Support: Missouri Department of Elementary and Secondary Education Math-Science Partnership Grant.

Size: px
Start display at page:

Download "Support: Missouri Department of Elementary and Secondary Education Math-Science Partnership Grant."

Transcription

1 Meera Chandrasekhar University of Missouri, Columbia Dorina Kosztin University of Missouri, Columbia Gabriel de La Paz Clayton High School, St. Louis, MO Support: Missouri Department of Elementary and Secondary Education Math-Science Partnership Grant

2 Physics First is a national movement to teach a year-long Physics course in 9th grade In Missouri, MO-DESE has funded a partnership led by Columbia Public Schools and Univ. of Missouri-Columbia to develop curriculum and conduct professional development (PD) Three sessions of PD were conducted in 2006, 2007, and 2008 for approx. 70 teachers from 25 districts

3 Year 1: Uniform and Accelerated Motion, Forces, and Newton s Laws Year 2: Motion in 2D, Energy, Momentum, Astronomy, and Electricity Year 3: Electromagnetism, Heat, Light, Waves Pedagogy - based on Modeling, Inquiry & 5E Today - parts of Unit 6: Energy

4 Student Beliefs and Big Ideas Exploring Energy Lab What is Work? Lab Representing Energy transfer and transformation Elastic Energy Lab

5 From the non-scientific point of view, "work" is synonymous with "labor". Energy gets used up or runs out. Objects that are not moving have no energy. Energy is destroyed or created (making energy, using energy). Energy is a force. The terms "energy" and "force" are interchangeable. If energy is conserved, why are we running out of it?

6 Work is defined as force x distance moved along direction of force For a closed system, energy is conserved. Energy can be stored, transferred or transformed.

7 Stations: identify the system, initial and final states, and the process it undergoes. Distinguish between energy transformation and energy transfer.

8 We study work, elastic energy, PE, KE, in the unit Today Work and Elastic Energy

9 Pre-lab discussion: What happens when A block falls on clay? A car smashes into a lump of clay? A lump of clay is shot from a slingshot onto the wall? These are examples of a force acting over a distance and producing an effect. An experiment to obtain the relationship between force, distance and work is then conducted.

10 A car is pulled up a ramp so it reaches the top. Compare the force to pull it up the ramp to the force to lift it up vertically. Compare the work to pull it up the ramp to the work to lift it up vertically. Pull object up the length of the ramp at a constant velocity. A constant force will be applied over the entire distance.

11

12 Δx

13 In order to develop the relationship between force, work and distance, we need to take readings for several ramps and compare them Use several ramps of same height, but different lengths. Measure force required to travel up each ramp

14 Table: Force F required for different lengths of ramp, Δx (height of ramp =16.5 cm) Δx (m) F (N) Applied Force (N) Force vs. distance traveled on ramp Ramp length, distance Δx (m)

15

16 And finally, what if it just traveled vertically up? F = 1.4N (weight) Δx = m (height) W = FΔx = 0.23J Δx (m) F (N) W = FΔx (J) F = weight = 1.4 N Height = m

17 Work = force x distance traveled inline with the force W = F Δx in units of N.m or J When you travel on a ramp, the force is less than traveling vertically; the work done is the same F Δx

18 Students learn to define the system represent transformation of energy from one form to another using pie charts and bar graphs (conservation of energy) represent the transfer of energy in and out of the system using bar graphs

19 System: ball + earth

20 System: spring + box + earth + surface

21 System: spring + box + earth

22 Design and conduct an experiment to determine a mathematical model for calculating the elastic potential energy stored in a spring. Relationship between the amount of force applied to the spring and the amount of deformation Relationship between the amount of deformation of the spring and the amount of energy stored in the spring Relationship between the amount of work done by the spring and the amount of energy stored in the spring

23 Analyze energy storage and transformations in a spring + earth system. In the initial position the spring is not stretched; in the final position the spring is stretched.

24

25 The data below is obtained by stretching 2.5 N and 10 N spring scales. Stretch (cm) Force (N) (2.5 N spring scale) Force (N) (10 N spring scale)

26 Slope (2.5 N spring scale) = k = 0.01 N/cm Slope (10 N spring scale)= k = 0.16 N/cm

27 F = kδx

28 Design experiment, collect data, draw Force F vs. stretch Δx graph Interpret graph and relationship between F and Δx Calculate work done as area under the F vs. Δx graph Recognize that work transfers energy into the system and stores it as elastic potential energy. Develop a mathematical expression for elastic potential energy

29 Practice problems (lots!) Labs to connect potential and kinetic energy, and to develop their formulae Lab to develop formula for power, and to connect work, power and energy

30 click on Meeting Archives

Move Onto Physics. What is the Physics First program? Students Beliefs. Curriculum

Move Onto Physics. What is the Physics First program? Students Beliefs. Curriculum Move Onto Physics Sara Torres Columbia Public Schools Jaime Horton, Amy Scroggins Carthage R-9 School Support: Missouri Department of Elementary and Secondary Education Math-Science Partnership Grant www.physicsfirstmo.org

More information

Meera Chandrasekhar Dorina Kosztin Department of Physics and Astronomy University of Missouri, Columbia

Meera Chandrasekhar Dorina Kosztin Department of Physics and Astronomy University of Missouri, Columbia Meera Chandrasekhar Dorina Kosztin Department of Physics and Astronomy University of Missouri, Columbia Support: Missouri Department of Elementary and Secondary Education Math-Science Partnership Grant

More information

Lab: Energy-Rubber Band Cannon C O N C E P T U A L P H Y S I C S : U N I T 4

Lab: Energy-Rubber Band Cannon C O N C E P T U A L P H Y S I C S : U N I T 4 Name Date Period Objectives: Lab: Energy-Rubber Band Cannon C O N C E P T U A L P H Y S I C S : U N I T 4 1) Find the energy stored within the rubber band cannon for various displacements. 2) Find the

More information

Curriculum Map-- Kings School District Honors Physics

Curriculum Map-- Kings School District Honors Physics Curriculum Map-- Kings School District Honors Physics Big ideas Essential Questions Content Skills/Standards Assessment + Criteria Activities/Resources Motion of an object can be described by its position,

More information

- Conservation of Energy Notes Teacher Key -

- Conservation of Energy Notes Teacher Key - NAME: DATE: PERIOD: PHYSICS - Conservation of Energy Notes Teacher Key - - Is Energy Conserved? - Determine the max height that a 5kg cannonball will reach if fired vertically with an initial velocity

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Physics First. Grades Curriculum Committee Members. Michael Black, Science Curriculum Coach

Physics First. Grades Curriculum Committee Members. Michael Black, Science Curriculum Coach Physics First Grades 9-12 Curriculum Committee Members Michael Black, Science Curriculum Coach Dr. Christina Hughes, Science Curriculum Coordinator Reviewed by High School Science Teachers on February

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Objectives: Learn to recognize and describe periodic motion. Develop some intuition for the principle of conservation of energy in periodic systems. Use

More information

Curriculum Map-- Kings School District- Physics

Curriculum Map-- Kings School District- Physics Curriculum Map-- Kings School District- Physics Big ideas Essential Questions Content Skills/Standards Assessment + Criteria Activities/Resources Motion of an object can be described by its position, speed,

More information

Alief ISD Middle School Science STAAR Review Reporting Category 2: Force, Motion, & Energy

Alief ISD Middle School Science STAAR Review Reporting Category 2: Force, Motion, & Energy 8.6.A demonstrate and calculate how unbalanced forces change the speed or direction of an object s motion Alief ISD Middle School Science STAAR Review Reporting Category 2: Force, Motion, & Energy Force

More information

Lesson 6: How to Calculate Kinetic Energy

Lesson 6: How to Calculate Kinetic Energy KREUTTER:WORK AND ENERGY 1 Lesson 6: How to Calculate Kinetic Energy 6.1 Hypothesize (Derive a Mathematical Model) In a car crash testing facility, engineers evaluate the reaction of a car to a front impact.

More information

Grade 8 Science, Quarter 3, Unit 3.1. Energy. Overview

Grade 8 Science, Quarter 3, Unit 3.1. Energy. Overview Energy Overview Number of instructional days: 20 (1 day = 50 minutes) Content to be learned Show that within a system, energy transforms from one form to another. Show the transfer of potential energy

More information

40 N 40 N. Direction of travel

40 N 40 N. Direction of travel 1 Two ropes are attached to a box. Each rope is pulled with a force of 40 N at an angle of 35 to the direction of travel. 40 N 35 35 40 N irection of travel The work done, in joules, is found using 2 Which

More information

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think?

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think? Thrills and Chills Section Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down Florida Next Generation Sunshine State Standards: Additional Benchmarks met in Section SC.91.N..4

More information

Mechanical Energy Thermal Energy Chemical Energy Electrical Energy Electromagnetic Energy

Mechanical Energy Thermal Energy Chemical Energy Electrical Energy Electromagnetic Energy Physical Science PHYSICS UNIT 4 Study Guide. Chapter 15 - Energy Key Terms Energy Kinetic Energy Potential Gravitational Potential Elastic Potential Mechanical Energy Thermal Energy Chemical Energy Electrical

More information

Energy Whiteboard Problems

Energy Whiteboard Problems Energy Whiteboard Problems 1. (a) Consider an object that is thrown vertically up into the air. Draw a graph of gravitational force vs. height for that object. (b) Based on your experience with the formula

More information

School District of Springfield Township

School District of Springfield Township School District of Springfield Township Course Name: Physics (Honors) Springfield Township High School Course Overview Course Description Physics (Honors) is a rigorous, laboratory-oriented program consisting

More information

Energy Problems. Science and Mathematics Education Research Group

Energy Problems. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Energy Problems Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

AP PHYSICS 1. Energy 2016 EDITION

AP PHYSICS 1. Energy 2016 EDITION AP PHYSICS 1 Energy 2016 EDITION Copyright 2016 National Math + Initiative, Dallas, Texas. All rights reserved. Visit us online at www.nms.org. 1 Pre-Assessment Questions Consider a system which could

More information

SAM Teachers Guide Atoms and Energy Overview Learning Objectives: Possible student pre/misconceptions

SAM Teachers Guide Atoms and Energy Overview Learning Objectives: Possible student pre/misconceptions SAM Teachers Guide Atoms and Energy Overview Students will explore how the Law of Conservation of Energy (the First Law of Thermodynamics) applies to atoms as well as the implications of heating or cooling

More information

Energy Problem Solving Techniques.

Energy Problem Solving Techniques. 1 Energy Problem Solving Techniques www.njctl.org 2 Table of Contents Introduction Gravitational Potential Energy Problem Solving GPE, KE and EPE Problem Solving Conservation of Energy Problem Solving

More information

Unit 7: Energy Notes

Unit 7: Energy Notes Unit 7: Energy Notes Energy is a conserved, substance-like quantity with the capability to produce change. Energy is conserved, neither created nor destroyed. = (Law of conservation of energy) Εnergy is

More information

Elastic Potential Energy

Elastic Potential Energy Elastic Potential Energy If you pull on a spring and stretch it, then you do work. That is because you are applying a force over a displacement. Your pull is the force and the amount that you stretch the

More information

A Correlation of Pearson Physics 2014

A Correlation of Pearson Physics 2014 A Correlation of Pearson Physics Ohio s New Learning Standards for Science, 2011 Physics, High School Science Inquiry and Application Course Content A Correlation of, INTRODUCTION This document demonstrates

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Impulse and momentum 09-2 1 Current assignments Reading: Chapter 10 in textbook Prelecture due next Tuesday HW#8 due this Friday at 5 pm. 09-2 2 9-2.1 A crash

More information

Static Strokes Static Electricity Balance Your Charge Account St. Elmo s Fire...267

Static Strokes Static Electricity Balance Your Charge Account St. Elmo s Fire...267 Standards Alignment...5 Safe Science...11 Scienti c Inquiry...13 Assembling Rubber Band Books...17 Investigations in Science...19 Properties of Matter A Matter of States...21 Oh Dear, What Can This Matter

More information

Work Energy Review. 1. Base your answer to the following question on the information and diagram below and on your knowledge of physics.

Work Energy Review. 1. Base your answer to the following question on the information and diagram below and on your knowledge of physics. Name: ate: 1. ase your answer to the following question on the information and diagram below and on your knowledge of physics. student pushes a box, weighing 50. newtons, 6.0 meters up an incline at a

More information

Background Information

Background Information Background Information The lesson we will encounter today is the 7 th lesson in an energy unit that is being developed at the University of Michigan for middle school students. There are four learning

More information

Potential Energy. Vanderbilt Students Volunteers for Science Training Presentation VINSE/VSVS Rural

Potential Energy. Vanderbilt Students Volunteers for Science Training Presentation VINSE/VSVS Rural Potential Energy Vanderbilt Students Volunteers for Science Training Presentation 2018-2019 VINSE/VSVS Rural Important! Use this presentation to reinforce your understanding after reading the Potential

More information

Do Now: What does it mean when you say That person has a lot of energy?

Do Now: What does it mean when you say That person has a lot of energy? Do Now: What does it mean when you say That person has a lot of energy? ENERGY What have we learned so far? 1. Work is done on an object when a force acts in the direction the object is moving. 2. When

More information

Evidence of Learning/Assessments: Weekly Socrative Quiz, Unit Test

Evidence of Learning/Assessments: Weekly Socrative Quiz, Unit Test Instructor: Mike Maksimchuk Course/Grade Level: Physics A Week: 1 Unit 1: Intro & Energy Transfer P4.3A - Identify the form of energy in given situations (e.g., moving objects, stretched springs, rocks

More information

Subject: Science Scheme of Work: 9/10/11 Physics. Term: Autumn/Spring/Summer. Overview / Context

Subject: Science Scheme of Work: 9/10/11 Physics. Term: Autumn/Spring/Summer. Overview / Context Subject: Science Scheme of Work: 9/10/11 Physics Term: Autumn/Spring/Summer Topic / Unit(s) Overview / Context Assessment/Mastery Success criteria Curriculum Opportunities 9/10/11 Physics P1/P2 Motion

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

law of conservation of energy energy

law of conservation of energy energy What happens when? 6.8A compare and contrast potential and kinetic energy 6.9 Law of Conservation of energy states that energy can neither be created nor destroyed. How does it work? Explanation If you

More information

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage Section 1 Section 1: Work, Power, and Machines Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage Section 1 Key Ideas How is work calculated? What is the relationship

More information

Forces, Momentum, Work and Energy

Forces, Momentum, Work and Energy Adult Basic Education Science Forces, Momentum, Work and Energy Prerequisite: Physics 2104A Credit Value: 1 Physics Concentration Physics 1104 Physics 2104A Physics 2104C Physics 3104A Physics 3104B Physics

More information

EXPERIMENT 11 The Spring Hooke s Law and Oscillations

EXPERIMENT 11 The Spring Hooke s Law and Oscillations Objectives EXPERIMENT 11 The Spring Hooke s Law and Oscillations To investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A ork and Energy MULTIPLE CHOICE In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. In which of the

More information

Name Class Page 1. Conservation of Energy at the Skate Park

Name Class Page 1. Conservation of Energy at the Skate Park Name Class Page 1 Conservation of Energy at the Skate Park PhET Energy Skate Park Simulation: http://phet.colorado.edu/sims/html/energy-skate-parkbasics/latest/energy-skate-park-basics_en.html Part A:

More information

EXAM 3 MECHANICS 40% of the final grade

EXAM 3 MECHANICS 40% of the final grade EXAM 3 MECHANICS 40% of the final grade Winter 2018 Name: Each multiple-choice question is worth 2 marks. 1. The mass of the two wheels shown in the diagram is the same. A force of 1 N is exerted on the

More information

Drexel-SDP GK-12 LESSON

Drexel-SDP GK-12 LESSON Lesson: Collisions Drexel-SDP GK-1 LESSON Subject Area(s) Data Analysis & Probability, Measurement, Number & Operations, Physical Science, Science and Technology Associated Unit Vital Mechanics Lesson

More information

What is Energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force.

What is Energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. What is Energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. Energy Energy is the ability to do work. (reminder=what is

More information

1 Weight, 100 g, with hook Measuring tape 1 Weight, 200 g, with hook Sandpaper, carpet, or other rough surface

1 Weight, 100 g, with hook Measuring tape 1 Weight, 200 g, with hook Sandpaper, carpet, or other rough surface Work and Friction That is why we labor and strive; because we have put our hope in the living God, who is the savior of all people, and especially of those of believe. 1 Timothy 4:10 Introduction In Physics,

More information

PHYSICS. Chapter 9 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 9 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 9 Lecture RANDALL D. KNIGHT Chapter 9 Work and Kinetic Energy IN THIS CHAPTER, you will begin your study of how energy is transferred

More information

Gravitational Energy using Gizmos

Gravitational Energy using Gizmos Name: Date: Gravitational Energy using Gizmos Using your Gizmo app, open the Potential energy on shelves Gizmo Vocabulary: gravitational energy, Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

<This Sheet Intentionally Left Blank For Double-Sided Printing>

<This Sheet Intentionally Left Blank For Double-Sided Printing> 21 22 Transformation Of Mechanical Energy Introduction and Theory One of the most powerful laws in physics is the Law of Conservation of

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Work Power Physics 211 Fall 2012 Lecture 09-2 1 Current assignments HW#9 due this Friday at 5 pm. Short assignment SAGE (Thanks for the feedback!) I am using

More information

Work-Energy Relationships

Work-Energy Relationships ENERGY FUNDAMENTALS LESSON PLAN 1.5 Work-Energy Relationships This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

ALL WORK WILL BE DONE IN YOUR NOTEBOOK

ALL WORK WILL BE DONE IN YOUR NOTEBOOK Page 1 DO NOT WRITE ON THIS PAPER.. Conservation of Energy at the Skate Park Part A: Energy Changes in the Skate Park System Learning Objectives: 1. Differentiate between total energy and various forms

More information

23. A snowmobile pulls a trailer with a force of 450 N while moving at a constant velocity of 15 m/s. How much work is done by the snowmobile in 28 s?

23. A snowmobile pulls a trailer with a force of 450 N while moving at a constant velocity of 15 m/s. How much work is done by the snowmobile in 28 s? Physics 04 Unit Review (June 013) 1. Which represents the rate of work done? (A) efficiency (B) force (C) power (D) work. In which situation is work done on a box? (A) The box is at rest on a table. (B)

More information

Science Skills Station

Science Skills Station Science Skills Station Objective 1. Graph data to study the relationships between kinetic energy, velocity and mass. 2. Analyze and interpret graphical displays to describe how kinetic energy of an object

More information

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons.

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Name. Date. Period. Engage

Name. Date. Period. Engage AP Physics 1 Lesson 7.a Work, Gravitational Potential, and Kinetic Energy Outcomes 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. 4. Determine the work done by a force

More information

Amarillo ISD Science Curriculum

Amarillo ISD Science Curriculum Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

More information

PHYS 154 Practice Test 3 Spring 2018

PHYS 154 Practice Test 3 Spring 2018 The actual test contains 1 multiple choice questions and 2 problems. However, for extra exercise, this practice test includes 4 problems. Questions: N.B. Make sure that you justify your answers explicitly

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Force, Energy Transfer and Machines Hot Wheels Energy Transfer

Force, Energy Transfer and Machines Hot Wheels Energy Transfer Science Unit: Lesson #1: Force, Energy Transfer and Machines Hot Wheels Energy Transfer Lesson Summary Students conduct an experiment to test two research questions related to energy transfer. Using Hot

More information

Physics. The study of energy & matter and how they interact

Physics. The study of energy & matter and how they interact Physics The study of energy & matter and how they interact Forces a push or pull on an object. Drawn as a vector - have direction and strength Measured in. newtons 5 n Net Force when in the same direction

More information

DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN. Physics FINAL EXAMINATION June 2011.

DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN. Physics FINAL EXAMINATION June 2011. Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN Value: 80 Marks Physics 2204 FINAL EXAMINATION June 2011 General Instructions This examination consists of

More information

Name: pd. 7B Work and Energy

Name: pd. 7B Work and Energy Name: pd. 7B Work and Energy How does a system get energy? Energy comes from somewhere. When you lift a box off the floor the increase in energy of the box comes from the work you do on the box. The box

More information

IGCSE Physics - Section 4 Energy practice exam questions.

IGCSE Physics - Section 4 Energy practice exam questions. IGCSE Physics - Section 4 Energy practice exam questions. Question 1. 5 The diagram shows a chimney over a furnace. A coal fire is burning in the furnace. Air moves into the furnace and up the chimney.

More information

Ready, Aim, Launch! Background/Context. At a Glance. Learning Objectives. Standards Alignment

Ready, Aim, Launch! Background/Context. At a Glance. Learning Objectives. Standards Alignment Background/Context Students will use this lesson to discover how the mass of a projectile affects the distance it will travel when launched. The students will also understand the difference between potential

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy ASU University Physics Labs - Mechanics Lab 5 p. 1 Conservation of Momentum and Energy As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet.

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Warren County Schools PHYSICS PACING GUIDE (SEMESTER)

Warren County Schools PHYSICS PACING GUIDE (SEMESTER) Warren County Schools PHYSICS PACING GUIDE 2017 2018 (SEMESTER) Philosophical approach to the process of teaching and learning science in the Warren County School District (WCS). In WCS there is an emphasis

More information

Projectiles: Target Practice Teacher Advanced Version

Projectiles: Target Practice Teacher Advanced Version Projectiles: Target Practice Teacher Advanced Version In this lab you will shoot a chopstick across the room with a rubber band and measure how different variables affect the distance it flies. You will

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

The Spring: Hooke s Law and Oscillations

The Spring: Hooke s Law and Oscillations Experiment 9 The Spring: Hooke s Law and Oscillations 9.1 Objectives Investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately

More information

What is Work? W = Fd. Whenever you apply a force to an object and the object moves in the direction of the force, work is done.

What is Work? W = Fd. Whenever you apply a force to an object and the object moves in the direction of the force, work is done. Year 10 Physics What is Work? Whenever you apply a force to an object and the object moves in the direction of the force, work is done. If force is measured in newtons (N) and distance moved in metres,

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Energy Analysis of a Mass Oscillating on a Spring Masses and Springs Simulation

Energy Analysis of a Mass Oscillating on a Spring Masses and Springs Simulation Energy Analysis of a Mass Oscillating on a Spring Masses and Springs Simulation Using FIREFOX only, go to http://www.colorado.edu/physics/phet (or Google phet ) Click on Simulations, then Masses and Springs

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Healy/DiMurro. Vibrations 2016

Healy/DiMurro. Vibrations 2016 Name Vibrations 2016 Healy/DiMurro 1. In the diagram below, an ideal pendulum released from point A swings freely through point B. 4. As the pendulum swings freely from A to B as shown in the diagram to

More information

Lecture PowerPoints. Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

have tried with your racer that are working well? you would like to make to your car?

have tried with your racer that are working well? you would like to make to your car? 1. What is energy? 2. What are some things you have tried with your racer that are working well? 3. What are some changes you would like to make to your car? Chapter 5 Section 1 Energy is the ability to

More information

14300 Dynamics Carts w/o Hoops Teachers Instructions

14300 Dynamics Carts w/o Hoops Teachers Instructions 14300 Dynamics Carts w/o Hoops Teachers Instructions Required Accessories o (2) Table stops (wooden bars) o (4) C-Clamps o (2) Recording Timers (#15210 or #15215) o (5) Bricks or Books (or other identical

More information

7.1 Stanford Notes Energy Name

7.1 Stanford Notes Energy Name 7.1 Stanford Notes Energy Name MAIN POINTS: Write a summary of the main point of each paragraph. Page 164 Questions: Questions you should be able to answer after reading. Energy can cause what? The unit

More information

IGCSE Co-ordinated Sciences 0654 Unit 18: Forces and motion

IGCSE Co-ordinated Sciences 0654 Unit 18: Forces and motion IGCSE Co-ordinated Sciences 0654 Unit 18: Forces and motion Recommended Prior Knowledge Students should have a basic knowledge of the effects of balanced and unbalanced forces. They should have good graphing

More information

MIT Blossoms lesson on Elasticity: studying how Solids change shape and size Handouts for students

MIT Blossoms lesson on Elasticity: studying how Solids change shape and size Handouts for students MIT Blossoms lesson on Elasticity: studying how Solids change shape and size Handouts for students Sourish Chakravarty Postdoctoral Associate The Picower Institute for Learning and Memory Massachusetts

More information

Physics Momentum Problems. Science and Mathematics Education Research Group

Physics Momentum Problems. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Momentum Problems Science and Mathematics Education Research Group Supported by UBC Teaching and Learning

More information

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring 17 Investigating a Mass Oscillating on a Spring A spring that is hanging vertically from a support with no mass at the end of the spring has a length L (called its rest length). When a mass is added to

More information

Section 1 Work, Power, and Machines

Section 1 Work, Power, and Machines Chapter 12 Work and Energy Section 1 Work, Power, and Machines Section 2 Simple Machines Section 3 What is Energy? Section 4 Conservation of Energy Skills Experiment Design SI Units and SI unit conversions

More information

Physics. Chapter 7 Energy

Physics. Chapter 7 Energy Physics Chapter 7 Energy Work How long does a force act? Last week, we meant time as in impulse (Ft) This week, we will take how long to mean distance Force x distance (Fd) is what we call WORK W = Fd

More information

Properties of Matter

Properties of Matter Grade 7 Science, Quarter 1, Unit 1.1 Properties of Matter Overview Number of instructional days: 15 (1 day = 50 minutes) Content to be learned Identify different substances using data about characteristic

More information

Summer holiday homework. Physics Year 9/10

Summer holiday homework. Physics Year 9/10 Summer holiday homework Physics Year 9/10 1 (a) The figure below shows two students investigating reaction time. Student A lets the ruler go. Student B closes her hand the moment she sees the ruler fall.

More information

Sometimes (like on AP test) you will see the equation like this:

Sometimes (like on AP test) you will see the equation like this: Work, Energy & Momentum Notes Chapter 5 & 6 The two types of energy we will be working with in this unit are: (K in book KE): Energy associated with of an object. (U in book PE): Energy associated with

More information

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass, what time would be required to stop a car of mass m traveling

More information

8P7:What information about elements can you get from the Periodic Table? 8P7

8P7:What information about elements can you get from the Periodic Table? 8P7 The Nature of Matter Essential Question by Framework Begin with a review of the scientific method and discuss the science fair to be held later in the year. Grade( 2, 5, 8) - Type(L, E, P, T) - Number

More information

Rockets! Subject Area(s) Chemistry Associated Unit Lesson Title Rockets! Header

Rockets! Subject Area(s) Chemistry Associated Unit Lesson Title Rockets! Header Key: Yellow highlight = required component Rockets! Subject Area(s) Chemistry Associated Unit Lesson Title Rockets! Header Grade Level 10 (9-10) Time Required Image 1 Image file:? ADA Description:? (Write

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Physics Review For Final. 1. For the following 6 graphs state whether they show Uniform Velocity, Acceleration, Deceleration

Physics Review For Final. 1. For the following 6 graphs state whether they show Uniform Velocity, Acceleration, Deceleration Physics Review For Final NAME 1. For the following 6 graphs state whether they show Uniform Velocity, Acceleration, Deceleration 2. Draw 2 ticker tapes. One showing uniform acceleration, and one showing

More information

1 Forces. 2 Energy & Work. GS 104, Exam II Review

1 Forces. 2 Energy & Work. GS 104, Exam II Review 1 Forces 1. What is a force? 2. Is weight a force? 3. Define weight and mass. 4. In European countries, they measure their weight in kg and in the United States we measure our weight in pounds (lbs). Who

More information

Date Period Name. Write the term that correctly completes the statement. Use each term once. elastic collision

Date Period Name. Write the term that correctly completes the statement. Use each term once. elastic collision Date Period Name CHAPTER 11 Conservation of Energy Vocabulary Review Write the term that correctly completes the statement. Use each term once. elastic collision law of conservation of energy elastic potential

More information

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time Momentum continued from last time If the earth collided with a meteor that slowed it down in its orbit, what would happen: A: It would maintain the same distance from the sun. B: It would fall closer in

More information