription

1 VECTOR OPERATORS

2 GRADIENT gradϕ ϕ

3 Question 1 A surface S is given by the Cartesian equation x y = 25. a) Draw a sketch of S, and describe it geometrically. b) Determine an equation of the tangent plane on S at the point with Cartesian coordinates ( 3,4,5 ). 3x + 4y = 25 Question 2 A Cartesian position vector is denoted by r and r = r. Show by detailed workings that r = r. r

4 Question 3 A Cartesian position vector is denoted by r and r = r. Given that a is a constant vector find ( ai r). ( ai r) = a Question 4 A surface S is defined by the Cartesian equation y z = 8. a) Draw a sketch of S, and describe it geometrically. b) Determine an equation of the tangent plane on S at the point with Cartesian coordinates ( 2,2,2 ). y + z = 4

5 Question 5 The scalar function V is defined as 2 2 ( ) ( ) ( ) V x, y, z = y + z + y x + y + xyz + 1. Determine the value of the directional derivative of V at the point P( 1, 1,1), in the direction i+ j+ k. 3 Question 6 The scalar function ϕ is defined as ϕ ( x y z) x y,, = e sin z. Determine the value of the directional derivative of ϕ at the point P ( 1,1,0 ), in the direction i + j + k. 1 3

6 Question 7 The point P ( 1,2,3 ) lies on the surface with Cartesian equation z = 6x + 3y. The scalar function u is defined as 2 2 (,, ) u x y z = x yz + x y. Determine the value of the directional derivative of u at the point P in the direction to the normal at P. 6 3

7 Question 8 P y z lies on both surfaces with Cartesian equations The point ( 1,, ) x + y + z = 9 and 2 2 z = x + y 3. The two surfaces intersect each other at an angle θ, at the point P. Determine the exact value of cosθ. 8 cosθ = 3 21

8 Question 9 A Cartesian position vector is denoted by r and r = r. Given that ( ) ln ϕ r = r, show that ( r) 2 ϕ = r. r Question 10 A Cartesian position vector is denoted by r and r = r. Show by detailed workings that 3 r 3rr.

9 Question 11 A Cartesian position vector is denoted by r and r = r. Given that ( r) 1 ψ =, show that r ( r) 3 ψ = r. r Question 12 A Cartesian position vector is denoted by r and r = r. Show clearly that n n 2 ( r ) nr = r.

10 Question 13 The surface S has Cartesian equation f ( x, y, z ) = constant, where f is a smooth function. Given that f 0, show that f is a normal to S.

11 Question 14 A Cartesian position vector is denoted by r and r = r. Given that f ( r ) is a differentiable function, show that ( ) ( ) f r = r f r. r MM2B,

12 Question 15 The smooth functions F ( x, y, z ) and (,, ) G x y z are given. Show that ( ) ( ) F G F G F = G 2 G. MM2C, Question ( x y z) ( x y z ) Ψ,, = + + e x + y + z Show that ( x y z) ( x y z )( x y z ) x + y + z Ψ,, = i + j + k e.

13 Question 17 A Cartesian position vector is denoted by r and r = r. Show that 3 3 9r 12 r 2 3 2r 2 3 r 2 + = + r. r 2 4 Question 18 A Cartesian position vector is denoted by r and r = r. The smooth function f ( r ) satisfies ( ) f r = 10r r. Determine a simplified expression for f ( r ). 3 5 ( ) 2 f r = r + C

14 DIVERGENCE div F i F

15 Question 1 A Cartesian position vector is denoted by r. Determine the value of i r. i r = 3 Question 2 A Cartesian position vector is denoted by r. Given that a is a constant vector, find ( a r) i. ( a r) 0 i =

16 Question 3 A Cartesian position vector is denoted by r. Given that a is a constant vector, show that ( a r) r 4 i i = a i r. Question 4 A Cartesian position vector is denoted by r. Given that a is a constant vector, show that ( ) 2 r r a = a r i i.

17 Question 5 (,, ) r x y z = xi + yj+ zk. Show clearly that r = 0 3 r i.

18 Question 6 A Cartesian position vector is denoted by r. Given that m is a constant vector, show that m r = 0 3 r i. MM2D,

19 Question 7 (,, ) r x y z = xi + yj+ zk. Show clearly that r = r 2 r i.

20 Question 8 (,, ) r x y z = xi + yj+ zk. Show, with a detailed method, that ( r r ) 3 3 = 6 r i.

21 Question 9 A Cartesian position vector is denoted by r and r = r. Show that n ( r) ( 3) r = n + r n i. MM2A,

22 Question 10 (,, ) r x y z = xi + yj+ zk. Show, with a detailed method, that 1 3 r = r r i. 3 4

23 CURL curl F F

24 Question 1 A Cartesian vector is denoted by where A f ( x, y, z) i =, i = 1, 2,3 A = A i + A j+ A k, Given that A i are differentiable functions, show that i A = 0. Question 2 A function ϕ is denoted by Given that ϕ is differentiable show that ( x, y, z) ϕ = ϕ. ϕ = 0.

25 Question 3 A Cartesian position vector is denoted by r and r = r. Determine the value of r. r = 0 Question 4 A Cartesian position vector is denoted by r and r = r. Given that a is a constant vector, find ( ) a r. ( ) 2 a r = a

26 Question 5 A Cartesian position vector is denoted by r and r = r. Determine ( y 2 ) r + k. 2 ( y ) r + k = 2yi Question 6 A Cartesian position vector is denoted by r and r = r. Given that a is a constant vector, show that 2 ( r ) a 2r a.

27 Question 7 A vector function A is defined as (,, ) (,, ) (,, ) A = A x y z i + A x y z j+ A x y z k Given that the standard Cartesian position vector is denoted by r, show that ( ) A r r A i i. Question 8 The smooth vector functions, A and B, are both irrotational. Show that A B is solenoidal.

28 Question 9 (,, ) r x y z = xi + yj+ zk. Find the value of r. r 2 0

29 Question 10 If ϕ ϕ ( x, y, z) = is a smooth function, prove that. ( ϕ ϕ ) = 0. Question 11 (,, ) r x y z = xi + yj+ zk. Given that a is a constant vector, find the value of ( ) r a. 0

30 Question 12 The irrotational vector field F is given by ( 8x 8y az) ( 8x by 4z) ( cx 4y 2z) F = + + i + + j+ + k, where a, b and c are scalar constants. ϕ such that Determine a smooth scalar function ( x, y, z) ϕ = F. ( ) ( ) ϕ x, y, z = 2x + 2y x + constant = 4x + 4y + z 4xz 4yz + 8xy + constant

31 Question 13 a) Define the vector calculus operators grad, div and curl. A Cartesian position vector is denoted by r and r = r. b) Determine the vector ( sin e xyz ) r i +. ( sin e xyz ) r i + = 0

32 Question 14 The smooth functions f and A are defined as = (,, ) and = A ( x, y, z) + A ( x, y, z) + A ( x, y, z) f f x y z A i j k a) Define the vector calculus operators grad, div and curl with reference to f and A. A Cartesian position vector is denoted by r and r = r. b) Determine the vector c) Show that ( x y) r i + + k = 4 r r i. i j

33 Question 15 A Cartesian position vector is denoted by r and r = r. Given that a is a constant vector, show that ( ) a r r = a r i.

34 Question 16 The smooth functions A = A ( x, y, z), B = B ( x, y, z) and ϕ ϕ ( x, y, z) as = are defined 2 2 A = yz i x y j+ xz k, 2 B = x i + yz j xyk and ϕ = x y z. Find, in simplified form, expressions for a) ( Ai )ϕ. b) ( B ) A i. c) ( A )ϕ ( ) ϕ = y z x yz + x yz Ai, ( ) = ( yz 2 xy 2 ) + ( 2x 3 y x 2 yz) + ( x 2 z 2 2x 2 yz) ( ) ϕ = ( x y x z ) + ( xyz xy z) + ( xyz + x y z) B A i j k i, A i j k

35 Question 17 a) Define the vector calculus operators grad, div and curl. b) Given that ϕ ( x, y, z) and ( x, y, z) c) Evaluate ψ are smooth functions, show that [ ] ϕ ψ ϕ ψ. (( x y z) 3 ( 4 x 3 yz) ( xyz) ) i j k. d) Use the vector function (,, ) ( e x + x y z = y ) + ( xsin z) + ( 4 x ) A i j k to verify the validity of the identity ( ) ( ) 2 A A A i. (( x y z) 3 ( 4 x 3 yz) ( xyz) ) = i j k 0

36 Question 18 A Cartesian position vector is denoted by r and r = r. Given that f ( r ) is a differentiable function, show that ( ) r f r = 0.

37 Question 19 Given that = ( x, y, z) A A is a twice differentiable vector function, show that ( ) ( ) 2 A A A i.

38 Question 20 (,, ) r x y z = xi + yj+ zk. Show that r f ( r ) is irrotational, where f ( r ) is differentiable function of r.

39 Question 21 The vector function E satisfies E = r, r 0, 2 r r x y z = xi + yj+ zk. where (,, ) Show that E is irrotational, and find a smooth scalar function ( ) so that E = ϕ ( r ). ϕ k =, ϕ r, with ( ) 0 = r ϕ ( r ) ln k

40 Question 22 A Cartesian position vector is denoted by r and r = r. Given that a is a constant vector, show that r 3ai r a a = 3 r. 5 3 r r r

41 Question 23 ( ) ( ) ( ) ( ) ( ) A B B A + B A A B A B i i i i. a) Given that A = A ( x, y, z) and = ( x, y, z) B B are smooth vector functions, use index summation notation to prove the validity of the above vector identity. b) Verify the validity of the vector identity if A = i + 2j 3k and B = xi + y j + zk both sides yield 2i + 4j 6k

42 LAPLACIAN i ϕ 2 ϕ

43 Question 1 A Cartesian position vector is denoted by r and r = r. Determine the value of 1 div grad r, r 0. 1 div grad = 0 r

44 Question 2 A smooth scalar field is denoted by ϕ ϕ ( x, y, z) denoted by A = A ( x, y, z). = and a smooth vector field is a) Use the standard definitions of vector operators to show that ( ) ϕa = ϕ A + ϕ A i i i. b) Given further that f and g are functions of x, y and z, whose second partial derivatives exist, deduce that ( ) 2 2 f g g f = f g g f i. MM2E,

45 Question 3 A Cartesian position vector is denoted by r and r = r, r 0. Show that 2 1 ( ln r) =. 2 r

46 Question 4 It is given that ϕ = ϕ ( x, y, z) and ψ ψ ( x, y, z) = are twice differentiable functions. Show, with a detailed method, that ( ) ϕψ = ψ ϕ + 2 ϕ ψ + ϕ ψ i.

47 Question 5 (,, ) r x y z = xi + yj+ zk. Show clearly that 2 n ( ) n( n 1) n 2 r = + r.

48 Question 6 It is given that ( ) ϕ x, y, z = z + sinh xsin y. a) Verify that ϕ is a solution of Laplace s equation 2 ϕ = 0. b) Hence find a vector field F, so that i F = 0 and F = 0. c) Verify that F found in part (b) is solenoidal and irrotational. ( cosh xsin y) ( sinh xcos y) F = i + j + k

49 Question 7 A Cartesian position vector is denoted by r and r = r. Given that f ( r ) is a twice differentiable function, show that 2 2 d f 2 df f = 2 dr + r dr, r 0.

50 Question 8 (,, ) r x y z = xi + yj+ zk. Show, with a detailed method, that 2 r 2 = r r i. 3 4

51 Question 9 The scalar function ϕ is given below in terms of the non zero constants λ and µ. ( x, y, z) e x sin ( y z) cos( y z) ϕ = λ + λ µ µ. Given that ( ϕ ) 0 = i, 2 2 show, with a detailed method, that λ + µ = 1. 2

52 Question 10 It is given that ( ) ( ) ( ) A B C B A C A B C i i. a) Use the above identity to find a simplified expression for ( ) F is a smooth vector field. The smooth vector fields E and H, satisfy the following relationships. i E = 0 H E = t i H = 0 E H = t b) Show that E and H, satisfy the wave equation. F, where 2 2 d U U =. 2 dt 2 ( ) ( i ) F F F

53 Question 11 The Laplacian operator coordinates is defined as 2 in the standard two dimensional Cartesian system of x y ( ) ( ) ( ) 2 2. Show that the two dimensional Laplacian operator is invariant under rotation.

54 Question 12 It is given that if F is a smooth vector field, then ( ) ( ) 2 F = F F i. a) By using index summation notation, or otherwise, prove the validity of the above vector identity. Maxwell s equations for the electric field E and magnetic field B, satisfy E = ρ ε i, 0 B E =, i B = 0 and t µ µ ε E B = J +, t where ρ is the electric charge density, J is the current density, and µ 0 and ε 0 are positive constants. b) Show that ρ + J = 0 t i. c) Given further that ρ = 0 and J = 0, show also that 2 d E E = µ 0ε 0 and 2 dt d B B = µ 0ε0. 2 dt

55 Question 13 Show that the Laplacian operator in the standard two dimensional Polar system of coordinates is given by r r 2 2 r r θ ( ) ( ) ( ) ( ).

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Created by T. Madas LINE INTEGRALS. Created by T. Madas LINE INTEGRALS LINE INTEGRALS IN 2 DIMENSIONAL CARTESIAN COORDINATES Question 1 Evaluate the integral ( x + 2y) dx, C where C is the path along the curve with equation y 2 = x + 1, from ( ) 0,1 to ( )

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Vector Calculus - GATE Study Material in PDF

Vector Calculus - GATE Study Material in PDF Vector Calculus - GATE Study Material in PDF In previous articles, we have already seen the basics of Calculus Differentiation and Integration and applications. In GATE 2018 Study Notes, we will be introduced

More information

Mathematics for Physical Sciences III

Mathematics for Physical Sciences III Mathematics for Physical Sciences III Change of lecturer: First 4 weeks: myself again! Remaining 8 weeks: Dr Stephen O Sullivan Continuous Assessment Test Date to be announced (probably Week 7 or 8) -

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

Chapter 2. Vector Calculus. 2.1 Directional Derivatives and Gradients. [Bourne, pp ] & [Anton, pp ]

Chapter 2. Vector Calculus. 2.1 Directional Derivatives and Gradients. [Bourne, pp ] & [Anton, pp ] Chapter 2 Vector Calculus 2.1 Directional Derivatives and Gradients [Bourne, pp. 97 104] & [Anton, pp. 974 991] Definition 2.1. Let f : Ω R be a continuously differentiable scalar field on a region Ω R

More information

VECTORS IN A STRAIGHT LINE

VECTORS IN A STRAIGHT LINE A. The Equation of a Straight Line VECTORS P3 VECTORS IN A STRAIGHT LINE A particular line is uniquely located in space if : I. It has a known direction, d, and passed through a known fixed point, or II.

More information

Created by T. Madas SURFACE INTEGRALS. Created by T. Madas

Created by T. Madas SURFACE INTEGRALS. Created by T. Madas SURFACE INTEGRALS Question 1 Find the area of the plane with equation x + 3y + 6z = 60, 0 x 4, 0 y 6. 8 Question A surface has Cartesian equation y z x + + = 1. 4 5 Determine the area of the surface which

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

Directional Derivatives in the Plane

Directional Derivatives in the Plane Directional Derivatives in the Plane P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Directional Derivatives in the Plane April 10, 2017 1 / 30 Directional Derivatives in the Plane Let z =

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

CHAPTER 7 DIV, GRAD, AND CURL

CHAPTER 7 DIV, GRAD, AND CURL CHAPTER 7 DIV, GRAD, AND CURL 1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: (1 ϕ = ( ϕ, ϕ,, ϕ x 1 x 2 x n

More information

Notes 19 Gradient and Laplacian

Notes 19 Gradient and Laplacian ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 19 Gradient and Laplacian 1 Gradient Φ ( x, y, z) =scalar function Φ Φ Φ grad Φ xˆ + yˆ + zˆ x y z We can

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information

9.7 Gradient of a Scalar Field. Directional Derivative. Mean Value Theorem. Special Cases

9.7 Gradient of a Scalar Field. Directional Derivative. Mean Value Theorem. Special Cases SEC. 9.7 Gradient of a Scalar Field. Directional Derivative 395 Mean Value Theorems THEOREM Mean Value Theorem Let f(x, y, z) be continuous and have continuous first partial derivatives in a domain D in

More information

Math Divergence and Curl

Math Divergence and Curl Math 23 - Divergence and Curl Peter A. Perry University of Kentucky November 3, 28 Homework Work on Stewart problems for 6.5: - (odd), 2, 3-7 (odd), 2, 23, 25 Finish Homework D2 due tonight Begin Homework

More information

S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS)

S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS) OLUTION TO PROBLEM 2 (ODD NUMBER) 2. The electric field is E = φ = 2xi + 2y j and at (2, ) E = 4i + 2j. Thus E = 2 5 and its direction is 2i + j. At ( 3, 2), φ = 6i + 4 j. Thus the direction of most rapid

More information

INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as

INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as, where a and b may be constants or functions of. To find the derivative of when

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

Vector calculus. Appendix A. A.1 Definitions. We shall only consider the case of three-dimensional spaces.

Vector calculus. Appendix A. A.1 Definitions. We shall only consider the case of three-dimensional spaces. Appendix A Vector calculus We shall only consider the case of three-dimensional spaces A Definitions A physical quantity is a scalar when it is only determined by its magnitude and a vector when it is

More information

Vector Calculus. Dr. D. Sukumar. February 1, 2016

Vector Calculus. Dr. D. Sukumar. February 1, 2016 Vector Calculus Dr. D. Sukumar February 1, 2016 Green s Theorem Tangent form or Ciculation-Curl form c Mdx + Ndy = R ( N x M ) da y Green s Theorem Tangent form or Ciculation-Curl form Stoke s Theorem

More information

INTEGRALSATSER VEKTORANALYS. (indexräkning) Kursvecka 4. and CARTESIAN TENSORS. Kapitel 8 9. Sidor NABLA OPERATOR,

INTEGRALSATSER VEKTORANALYS. (indexräkning) Kursvecka 4. and CARTESIAN TENSORS. Kapitel 8 9. Sidor NABLA OPERATOR, VEKTORANALYS Kursvecka 4 NABLA OPERATOR, INTEGRALSATSER and CARTESIAN TENSORS (indexräkning) Kapitel 8 9 Sidor 83 98 TARGET PROBLEM In the plasma there are many particles (10 19, 10 20 per m 3 ), strong

More information

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length. Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u

More information

+ f f n x n. + (x)

+ f f n x n. + (x) Math 255 - Vector Calculus II Notes 14.5 Divergence, (Grad) and Curl For a vector field in R n, that is F = f 1, f 2,..., f n, where f i is a function of x 1, x 2,..., x n, the divergence is div(f) = f

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 94 5. - Gradient, Divergence, Curl Page 5. 5. The Gradient Operator A brief review is provided here for the gradient operator in both Cartesian and orthogonal non-cartesian coordinate systems. Sections

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

6. Vector Integral Calculus in Space

6. Vector Integral Calculus in Space 6. Vector Integral alculus in pace 6A. Vector Fields in pace 6A-1 Describegeometricallythefollowingvectorfields: a) xi +yj +zk ρ b) xi zk 6A-2 Write down the vector field where each vector runs from (x,y,z)

More information

231 Outline Solutions Tutorial Sheet 4, 5 and November 2007

231 Outline Solutions Tutorial Sheet 4, 5 and November 2007 31 Outline Solutions Tutorial Sheet 4, 5 and 6. 1 Problem Sheet 4 November 7 1. heck that the Jacobian for the transformation from cartesian to spherical polar coordinates is J = r sin θ. onsider the hemisphere

More information

? D. 3 x 2 2 y. D Pi r ^ 2 h, r. 4 y. D 3 x ^ 3 2 y ^ 2, y, y. D 4 x 3 y 2 z ^5, z, 2, y, x. This means take partial z first then partial x

? D. 3 x 2 2 y. D Pi r ^ 2 h, r. 4 y. D 3 x ^ 3 2 y ^ 2, y, y. D 4 x 3 y 2 z ^5, z, 2, y, x. This means take partial z first then partial x PartialsandVectorCalclulus.nb? D D f, x gives the partial derivative f x. D f, x, n gives the multiple derivative n f x n. D f, x, y, differentiates f successively with respect to x, y,. D f, x, x 2, for

More information

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv 1. Matching. Fill in the appropriate letter. 1. ds for a surface z = g(x, y) A. r u r v du dv 2. ds for a surface r(u, v) B. r u r v du dv 3. ds for any surface C. G x G z, G y G z, 1 4. Unit normal N

More information

MULTIVARIABLE INTEGRATION

MULTIVARIABLE INTEGRATION MULTIVARIABLE INTEGRATION (SPHERICAL POLAR COORDINATES) Question 1 a) Determine with the aid of a diagram an expression for the volume element in r, θ, ϕ. spherical polar coordinates, ( ) [You may not

More information

MATHEMATICS AS/M/P1 AS PAPER 1

MATHEMATICS AS/M/P1 AS PAPER 1 Surname Other Names Candidate Signature Centre Number Candidate Number Examiner Comments Total Marks MATHEMATICS AS PAPER 1 Bronze Set B (Edexcel Version) CM Time allowed: 2 hours Instructions to candidates:

More information

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

Chapter 1. Vector Algebra and Vector Space

Chapter 1. Vector Algebra and Vector Space 1. Vector Algebra 1.1. Scalars and vectors Chapter 1. Vector Algebra and Vector Space The simplest kind of physical quantity is one that can be completely specified by its magnitude, a single number, together

More information

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8 Introduction to Vector Calculus (9) SOLVED EXAMPLES Q. If vector A i ˆ ˆj k, ˆ B i ˆ ˆj, C i ˆ 3j ˆ kˆ (a) A B (e) A B C (g) Solution: (b) A B (c) A. B C (d) B. C A then find (f) a unit vector perpendicular

More information

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Page Problem Score Max Score a 8 12b a b 10 14c 6 6 Fall 14 MTH 34 FINAL EXAM December 8, 14 Name: PID: Section: Instructor: DO NOT WRITE BELOW THIS LINE. Go to the next page. Page Problem Score Max Score 1 5 5 1 3 5 4 5 5 5 6 5 7 5 8 5 9 5 1 5 11 1 3 1a

More information

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin Math 45 Homework et olutions Points. ( pts) The integral is, x + z y d = x + + z da 8 6 6 where is = x + z 8 x + z = 4 o, is the disk of radius centered on the origin. onverting to polar coordinates then

More information

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C Math 35 Solutions for Final Exam Page Problem. ( points) (a) ompute the line integral F ds for the path c(t) = (t 2, t 3, t) with t and the vector field F (x, y, z) = xi + zj + xk. (b) ompute the line

More information

Tom Robbins WW Prob Lib1 Math , Fall 2001

Tom Robbins WW Prob Lib1 Math , Fall 2001 Tom Robbins WW Prob Lib Math 220-2, Fall 200 WeBWorK assignment due 9/7/0 at 6:00 AM..( pt) A child walks due east on the deck of a ship at 3 miles per hour. The ship is moving north at a speed of 7 miles

More information

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH College of Informatics and Electronics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MS4613 SEMESTER: Autumn 2002/03 MODULE TITLE: Vector Analysis DURATION OF EXAMINATION:

More information

Gradient operator. In our calculation of dφ along the vector ds, we see that it can be described as the scalar product

Gradient operator. In our calculation of dφ along the vector ds, we see that it can be described as the scalar product Gradient operator In our calculation of dφ along the vector ds, we see that it can be described as the scalar product ( φ dφ = x î + φ y ĵ + φ ) z ˆk ( ) u x dsî + u y dsĵ + u z dsˆk We take dφ = φ ds

More information

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014 MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014 Dr. E. Jacobs The main texts for this course are Calculus by James Stewart and Fundamentals of Differential Equations by Nagle, Saff

More information

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electromagnetic I Chapter 3 Vector Calculus Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Differential Length, Area, and Volume This chapter deals with integration

More information

Peter Alfeld Math , Fall 2005

Peter Alfeld Math , Fall 2005 WeBWorK assignment due 9/2/05 at :59 PM..( pt) Consider the parametric equation x = 2(cosθ + θsinθ) y = 2(sinθ θcosθ) What is the length of the curve for θ = 0 to θ = 7 6 π? 2.( pt) Let a = (-2 4 2) and

More information

IYGB Mathematical Methods 1

IYGB Mathematical Methods 1 IYGB Mathematical Methods Practice Paper B Time: 3 hours Candidates may use any non programmable, non graphical calculator which does not have the capability of storing data or manipulating algebraic expressions

More information

MATH2000 Flux integrals and Gauss divergence theorem (solutions)

MATH2000 Flux integrals and Gauss divergence theorem (solutions) DEPARTMENT O MATHEMATIC MATH lux integrals and Gauss divergence theorem (solutions ( The hemisphere can be represented as We have by direct calculation in terms of spherical coordinates. = {(r, θ, φ r,

More information

EE2007: Engineering Mathematics II Vector Calculus

EE2007: Engineering Mathematics II Vector Calculus EE2007: Engineering Mathematics II Vector Calculus Ling KV School of EEE, NTU ekvling@ntu.edu.sg Rm: S2-B2b-22 Ver 1.1: Ling KV, October 22, 2006 Ver 1.0: Ling KV, Jul 2005 EE2007/Ling KV/Aug 2006 EE2007:

More information

Lecture Notes Introduction to Vector Analysis MATH 332

Lecture Notes Introduction to Vector Analysis MATH 332 Lecture Notes Introduction to Vector Analysis MATH 332 Instructor: Ivan Avramidi Textbook: H. F. Davis and A. D. Snider, (WCB Publishers, 1995) New Mexico Institute of Mining and Technology Socorro, NM

More information

Section 4.3 Vector Fields

Section 4.3 Vector Fields Section 4.3 Vector Fields DEFINITION: A vector field in R n is a map F : A R n R n that assigns to each point x in its domain A a vector F(x). If n = 2, F is called a vector field in the plane, and if

More information

PART 2: INTRODUCTION TO CONTINUUM MECHANICS

PART 2: INTRODUCTION TO CONTINUUM MECHANICS 7 PART : INTRODUCTION TO CONTINUUM MECHANICS In the following sections we develop some applications of tensor calculus in the areas of dynamics, elasticity, fluids and electricity and magnetism. We begin

More information

Solutions to the Final Exam, Math 53, Summer 2012

Solutions to the Final Exam, Math 53, Summer 2012 olutions to the Final Exam, Math 5, ummer. (a) ( points) Let be the boundary of the region enclosedby the parabola y = x and the line y = with counterclockwise orientation. alculate (y + e x )dx + xdy.

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

Integral Vector Calculus

Integral Vector Calculus ontents 29 Integral Vector alculus 29.1 Line Integrals Involving Vectors 2 29.2 Surface and Volume Integrals 34 29.3 Integral Vector Theorems 54 Learning outcomes In this Workbook you will learn how to

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

EE2007: Engineering Mathematics II Vector Calculus

EE2007: Engineering Mathematics II Vector Calculus EE2007: Engineering Mathematics II Vector Calculus Ling KV School of EEE, NTU ekvling@ntu.edu.sg Rm: S2-B2a-22 Ver: August 28, 2010 Ver 1.6: Martin Adams, Sep 2009 Ver 1.5: Martin Adams, August 2008 Ver

More information

CITY UNIVERSITY LONDON. BEng (Hons) in Electrical and Electronic Engineering PART 2 EXAMINATION. ENGINEERING MATHEMATICS 2 (resit) EX2003

CITY UNIVERSITY LONDON. BEng (Hons) in Electrical and Electronic Engineering PART 2 EXAMINATION. ENGINEERING MATHEMATICS 2 (resit) EX2003 No: CITY UNIVERSITY LONDON BEng (Hons) in Electrical and Electronic Engineering PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2003 Date: August 2004 Time: 3 hours Attempt Five out of EIGHT questions

More information

송석호 ( 물리학과 )

송석호 ( 물리학과 ) http://optics.hanyang.ac.kr/~shsong 송석호 ( 물리학과 ) Introduction to Electrodynamics, David J. Griffiths Review: 1. Vector analysis 2. Electrostatics 3. Special techniques 4. Electric fields in mater 5. Magnetostatics

More information

MATH 31BH Homework 5 Solutions

MATH 31BH Homework 5 Solutions MATH 3BH Homework 5 Solutions February 4, 204 Problem.8.2 (a) Let x t f y = x 2 + y 2 + 2z 2 and g(t) = t 2. z t 3 Then by the chain rule a a a D(g f) b = Dg f b Df b c c c = [Dg(a 2 + b 2 + 2c 2 )] [

More information

MATHS 267 Answers to Stokes Practice Dr. Jones

MATHS 267 Answers to Stokes Practice Dr. Jones MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

More information

Summary: Curvilinear Coordinates

Summary: Curvilinear Coordinates Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 10 1 Summary: Curvilinear Coordinates 1. Summary of Integral Theorems 2. Generalized Coordinates 3. Cartesian Coordinates: Surfaces of Constant

More information

Curvilinear coordinates

Curvilinear coordinates C Curvilinear coordinates The distance between two points Euclidean space takes the simplest form (2-4) in Cartesian coordinates. The geometry of concrete physical problems may make non-cartesian coordinates

More information

Ma 1c Practical - Solutions to Homework Set 7

Ma 1c Practical - Solutions to Homework Set 7 Ma 1c Practical - olutions to omework et 7 All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth Edition) Exercise 7.4.. Find the area of the portion of the unit sphere that is cut

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 940 5.0 - Gradient, Divergence, Curl Page 5.0 5. e Gradient Operator A brief review is provided ere for te gradient operator in bot Cartesian and ortogonal non-cartesian coordinate systems. Sections

More information

TUTORIAL 7. Discussion of Quiz 2 Solution of Electrostatics part 1

TUTORIAL 7. Discussion of Quiz 2 Solution of Electrostatics part 1 TUTORIAL 7 Discussion of Quiz 2 Solution of Electrostatics part 1 Quiz 2 - Question 1! Postulations of Electrostatics %&''()(*+&,-$'.)/ : % (1)!! E # $$$$$$$$$$ & # (2)!" E # #! Static Electric field is

More information

Vector Calculus and Differential Forms with Applications to Electromagnetism

Vector Calculus and Differential Forms with Applications to Electromagnetism Vector Calculus and Differential Forms with Applications to Electromagnetism Sean Roberson May 7, 2015 P R E FA C E This paper is written as a final project for a course in vector analysis, taught at Texas

More information

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

More information

2.1 Scalars and Vectors

2.1 Scalars and Vectors 2.1 Scalars and Vectors Scalar A quantity characterized by a positive or negative number Indicated by letters in italic such as A e.g. Mass, volume and length 2.1 Scalars and Vectors Vector A quantity

More information

ENGI 4430 Gauss & Stokes Theorems; Potentials Page 10.01

ENGI 4430 Gauss & Stokes Theorems; Potentials Page 10.01 ENGI 443 Gauss & tokes heorems; Potentials Page.. Gauss Divergence heorem Let be a piecewise-smooth closed surface enclosing a volume in vector field. hen the net flux of F out of is F d F d, N 3 and let

More information

Directional Derivative and the Gradient Operator

Directional Derivative and the Gradient Operator Chapter 4 Directional Derivative and the Gradient Operator The equation z = f(x, y) defines a surface in 3 dimensions. We can write this as z f(x, y) = 0, or g(x, y, z) = 0, where g(x, y, z) = z f(x, y).

More information

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III)

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III) Calculus Vector Calculus (III) Outline 1 The Divergence Theorem 2 Stokes Theorem 3 Applications of Vector Calculus The Divergence Theorem (I) Recall that at the end of section 12.5, we had rewritten Green

More information

Keble College - Hilary 2015 CP3&4: Mathematical methods I&II Tutorial 4 - Vector calculus and multiple integrals II

Keble College - Hilary 2015 CP3&4: Mathematical methods I&II Tutorial 4 - Vector calculus and multiple integrals II Keble ollege - Hilary 2015 P3&4: Mathematical methods I&II Tutorial 4 - Vector calculus and multiple integrals II Tomi Johnson 1 Prepare full solutions to the problems with a self assessment of your progress

More information

Lecture 10: Vector Calculus II

Lecture 10: Vector Calculus II Lecture 10: Vector Calculus II 1. Key points Vector fields Field Lines/Flow Lines Divergence Curl Maple commands VectorCalculus[Divergence] VectorCalculus[Curl] Student[VectorCalculus][FlowLine] Physics[Vector]

More information

MA 1116 Suggested Homework Problems from Davis & Snider 7 th edition

MA 1116 Suggested Homework Problems from Davis & Snider 7 th edition MA 6 Suggested Homework Problems from Davis & Snider 7 th edition Sec. Page Problems Chapter. pg. 6 4, 8.3 pg. 8, 5, 8, 4.4 pg. 4, 6, 9,.5 pg. 4 4 6, 3, 5.6 pg. 7 3, 5.7 pg. 3, 3, 7, 9, 7, 9.8 pg. 9, 4,

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

f. D that is, F dr = c c = [2"' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2"' dt = 2

f. D that is, F dr = c c = [2' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2' dt = 2 SECTION 16.4 GREEN'S THEOREM 1089 X with center the origin and radius a, where a is chosen to be small enough that C' lies inside C. (See Figure 11.) Let be the region bounded by C and C'. Then its positively

More information

Differential Operators and the Divergence Theorem

Differential Operators and the Divergence Theorem 1 of 6 1/15/2007 6:31 PM Differential Operators and the Divergence Theorem One of the most important and useful mathematical constructs is the "del operator", usually denoted by the symbol Ñ (which is

More information

Vector Fields and Line Integrals The Fundamental Theorem for Line Integrals

Vector Fields and Line Integrals The Fundamental Theorem for Line Integrals Math 280 Calculus III Chapter 16 Sections: 16.1, 16.2 16.3 16.4 16.5 Topics: Vector Fields and Line Integrals The Fundamental Theorem for Line Integrals Green s Theorem Curl and Divergence Section 16.1

More information

Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field.

Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field. Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field. Figure 2: Vector and integral identities. Here ψ is a scalar

More information

Mathematical Notes for E&M Gradient, Divergence, and Curl

Mathematical Notes for E&M Gradient, Divergence, and Curl Mathematical Notes for E&M Gradient, Divergence, and Curl In these notes I explain the differential operators gradient, divergence, and curl (also known as rotor), the relations between them, the integral

More information

CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS

CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS The vector Helmholtz equations satisfied by the phasor) electric and magnetic fields are where. In low-loss media and for a high frequency, i.e.,

More information

4. Scalar and vector fields

4. Scalar and vector fields 4. Scalar and vector fields 4.1 Introduction Notation In this chapter we will be making extensive use of vectors. Within the typeset notes we will identify a vector variable using bold roman font, e.g.

More information

MET 4301 LECTURE SEP17

MET 4301 LECTURE SEP17 ------------------------------------------------------------------------------------------------------------------------------------ Objectives: To review essential mathematics for Meteorological Dynamics

More information

Print Your Name: Your Section:

Print Your Name: Your Section: Print Your Name: Your Section: Mathematics 1c. Practice Final Solutions This exam has ten questions. J. Marsden You may take four hours; there is no credit for overtime work No aids (including notes, books,

More information

Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems Chapter 15. i j k Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

More information

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering Department of Mathematics and Statistics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4006 SEMESTER: Spring 2011 MODULE TITLE:

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

ASTR 320: Solutions to Problem Set 2

ASTR 320: Solutions to Problem Set 2 ASTR 320: Solutions to Problem Set 2 Problem 1: Streamlines A streamline is defined as a curve that is instantaneously tangent to the velocity vector of a flow. Streamlines show the direction a massless

More information

Main Results of Vector Analysis

Main Results of Vector Analysis Main Results of ector Analysis Andreas Wacker Mathematical Physics, Lund University January 5, 26 Repetition: ector Space Consider a d dimensional real vector space with scalar product or inner product

More information

Production of this 2015 edition, containing corrections and minor revisions of the 2008 edition, was funded by the sigma Network.

Production of this 2015 edition, containing corrections and minor revisions of the 2008 edition, was funded by the sigma Network. About the HELM Project HELM (Helping Engineers Learn Mathematics) materials were the outcome of a three- year curriculum development project undertaken by a consortium of five English universities led

More information

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 > Math 63 Final Problem 1: [ points, 5 points to each part] Given the points P : (1, 1, 1), Q : (1,, ), R : (,, c 1), where c is a parameter, find (a) the vector equation of the line through P and Q. (b)

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative,

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, Integral Theorems eptember 14, 215 1 Integral of the gradient We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, F (b F (a f (x provided f (x

More information

Line, surface and volume integrals

Line, surface and volume integrals www.thestudycampus.com Line, surface and volume integrals In the previous chapter we encountered continuously varying scalar and vector fields and discussed the action of various differential operators

More information

Differential Vector Calculus

Differential Vector Calculus Contents 8 Differential Vector Calculus 8. Background to Vector Calculus 8. Differential Vector Calculus 7 8.3 Orthogonal Curvilinear Coordinates 37 Learning outcomes In this Workbook you will learn about

More information

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017 MA101: CALCULUS PART A

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017 MA101: CALCULUS PART A A B1A003 Pages:3 (016 ADMISSIONS) Reg. No:... Name:... APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 017 MA101: CALCULUS Ma. Marks: 100 Duration: 3 Hours PART

More information

Mathematical Analysis II, 2018/19 First semester

Mathematical Analysis II, 2018/19 First semester Mathematical Analysis II, 208/9 First semester Yoh Tanimoto Dipartimento di Matematica, Università di Roma Tor Vergata Via della Ricerca Scientifica, I-0033 Roma, Italy email: hoyt@mat.uniroma2.it We basically

More information

Some common examples of vector fields: wind shear off an object, gravitational fields, electric and magnetic fields, etc

Some common examples of vector fields: wind shear off an object, gravitational fields, electric and magnetic fields, etc Vector Analysis Vector Fields Suppose a region in the plane or space is occupied by a moving fluid such as air or water. Imagine this fluid is made up of a very large number of particles that at any instant

More information

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

More information