Analytical versus BEM solutions for transient heat transfer by conduction and convection in 2.5D domains

Size: px
Start display at page:

Download "Analytical versus BEM solutions for transient heat transfer by conduction and convection in 2.5D domains"

Transcription

1 Alyticl vesus BEM solutios fo tsiet het tsfe by coductio d covectio i.5d domis N. imões & A. Tdeu Deptmet of Civil Egieeig, Uivesity of Coimb, Potugl Abstct This ppe pesets lyticl d BEM solutios fo tsiet het tsfe by coductio d covectio i the viciity of cylidicl cicul iclusios. Diffeet coditios e pescibed fo modelig iclusios with ull fluxes o tempetues log the boudy, d with elstic iclusios embedded i ubouded homogeeous medium. I the diffeet fomultios developed, the covectio is dil. The solutio is computed i the fequecy domi fo wide ge of fequecies d xil wveumbes, d time seies e the obtied by mes of (fst) ivese Fouie tsfoms ito spce-time. The Gee s fuctios i the fequecy domi, which e to be used i the BEM model, wee vlidted gist time solutios. The BEM models e the vlidted usig the lyticl solutios give hee. Theefte, the BEM model c be used to solve het popgtio though iegul cylidicl stuctues. Keywods: tsiet het tsfe, coductio, covectio, Gee s fuctios, fequecy domi, cylidicl cicul iclusios. Itoductio The het tsfe is subject of study with iteest i sevel es of the egieeig scieces. Most of the poblems coespod to ustedy chges of het betwee diffeet medi. Theefoe, the fomultios fo studyig those systems should cotemplte the tsiet het pheome. Het popgtio though iclusios of specific mteil plced i ubouded homogeeous medium with iegul shpe is fudmetl field of study i this e. Fo isotopic d ihomogeeous medi o iclusios with complex geometies, umeicl techiques such s Fiite Diffeeces, Fiite Elemets Boudy Elemets XXVI, C. A. Bebbi (Edito) 4 WIT Pess, IBN

2 44 Boudy Elemets XXVI Methods o Boudy Elemet Methods (BEM) e eeded. Appoches usig BEM oly equie the discetiztio of the sufces log the mteil discotiuities, while the othes metioed bove equie full discetiztio of the domi. The BEM techiques epeset lowe computtiol effot, sice the size of the system tht eeds to be solved is smlle. Howeve the theedimesiol tsiet het clcultios emi computtiolly demdig. The solutio becomes much simple if the geomety is two-dimesiol, eve if spheicl het souce is cosideed. I the peset wok, time Fouie tsfom is used to compute the tsiet het tsfe by coductio d covectio oud cylidicl cicul iclusios of ifiite legth. A sptil Fouie tsfom log the diectio i which the geomety does ot chge (the z diectio) is used to compute the solutio. This equies the solutio of sequece of two-dimesiol poblems with diffeet sptil wveumbes, k z, d fequecies. The thee-dimesiol field i the time domi is computed by pplyig ivese spce Fouie tsfoms. The solutio t ech fequecy is expessed equiig the vitio of wveumbe k z, which is the subjected to Fouie tsfomtio ito the sptil domi. The tsfomtio of the wveumbe i discete fom is chieved ssumig ifiite umbe of vitul poit souces plced log the z-xis. These e eqully spced d e f eough pt to void sptil cotmitio (e.g. Boucho d Aki []). This lysis uses complex fequecies to void the lisig pheomeo d to miimize the ifluece of the eighbouig fictitious souces (e.g. Phiey []). I fct, most of the ppoches to modellig het tsfe mke use of the Lplce tsfom of the time domi diffusio equtio, which hs the disdvtge tht ccucy is lost i the ivesio pocess. I this wok bief pesettio of the tsiet het tsfe fomultio by coductio d covectio is give; the bsic expessios used to obti the fequecy domi esposes e peseted. Aftewds, the umeicl (BEM) d lyticl equtios fo solvig het covectio-diffusio i the pesece of cylidicl cicul iclusios withi ubouded medium d subjected to moopole het souces e lso peseted. This wok descibes models fo thee diffeet iclusios, mely, elstic cylidicl cicul iclusio bouded by elstic medium, iclusio whee ull fluxes hve bee pescibed log the boudy, d iclusio fo which ull tempetues hve bee pescibed log its boudy. The veifictio pocedue icluded i this wok coespods to the compiso betwee the BEM d the lyticl model whe cylidicl cicul iclusios with ull fluxes d ull tempetues log the boudy e cosideed. Thee-dimesiol poblem fomultio The tsiet het coductio i solids c be descibed by the diffusio equtio Boudy Elemets XXVI, C. A. Bebbi (Edito) 4 WIT Pess, IBN

3 Boudy Elemets XXVI 45 T T + ( -V y cos θ +V x si θ) θ z K θ, () T Vz T T ( Vcos x θ+vsi y θ) - = K K z K t i which V x, V y d V z e the velocity compoets i the diectio x, y d z espectively, = x + y, θ is the zimuth, t is time, Tt (,, θ, z) is k tempetue, K = ρ c is the theml diffusivity, k is the theml coductivity, ρ is the desity d c is the specific het. Fouie tsfomtio i the time domi expessio gives the Helmholtz equtio i the fequecy domi T T + ( -V y cos θ +V x si θ) θ z K θ, () T Vz T iω ( Vcos +Vsi ) - ˆ x θ y θ + T( ω, x, y, z) = K K z K whee i= d ω is the fequecy. Eq () c be solved fo het poit souce, locted t the oigi of the coodite system, to give the fudmetl solutio Vx cosθ+ Vysiθ+ Vzz K i Vx + Vy + Vz iω + z 4K K ˆ e Tf ( ω, x, y, z ) = e. (3) k + z I my cses the computtio of 3D poblems equies cosideble compute effot. If the geomety of the poblem does ot chge log oe diectio (z) the solutio becomes simple, sice the full 3D poblem c be computed s summtio of D solutios with diffeet sptil k z wveumbes (e.g. Tdeu d Kusel [3]). This is implemeted pplyig Fouie tsfomtio log the z diectio. Applyig this pocedue to equtio Vx + Vy + Vz iω i + z 4K K e, (4) + z leds to the followig equtio Vx cosθ+ Vysiθ+ Vzz K i e V V V i x + y + z ω f( ω,,, z) = ( z ) T x y k H k, (5) 4k 4K K whee H ( ) e Hkel fuctios of the secod kid d ode. The full thee-dimesiol solutio is sythesized pplyig ivese Fouie tsfom log the k z diectio. The ivese Fouie tsfomtio c be witte s discete summtio, if oe ssumes the existece of vitul souces eqully spced, t distce L, log z. The solutio c thus be obtied by solvig limited umbe of two-dimesiol poblems. Boudy Elemets XXVI, C. A. Bebbi (Edito) 4 WIT Pess, IBN

4 46 Boudy Elemets XXVI M π ˆ(,,, ) (,,, ) ikzm z T ω θ z = T ω θ kzm e, (6) L m= M π with k zm beig the xil wveumbe give by kzm = m. The distce L must L be lge eough to void sptil cotmitio fom the vitul souces (e.g. Boucho d Aki []). imil techiques hve bee used by the uthos to study wve popgtio (Tdeu et l [4], Godiho et l [5]). 3 Boudy elemet fomultio I ode to compute the full thee-dimesiol het field geeted by het poit souce plced i the viciity of solid cylidicl iclusio with iegul shpe i the pesece of covectio log x d y xis, the BEM is used to solve the followig equtio fo ech vlue of k z, coespodig to idividul D poblems, iω + V V ( ) ˆ x + y + kz T( ω, x, y, kz) = x y K x y K. (7) I homogeeous isotopic solid medium of ifiite extet, bouded by ic sufce, d subjected to icidet het field give by T, the ecipocity theoem my be pplied i ode to wite the elevt boudy itegl equtios [6], log the exteio domi ( ext ) ( ext ) ( ext ) ct ( x, y, k, ω) = q ( xy,, ν, k, ω) G ( xyx,,, y, k, ω) ds z z z ( ext ) ( ext ) H ( x, y, ν, x, y, kz, ω) T ( x, y, kz, ω) ds ( ext ) ( ext) ( ext) G x y x y kz T x y kz ds+ T ic x y kz (,,,,, ω) (,,, ω)v (,,, ω) log the iteio domi (it) (it) (it) ct ( x, y, k, ω) = q ( xy,, ν, k, ω) G ( xyx,,, y, k, ω) ds z z z (it) (it) (,, ν,,, z, ω) (,, z, ω) (it) (it) ( it) (,,,, z, ω) (,, z, ω)v H x y x y k T x y k ds G x y x y k T x y k ds (8). (9) I eqs (8) d (9), supescipts it d ext coespod to the iteio d exteio domi espectively, ν is the uit outwd oml log the boudy, G d H e espectively the fudmetl solutios (Gee s fuctios) fo the tempetue ( T ) d het flux ( q ), t ( xy, ) due to vitul poit het lod t ( x, y ), V = Vxx + Vyy, c is costt defied by the shpe of the boudy, with vlue of / if ( x, y ) whe the boudy is smooth. Boudy Elemets XXVI, C. A. Bebbi (Edito) 4 WIT Pess, IBN

5 Boudy Elemets XXVI 47 The two-d--hlf dimesiol Gee s fuctios fo tempetue i Ctesi co-odites e those fo ubouded solid medium, V i V iω K Gxyx (,,, y, kz, ω) = e H + ( kz), () 4k 4K K with ( ) ( ) = x x + y y, = x + y is the distce to the covectio souce positio, d H ( ) e Hkel fuctios of the secod kid d ode. The boudy is discetized ito N stight boudy elemets, with oe odl poit i the middle of ech elemet. The itegtios i eqs (8) d (9) e evluted usig Gussi qudtue scheme, whe they e ot pefomed log the loded elemet. Fo the loded elemet, the existig sigul itegds i the souce tems of the Gee s fuctios e clculted i closed fom. The fil itegl equtios e mipulted d combied so s to impose the cotiuity of tempetues d het fluxes log the boudy of the iclusio, to estblish system of equtios. The solutio of this system of equtios gives the odl tempetues d het fluxes, which llow the eflected het field to be defied. 3. Iclusio with ull fluxes log its boudy I this cse the boudy coditios pescibe ull oml het fluxes log the boudy. Thus, eq (9) is simplified to (it) (it) (it) ct ( x, y, kz, ω) = H ( x, y, ν, x, y, kz, ω) T ( x, y, kz, ω) ds. () (it) (it) ( it) G ( x, y, x, y, k, ω) T ( x, y, k, ω)v ds z z The solutio of this itegl fo bity boudy sufce ( ) gi equies the discetiztio of the boudy ito N stight boudy elemets, followig pocedue simil to tht descibed bove. 3. Iclusio with ull tempetues log its boudy Null tempetues e ow pescibed t the sufce of the boudy, which leds to the equtio (it) (it) (it) ct ( x, y, k, ω) q ( x, y, ν, k, ω) G ( x, y, x, y, k, ω) ds. () = z z z The solutio of this equtio is lso obtied s descibed bove. 4 Alyticl solutio Coside solid cylidicl cicul iclusio defied by the dius, bouded by exteio solid medium. This iclusio is heted by hmoic souce with dil covectio, plced i the exteio solid medium (with theml Boudy Elemets XXVI, C. A. Bebbi (Edito) 4 WIT Pess, IBN

6 48 Boudy Elemets XXVI coductivity k, desity ρ, specific het c d covectio velocity V ). The het geeted by this souce popgtes d hits the sufce of the iclusio. Afte stikig the sufce, pt of the icidet eegy is eflected bck ito the exteio solid medium, d the emiig eegy is tsmitted ito the solid iclusio mteil (with theml coductivity k, desity ρ, specific het c d covectio velocity V ), i the fom of popgtig het wves. This pocess will be epeted util ll the eegy is dissipted. 4. Icidet het field (o fee-field) The thee-dimesiol icidet field geeted by moopole het souce, plced t ( x,,), stisfies eq () scibig V = z, d c be expessed s V K V iω i ' + z 4K K ˆ Ae e Tic( ω,, ', z) = k + z ' with ( ) ' = x x + y, (3) whee the subscipt ic deotes the icidet field, A is the het mplitude, k K = ρ c d ' defies the distce betwee the souce d the eceive. Whe Fouie tsfomtio is pplied log the z diectio, the icidet field c be expessed s summtio of D souces, with diffeet sptil wveumbes, M ˆ ' π ikzm z Tic( ω,, ) = T ic( ω,, ', kzm) e, (4) L m= M ia 4k V K with T ( ω,, k ) = e H ( k '' ), k ( k ) ic ( ) '' = x x + y. zm α V i ω α = + zm d 4K K Eq (4) poses difficulty, howeve, becuse it expesses the icidet field i tems of het wves ceted t the souce poit ( x,, ), d ot t the xis of the cylidicl iclusio. This poblem c be ovecome by expessig the icidet het field i tems of het wves ceted t the oigi, which c be chieved by usig Gf's dditio theoem (Wtso [7]), to give the expessios (i cylidicl coodites): V ia K T ic( ω,, θ, kzm) = e ( ) εj ( kα ) H( kα )cos( θ), whe > 4k = V i K A ic zm = ( ) α α 4k = T ( ω,, θ, k ) e ε H ( k ) J ( k )cos( θ), whe <, (5) i which is the distce fom the souce to the xis of the iclusio, J ( ) if = e Bessel fuctios of ode d ε =. if Boudy Elemets XXVI, C. A. Bebbi (Edito) 4 WIT Pess, IBN

7 Boudy Elemets XXVI Reflected het field i the exteio egio I the fequecy-xil-wveumbe domi, the eflected het field i the exteio egio c be expessed i fom simil to tht of the icidet field, mely V K ef zm = = T ( ω,, θ, k ) e A H ( k )cos( θ), (6) α i which the subscipt ef deotes the eflected het field, d A is ukow coefficiet to be detemied fom ppopite boudy coditios. 4.3 Tsmitted het field i the iteio egio The tsmitted het field i the iclusio cosists of stdig het wves, which c be expessed s: V K ts zm = = T ( ω,, θ, k ) e B J ( k )cos( θ), (7) α i which the subscipt ts deotes the tsmitted het field, V ω i k kα = + ( k ) zm, K 4K K = ρ c, B is gi ukow coefficiet to be detemied by imposig the ppopite boudy coditios 4.4 Defiitio of A d B Next, ppopite boudy coditios e estblished to obti the eflected d tsmitted het fields withi the solid iclusio; tht is, the cotiuity of tempetues d oml het fluxes t the solid-solid itefce, T ic( ω,, θ, kzm) + T ef ( ω,, θ, kzm) = T ts( ω,, θ, kzm), T ic( ω,, θ, k ) zm T ef ( ω,, θ, kzm) T ts ( ω,, θ, kzm) k + k = k. (8) Combiig eqs (5), (6) d (7) oe obtis system of equtios which is the used to fid the coefficiets A d B, with A ( ) b ε = B b, (9) V K = e H ( k ) ; α V = k H( kα ) + H ( ) ( ) kα k H α + ( kα ) e K V K = e J ( k ) ; α V K ; Boudy Elemets XXVI, C. A. Bebbi (Edito) 4 WIT Pess, IBN

8 43 Boudy Elemets XXVI V = k J( kα ) + J ( ) ( ) kα k J α + ( kα ) e K V ia K α α 4k b = e H ( k ) J ( k ) ; V K V ia K V = α α + α α + α 4 K b e H ( k ) J ( k ) J ( k ) ( k ) J ( k ). The coefficiets A d B with the seies solutios (eqs (6) d (7)) c ow be used to detemie the eflected d the tsmitted het of the system. The solutio fo het souce excited i the iteio c be obtied i simil wy by chgig the icidet field d gi scibig the cotiuity of tempetues d oml het fluxes t the solid-solid itefce. If the souce is plced i the ie solid, the tems b j e defied s: V ia K = ( α ) ( α ) 4k V ia K V = α α + α α + α 4 K b e J k H k b e J ( k ) H ( k ) H ( k ) ( k ) H ( k ). ; 4.5 Null tempetues log the boudy of the iclusio At the sufce of the iclusio ( = ) the boudy coditio is give by, T ( ω,, θ, k ) + T ( ω,, θ, k ) =. () ic zm ef zm ubstitutig eqs (5) d (6) ito the bove coditio gives the followig, i ( ) ε J( kα ) H( kα ) 4k B =. () J ( k ) α 4.6 Null fluxes log the boudy of the iclusio The icidet het field is ll eflected bck ito the ubouded medium, veifyig the coditio t =, T ic( ω,, θ, kzm) T ef ( ω,, θ, kzm) k + k =. () Ude this coditio, combiig eqs (5) d (6), oe obtis, i V ( ) ε J( kα ) H( kα ) + H ( ) ( ) k k H ( k ) 4k K α α + α B =. (3) V H ( k α ) ( ) ( ) + J k α k α J + ( k α ) K Boudy Elemets XXVI, C. A. Bebbi (Edito) 4 WIT Pess, IBN

9 Boudy Elemets XXVI 43 5 BEM veifictio The BEM lgoithm ws implemeted d veified by pplyig it to cylidicl cicul iclusio whe ull fluxes o ull tempetues wee pescibed log its boudy. The eflected het esposes fo wide ge of fequecies ws clculted d comped with the solutios of the lyticl ppoch peseted bove. A iclusio, subjected to hmoic het souce with dil covectio 6 ( m/s), plced t ( x =.3m, y =.m ), with dius of.5 m, is - modelled. Its popeties e ssumed to be k =.W.m. o C, - c = 38J.Kg. o C -3 d ρ = 5Kg.m. The clcultios hve bee pefomed i 7 the fequecy domi fom Hz to 64 Hz, with fequecy icemet of 7 ω = Hz d cosideig sigle vlue of the pmete k z equl to.4d/m. The el d imgiy pts of the esposes fo eceive plced t ( x =.m, y =.m ) e illustted i Figue. olid lies epeset the lyticl solutios while mked poits idetify the BEM esults. The cicle d the tigle mks idicte the el d imgiy pts of the BEM esposes, espectively, computed usig 5 costt boudy elemets Amplitude -. Amplitude x -6 4x -6 6x -6 x -6 4x -6 6x -6 Fequecy (Hz) Fequecy (Hz) ) b) Figue : Rel d imgiy pts of the het esposes: ) Cylidicl cicul with ull fluxes log the boudy; b) Cylidicl cicul with ull tempetues log the boudy. All the plots displyed i this ppe evel excellet geemet betwee the two fomultios peseted. Besides the esults illustted, the solutios fo cylidicl cicul iclusio bouded by exteio solid medium, fo het souces d eceives plced t diffeet positios, hve cofimed vey good esults. Boudy Elemets XXVI, C. A. Bebbi (Edito) 4 WIT Pess, IBN

10 43 Boudy Elemets XXVI 6 Coclusios The methodology descibed i this wok is bsed o discete itegtio ove wveumbes d fequecies to compute the thee-dimesiol (3D) het field geeted by hmoic het poit souces hetig cylidicl cicul iclusios i ubouded solid medium. The cses fo ull fluxes o ull tempetues pescibed log the boudy iclusio wee lso peseted. The discetiztio of the wveumbe-fequecy itegl tsfom peseted is mthemticlly equivlet to peiodic sequece of souces, pllel to the xis of the cylide, tht e lso peiodic i time. The effects of these peiodicities hve bee emoved by usig complex fequecies. Alyticl d umeicl fomultios wee implemeted i ode to study the tsiet het tsfe cosideig both coductio d covectio pheome. The compiso betwee these two ppoches evels excellet geemet, which suggests tht the BEM lgoithm could coveietly be pplied to poblems whee iegul cylidicl iclusios e peset. Refeeces [] Boucho M., Aki, K., Discete wve-umbe epesettio of seismicsouce wve field, Bulleti of the eismologicl ociety of Ameic, 67, pp , 977. [] Phiey, R. A., Theoeticl clcultio of the spectum of fist ivls i lyeed elstic medium, J. Geophys. Res., 7, pp , 965. [3] Tdeu, A., Kusel, E., Gee s fuctios fo two-d--hlf dimesiol elstodymic poblems. Joul of Egieeig Mechics ACE, 6(), pp ,. [4] Tdeu, A., Godiho, L., tos, P., Wve motio betwee two fluid filled boeholes i elstic medium, EABE Egieeig Alysis with Boudy Elemets, 6(), pp.-7, [5] Godiho, L., Atóio, J., Tdeu, A., 3D soud sctteig by igid bies i the viciity of tll buildigs. Joul of Applied Acoustics, 6(), pp. 9-48, [6] Wobel, L. C., The Boudy Elemet Method Applictio i Themo- Fluids d Acoustics, Joh Wiley d os, LTD.,. [7] Wtso, G. N., A Tetise o the Theoy of Bessel Fuctios, secod editio, Cmbidge Uivesity Pess, 98. Boudy Elemets XXVI, C. A. Bebbi (Edito) 4 WIT Pess, IBN

Expansion by Laguerre Function for Wave Diffraction around an Infinite Cylinder

Expansion by Laguerre Function for Wave Diffraction around an Infinite Cylinder Joul of Applied Mthemtics d Physics, 5, 3, 75-8 Published Olie Juy 5 i SciRes. http://www.scip.og/joul/jmp http://dx.doi.og/.436/jmp.5.3 Expsio by Lguee Fuctio fo Wve Diffctio oud Ifiite Cylide Migdog

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

Semiconductors materials

Semiconductors materials Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

On the relation between tonal and broadband content of hull pressure spectra due to cavitating ship propellers

On the relation between tonal and broadband content of hull pressure spectra due to cavitating ship propellers Joul of Physics: Cofeece Seies PAPER OPEN ACCESS O the eltio betwee tol d bodbd cotet of hull pessue spect due to cvittig ship popelles To cite this ticle: J Bossches 015 J. Phys.: Cof. Se. 656 01101 View

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Fobeius ethod pplied to Bessel s Equtio Octobe, 7 Fobeius ethod pplied to Bessel s Equtio L Cetto Mechicl Egieeig 5B Sei i Egieeig lsis Octobe, 7 Outlie Review idte Review lst lectue Powe seies solutios/fobeius

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

[5 points] (c) Find the charge enclosed by the cylindrical surface of radius ρ 0 = 9 mm and length L = 1 m. [2

[5 points] (c) Find the charge enclosed by the cylindrical surface of radius ρ 0 = 9 mm and length L = 1 m. [2 STUDENT NAME: STUDENT ID: ELEC ENG FH3: MIDTERM EXAMINATION QUESTION SHEET This emitio is TWO HOURS log. Oe double-sided cib sheet is llowed. You c use the McMste ppoved clculto Csio f99. You c tke y mteil

More information

Technical Report: Bessel Filter Analysis

Technical Report: Bessel Filter Analysis Sasa Mahmoodi 1 Techical Repot: Bessel Filte Aalysis 1 School of Electoics ad Compute Sciece, Buildig 1, Southampto Uivesity, Southampto, S17 1BJ, UK, Email: sm3@ecs.soto.ac.uk I this techical epot, we

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations 5. LTI Systes Descied y Lie Costt Coefficiet Diffeece Equtios Redig teil: p.34-4, 245-253 3/22/2 I. Discete-Tie Sigls d Systes Up til ow we itoduced the Fouie d -tsfos d thei popeties with oly ief peview

More information

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan.

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan. SULT 347/ Rumus-umus eikut oleh memtu d mejw sol. Simol-simol yg diei dlh yg is diguk. LGER. 4c x 5. log m log m log 9. T d. m m m 6. log = log m log 0. S d m m 3. 7. log m log m. S, m m logc 4. 8. log.

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

On composite conformal mapping of an annulus to a plane with two holes

On composite conformal mapping of an annulus to a plane with two holes O composite cofomal mappig of a aulus to a plae with two holes Mila Batista (July 07) Abstact I the aticle we coside the composite cofomal map which maps aulus to ifiite egio with symmetic hole ad ealy

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

2002 Quarter 1 Math 172 Final Exam. Review

2002 Quarter 1 Math 172 Final Exam. Review 00 Qute Mth 7 Fil Exm. Review Sectio.. Sets Repesettio of Sets:. Listig the elemets. Set-uilde Nottio Checkig fo Memeship (, ) Compiso of Sets: Equlity (=, ), Susets (, ) Uio ( ) d Itesectio ( ) of Sets

More information

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

Numerical integration

Numerical integration Numeicl itegtio Alyticl itegtio = ( ( t)) ( t) Dt : Result ( s) s [0, t] : ( t) st ode odiy diffeetil equtio Alyticl solutio ot lwys vilble d( ) q( ) = σ = ( d ) : t 0 t = Numeicl itegtio 0 t t 2. t. t

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAMthsTuto.com . M 6 0 7 0 Leve lk 6 () Show tht 7 is eigevlue of the mti M fi the othe two eigevlues of M. (5) () Fi eigevecto coespoig to the eigevlue 7. *M545A068* (4) Questio cotiue Leve lk *M545A078*

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

Using Counting Techniques to Determine Probabilities

Using Counting Techniques to Determine Probabilities Kowledge ticle: obability ad Statistics Usig outig Techiques to Detemie obabilities Tee Diagams ad the Fudametal outig iciple impotat aspect of pobability theoy is the ability to detemie the total umbe

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhsicsAMthsTuto.com 6. The hpeol H hs equtio, whee e costts. The lie L hs equtio m c, whee m c e costts. Leve lk () Give tht L H meet, show tht the -cooites of the poits of itesectio e the oots of the

More information

Step-index silica fiber

Step-index silica fiber Modl lysis of step-idex fibes Itoductio C 46/566 Guided Wve Optics Step-idex silic fibe Mteil d fbictio Types d mig of modes Deivtio d solutio of the W Solutio of the W T/TM modes Hybid modes LP modes

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

Macroscopic Fields in Accelerators

Macroscopic Fields in Accelerators 48 E hs simil effect s v. d q E v Fo eltivistic ticles T hs simil effect s dt E c 3 8 V/m such Electic field is beod techicl limits. Electic fields e ol used fo ve lo eegies o Fo setig to coute ottig bems

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

On ARMA(1,q) models with bounded and periodically correlated solutions

On ARMA(1,q) models with bounded and periodically correlated solutions Reseach Repot HSC/03/3 O ARMA(,q) models with bouded ad peiodically coelated solutios Aleksade Weo,2 ad Agieszka Wy oma ska,2 Hugo Steihaus Cete, Woc aw Uivesity of Techology 2 Istitute of Mathematics,

More information

INTEGRATION IN THEORY

INTEGRATION IN THEORY CHATER 5 INTEGRATION IN THEORY 5.1 AREA AROXIMATION 5.1.1 SUMMATION NOTATION Fibocci Sequece First, exmple of fmous sequece of umbers. This is commoly ttributed to the mthemtici Fibocci of is, lthough

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR (Masalah dan Sifat-sifat suatu Pengoperasi Pembeza Baharu)

PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR (Masalah dan Sifat-sifat suatu Pengoperasi Pembeza Baharu) Joul of Qulity Mesuemet d Alysis JQMA 7 0 4-5 Jul Peguu Kuliti d Alisis PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR Mslh d Sift-sift sutu Pegopesi Peme Bhu MASLINA DARUS & IMRAN FAISAL ABSTRACT

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Advanced Physical Geodesy

Advanced Physical Geodesy Supplemetal Notes Review of g Tems i Moitz s Aalytic Cotiuatio Method. Advaced hysical Geodesy GS887 Chistophe Jekeli Geodetic Sciece The Ohio State Uivesity 5 South Oval Mall Columbus, OH 4 7 The followig

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow KEY Math 334 Midtem II Fall 7 sectio 4 Istucto: Scott Glasgow Please do NOT wite o this exam. No cedit will be give fo such wok. Rathe wite i a blue book, o o you ow pape, pefeably egieeig pape. Wite you

More information

z line a) Draw the single phase equivalent circuit. b) Calculate I BC.

z line a) Draw the single phase equivalent circuit. b) Calculate I BC. ECE 2260 F 08 HW 7 prob 4 solutio EX: V gyb' b' b B V gyc' c' c C = 101 0 V = 1 + j0.2 Ω V gyb' = 101 120 V = 6 + j0. Ω V gyc' = 101 +120 V z LΔ = 9 j1.5 Ω ) Drw the sigle phse equivlet circuit. b) Clculte

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields Lecture 38 (Trpped Prticles) Physics 6-01 Sprig 018 Dougls Fields Free Prticle Solutio Schrödiger s Wve Equtio i 1D If motio is restricted to oe-dimesio, the del opertor just becomes the prtil derivtive

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017 Fist Issued Septembe 07 Fo the ew specifictios fo fist techig fom Septembe 07 SPECIMEN MATERIAL Fomule d Sttisticl Tbles fo A-level Mthemtics AS MATHEMATICS (7356) A-LEVEL MATHEMATICS (7357) AS FURTHER

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MSS SEQUENCE AND SERIES CA SEQUENCE A sequece is fuctio of tul ubes with codoi is the set of el ubes (Coplex ubes. If Rge is subset of el ubes (Coplex ubes the it is clled el sequece (Coplex sequece. Exple

More information

USE OF STATISTICAL TECHNIQUES FOR CRITICAL GAPS ESTIMATION

USE OF STATISTICAL TECHNIQUES FOR CRITICAL GAPS ESTIMATION Sessio 1. Sttistic Methods d Thei Applictios Poceedigs of the 12 th Itetiol Cofeece Relibility d Sttistics i Tspottio d Commuictio (RelStt 12, 17 20 Octobe 2012, Rig, Ltvi, p. 20 26. ISBN 978-9984-818-49-8

More information

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EVALUATION OF SUMS INVOLVING GAUSSIAN -BINOMIAL COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EMRAH KILIÇ AND HELMUT PRODINGER Abstact We coside sums of the Gaussia -biomial coefficiets with a paametic atioal

More information

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES Please cite this atle as: Mhal Matalyck Tacaa Romaiuk The aalysis of some models fo claim pocessig i isuace compaies Scietif Reseach of the Istitute of Mathemats ad Compute Sciece 004 Volume 3 Issue pages

More information

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r.

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r. Solutios to MAML Olympiad Level 00. Factioated a) The aveage (mea) of the two factios is halfway betwee them: p ps+ q ps+ q + q s qs qs b) The aswe is yes. Assume without loss of geeality that p

More information

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator Boig Itetiol Joul o t Miig, Vol, No, Jue 0 6 O Ceti Clsses o Alytic d Uivlet Fuctios Bsed o Al-Oboudi Opeto TV Sudhs d SP Viylkshmi Abstct--- Followig the woks o [, 4, 7, 9] o lytic d uivlet uctios i this

More information

A mathematical model of laser surface heat-cooling treatment for medium carbon steel

A mathematical model of laser surface heat-cooling treatment for medium carbon steel text_templte Joul 2011/06/13 1:22 PM Pge 379 Syopsis A mthemticl model of lse sufce het-coolig tetmet fo medium cbo steel by I. Fedotov*, T. Fedotov, S.L. Pity, K. Lbuschge, M. Shtlov *, d J.H. Potgiete**

More information

PLANCESS RANK ACCELERATOR

PLANCESS RANK ACCELERATOR PLANCESS RANK ACCELERATOR MATHEMATICS FOR JEE MAIN & ADVANCED Sequeces d Seies 000questios with topic wise execises 000 polems of IIT-JEE & AIEEE exms of lst yes Levels of Execises ctegoized ito JEE Mi

More information

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip Pmeti Methods Autoegessive AR) Movig Avege MA) Autoegessive - Movig Avege ARMA) LO-.5, P-3.3 to 3.4 si 3.4.3 3.4.5) / Time Seies Modes Time Seies DT Rdom Sig / Motivtio fo Time Seies Modes Re the esut

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD MIXED -STIRLING NUMERS OF THE SEOND KIND DANIEL YAQUI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD Abstact The Stilig umbe of the secod id { } couts the umbe of ways to patitio a set of labeled balls ito

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES IJRRAS 6 () July 0 www.apapess.com/volumes/vol6issue/ijrras_6.pdf FIXED POINT AND HYERS-UAM-RASSIAS STABIITY OF A QUADRATIC FUNCTIONA EQUATION IN BANACH SPACES E. Movahedia Behbaha Khatam Al-Abia Uivesity

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS Joual of Pue ad Alied Mathematics: Advaces ad Alicatios Volume 0 Numbe 03 Pages 5-58 ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS ALI H HAKAMI Deatmet of Mathematics

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3 DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

FAR FIELD SOLUTION OF SH-WAVE BY CIRCULAR INCLUSION AND LINEAR CRACK

FAR FIELD SOLUTION OF SH-WAVE BY CIRCULAR INCLUSION AND LINEAR CRACK The 4 th Wold Cofeece o Eathquake Egieeig Octobe -7, 8, Beijig, Chia FAR FIELD SOLUTION OF SH-WAVE BY CIRCULAR INCLUSION AND LINEAR CRACK HogLiag Li,GuoHui Wu, Associate Pofesso, Depatmet of Egieeig Mechaics,

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

ANSWER KEY PHYSICS. Workdone X

ANSWER KEY PHYSICS. Workdone X ANSWER KEY PHYSICS 6 6 6 7 7 7 9 9 9 0 0 0 CHEMISTRY 6 6 6 7 7 7 9 9 9 0 0 60 MATHEMATICS 6 66 7 76 6 6 67 7 77 7 6 6 7 7 6 69 7 79 9 6 70 7 0 90 PHYSICS F L l. l A Y l A ;( A R L L A. W = (/ lod etesio

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample Uodeed Samples without Replacemet oside populatio of elemets a a... a. y uodeed aagemet of elemets is called a uodeed sample of size. Two uodeed samples ae diffeet oly if oe cotais a elemet ot cotaied

More information

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0 Q1. The free vibrtio of the plte is give by By ssumig h w w D t, si cos w W x y t B t Substitutig the deflectio ito the goverig equtio yields For the plte give, the mode shpe W hs the form h D W W W si

More information

STEADY THERMAL STRESSES IN SOLID DISK UNDER HEAT GENERATION SUBJECTED TO VARIABLE DENSITY

STEADY THERMAL STRESSES IN SOLID DISK UNDER HEAT GENERATION SUBJECTED TO VARIABLE DENSITY Kgujevc J. Sci. 8 (6) 5-4. UDC 59.9 STEADY THERMAL STRESSES IN SOLID DISK UNDER HEAT GENERATION SUBJECTED TO VARIABLE DENSITY Pkj Thku *, Sty Bi Sigh, Jogide Sigh, Suesh Kum 4 Deptmet of Mthemtics, IEC

More information

On the incremental torsional stiffness of an annular disc bonded to a finitely deformed elastic halfspace

On the incremental torsional stiffness of an annular disc bonded to a finitely deformed elastic halfspace INTERNATIONAL JOURNAL OF STRUCTURAL CHANGES IN SOLIDS Mechics d Applictios Volume 3, Numbe 2, 2, pp.- O the icemetl tosiol stiffess of ul disc boded to fiitely defomed elstic hlfspce Abstct A.P.S. Selvdui

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information