So, whether or not something is moving depends on your frame of reference.

Size: px
Start display at page:

Download "So, whether or not something is moving depends on your frame of reference."

Transcription

1 When an object changes position relative to a reference point. (Frame of reference) Not from where she s sitting, but from space, the earth rotates and the wall with it. So, whether or not something is moving depends on your frame of reference. Is the brick wall moving?

2 -Your frame of reference affects the motion you perceive. Frame of reference - a fixed point used to determine magnitude and direction of motion Top Secret Train Station Gag - YouTube For example, if you are sitting on a train and someone walks down the aisle, their speed with respect to the train is a few miles per hour, at most. Their speed with respect to the ground is much higher.

3 SCALAR quantities which are fully described by a magnitude alone. A measurement WITHOUT direction Examples: time, temp, mass, speed VECTOR are quantities which are fully described by both a magnitude and a direction. Oh Yeah Measurement that has both MAGNITUDE and DIRECTION Examples: velocity, displacement MAGNITUDE A measurement or number

4 DISTANCE VS DISPLACEMENT Displacement (x or y) "Change in position" It is not necessarily the total distance traveled. In fact, displacement and distance are entirely different concepts. Displacement is relative to an axis. o"x" displacement means you are moving horizontally either right or left. o"y" displacement means you are moving vertically either up or down. othe word change is expressed using the Greek letter DELTA ( Δ ). oto find the change you ALWAYS subtract your FINAL - INITIAL position oit is therefore expressed as either Δx = x f - x i or Δy = y f - y i Distance - How far you travel regardless of direction.

5 HOTEL dinner

6 Suppose a person moves in a straight line from the lockers (at a position x = 1.0 m) towards my room (at a position x = 9.0 m), as shown below The answer is positive so the person must have been traveling horizontally to the right.

7 Suppose the person turns around! The answer is negative so the person must have been traveling horizontally to the left What is the DISPLACEMENT for the entire trip? x x f i nal xi ni t i al m What is the total DISTANCE for the entire trip? m

8 Mall NORTH Movies Example A 1.75 km 1. You drive from home to the mall. Gas 2.0 km 2. You drive from home and stop at the gas station. You realize you left your wallet at home. You go back home to get it. You stop at gas station then continue on to the mall. 1.5 km 3. You drive from the mall to the gas station. Home 1 km 4. You drive from home to grandma s house. Grandma s House What if you went to the movies?

9 1. Home-mall Dist = 3.5 km Disp =3.5 km N 2. Home-gas-home-gas-mall Dist = 6.5 km Disp =3.5 km N 3. Mall-gas Dist = 2.0 km Disp =1.5 km -3.5 km =-2km (you are going south) Assuming mall is reference point 4. Home-grandma s Dist = 1.0 km Disp =-1.0 km -0 km =-1 km (you are going south)

10 Example B: A man in a car travels east along a straight road for 54 km, then realizes he is almost out of gas, and turns around and goes 14 km back west to the nearest gas station. He then drives another 50 km east to his destination. What is the man s displacement? 1 st : 0m 54 km? 54km 40 km 90km Total displacement is 90 km E Total distance traveled is = 118 km

11 Example C: Jose Altuve leaves the batter s box, overruns first base by 3.0 m and then returns to first base. Compared to the total distance traveled by Altuve, the magnitude of his total displacement from the batter box is smaller / larger/ the same? He traveled 30 m past 1st base and then 30 m back to 1st meaning his total distance traveled was 60 m more than his displacement. 1 st

12 Example D: Travis needs his physics notes. He walks from his house 8 yards due east towards Shannon s house to borrow her notes. At this point Travis realizes he left his phone at home and runs back to get it. After picking up his phone he continues the 14 yards east to Shannon s house. What was the distance and displacement? Distance = 8yds + 8yds + 14 yds = 30 yds Displacement = + 8yds + - 8yds yds = + 14 yds or 14 yds East

13 20 m Started at 2 m NE and ended at 10 m NE so the final displacement is 10 m NE

14 Speed and Velocity Velocity is defined as: The RATE at which DISPLACEMENT changes. Rate = ANY quantity divided by TIME. Average SPEED is simply the RATE at which DISTANCE changes. s d t

15 Example E A quarterback throws a pass to a defender on the other team who intercepts the football. Assume the defender had to run 50 m away from the quarterback to catch the ball, then 15m towards the quarterback before he is tackled. The entire play took 8 seconds. Let's look at the defender's average velocity: x 35m 0m v 4.38 m/ s t 8s 0s Let's look at the defender's speed: s d 65m m s t 8s / m/s is the derived unit for both speed and velocity.

16 Pictures were taken every second of a set of spheres moving from left to right. The diagram below shows the location of the sphere when each photograph was taken. The total time intervals shown vary among the spheres. All displacements are in meters. Rank these sphere on the basis of the greatest average velocity over the first three seconds. Give the highest rank to the sphere with the greatest average velocity and the lowest rank to the sphere with the least average velocity.

17 The car below is traveling at a constant speed of 100 mph. Is the car s velocity the same?

18 Defining the important variables Kinematics is a way of describing the motion of objects without describing the causes. You can describe an object s motion: In words Mathematically Pictorially Graphically No matter HOW we describe the motion, there are several KEY VARIABLES that we use. Symbol Variable Units t Time s a Acceleration m/s/s x or y Displacement m v o Initial velocity m/s v Final velocity m/s g or a g Acceleration due to gravity m/s/s

19 Tutorial Links Tutorial for help with velocity and speed Tutorial for help on distance vs. displacement

20 Summary: Velocity vs. Speed Speed is a scalar quantity. It is how fast you are traveling. When you look at the speedometer on your car, it tells you the speed you are traveling at that moment. Velocity is a vector quantity. It is how fast you are going and in what direction. If you are traveling to Dallas, you may be traveling at 70 mi/hr, North.

Methods of Motion. Honors Physics

Methods of Motion. Honors Physics Methods of Motion Honors Physics YOU deserve a speeding ticket! I am the LAW around here and the LAW says that the speed limit is 55 miles per hour! Here is the scenario! You wake up late and have 20 minutes

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

Linear Motion. By Jack, Cole, Kate and Linus

Linear Motion. By Jack, Cole, Kate and Linus Linear Motion By Jack, Cole, Kate and Linus What is it? -Linear Motion is the study of motion, Kinematics, and Dynamics Motion Motion is dependent on the reference frame in which you are observing. If

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

SECTION 2 - VELOCITY

SECTION 2 - VELOCITY MOTION SECTION 2 - VELOCITY How fast do you think we are traveling (orbiting) around the sun? 67,0672 mph How fast do you think we are spinning around our axis as we move around the sun? 1,041.67 mph Why

More information

Unit 4 Review. inertia interaction pair net force Newton s first law Newton s second law Newton s third law position-time graph

Unit 4 Review. inertia interaction pair net force Newton s first law Newton s second law Newton s third law position-time graph Unit 4 Review Vocabulary Review Each term may be used once. acceleration constant acceleration constant velocity displacement force force of gravity friction force inertia interaction pair net force Newton

More information

Solving Problems In Physics

Solving Problems In Physics Solving Problems In Physics 1. Read the problem carefully. 2. Identify what is given. 3. Identify the unknown. 4. Find a useable equation and solve for the unknown quantity. 5. Substitute the given quantities.

More information

Using Units in Science

Using Units in Science Using Units in Science 5 cm x 2 cm=?10 cm 2 2 cm 2 1 How much is 150 miles divided by 3 hours? 150 miles/hr 50 miles 50 hrs 50 hrs/mile E 50 miles/hr 3 pears per orange 2 You buy 10 gallons of gas and

More information

SECTION 3 - VELOCITY

SECTION 3 - VELOCITY UNIT 2 MOTION SECTION 3 - VELOCITY How fast do you think we are traveling (orbiting) around the sun? 67,0672 mph How fast do you think we are spinning around our axis as we move around the sun? 1,041.67

More information

AP Physics 1 Summer Assignment (2014)

AP Physics 1 Summer Assignment (2014) Name: Date: AP Physics 1 Summer Assignment (2014) Instructions: 1. Read and study Chapter 2 Describing Motion: Kinematics in One Dimension. 2. Answer the questions below. 3. Submit your answers online

More information

Review. Distance vs. Displacement Scalar vs. Vectors Speed vs. Velocity Acceleration Motion at Constant Acceleration Freefall Kinematic Equations

Review. Distance vs. Displacement Scalar vs. Vectors Speed vs. Velocity Acceleration Motion at Constant Acceleration Freefall Kinematic Equations Linear Motion Review Distance vs. Displacement Scalar vs. Vectors Speed vs. Velocity Acceleration Motion at Constant Acceleration Freefall Kinematic Equations Distance vs. Displacement Distance is the

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

What is a Vector? A vector is a mathematical object which describes magnitude and direction

What is a Vector? A vector is a mathematical object which describes magnitude and direction What is a Vector? A vector is a mathematical object which describes magnitude and direction We frequently use vectors when solving problems in Physics Example: Change in position (displacement) Velocity

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

AP Physics 1 Kinematics 1D

AP Physics 1 Kinematics 1D AP Physics 1 Kinematics 1D 1 Algebra Based Physics Kinematics in One Dimension 2015 08 25 www.njctl.org 2 Table of Contents: Kinematics Motion in One Dimension Position and Reference Frame Displacement

More information

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity What is displacement, velocity and acceleration? what units do they have? vector vs scalar? One dimensional motion, and graphing Moving man worksheet moving man doc - todo Introduction to simple graphing

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension Units of Chapter 2 Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion at Constant Acceleration Solving

More information

Kinematics 7 Solutions. 7.1 Represent and Reason a) The bike is moving at a constant velocity of 4 m/s towards the east

Kinematics 7 Solutions. 7.1 Represent and Reason a) The bike is moving at a constant velocity of 4 m/s towards the east Kinematics 7 Solutions 7.1 Represent and Reason a) The bike is moving at a constant velocity of 4 m/s towards the east b) For the same motion, a position versus time graph would be a straight line at a

More information

Section Distance and displacment

Section Distance and displacment Chapter 11 Motion Section 11.1 Distance and displacment Choosing a Frame of Reference What is needed to describe motion completely? A frame of reference is a system of objects that are not moving with

More information

Chapter 2 Describing Motion

Chapter 2 Describing Motion Chapter 2 Describing Motion Chapter 2 Overview In chapter 2, we will try to accomplish two primary goals. 1. Understand and describe the motion of objects. Define concepts like speed, velocity, acceleration,

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Motion Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Scalar versus Vector Scalar - magnitude only (e.g. volume, mass, time) Vector - magnitude

More information

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once.

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. PART III. KINEMATICS A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. 1. rise (Δy) The vertical separation of any two points on a curve is

More information

Displacement, Velocity, and Acceleration AP style

Displacement, Velocity, and Acceleration AP style Displacement, Velocity, and Acceleration AP style Linear Motion Position- the location of an object relative to a reference point. IF the position is one-dimension only, we often use the letter x to represent

More information

General Physics. Linear Motion. Life is in infinite motion; at the same time it is motionless. Debasish Mridha

General Physics. Linear Motion. Life is in infinite motion; at the same time it is motionless. Debasish Mridha General Physics Linear Motion Life is in infinite motion; at the same time it is motionless. Debasish Mridha High Throw How high can a human throw something? Mechanics The study of motion Kinematics Description

More information

1 What is Science? Worksheets CHAPTER CHAPTER OUTLINE

1 What is Science? Worksheets CHAPTER CHAPTER OUTLINE www.ck12.org Chapter 1. What is Science? Worksheets CSS AP Physics 1 2015-16 Summer Assignment Part 1 of 3 CHAPTER 1 What is Science? Worksheets CHAPTER OUTLINE 1.1 Scientific Inquiry 1.2 Fundamental Units

More information

Position and Displacement

Position and Displacement Position and Displacement Ch. in your text book Objectives Students will be able to: ) Explain the difference between a scalar and a vector quantity ) Explain the difference between total distance traveled

More information

Time, Velocity, and Speed *

Time, Velocity, and Speed * OpenStax-CNX module: m42096 1 Time, Velocity, and Speed * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain the relationships

More information

Physical Science Chapter 11. Motion

Physical Science Chapter 11. Motion Physical Science Chapter 11 Motion Motion Definition An object is in motion when its distance from another object is changing. Relative Motion Relative motion is movement in relation to a REFERENCE POINT.

More information

Motion and Forces study Guide

Motion and Forces study Guide Motion and Forces study Guide Completion Complete each statement. 1. The motion of an object looks different to observers in different. 2. The SI unit for measuring is the meter. 3. The direction and length

More information

Vectors and Kinematics Notes 1 Review

Vectors and Kinematics Notes 1 Review Velocity is defined as the change in displacement with respect to time. Vectors and Kinematics Notes 1 Review Note that this formula is only valid for finding constant velocity or average velocity. Also,

More information

Chapter 2: Kinematics

Chapter 2: Kinematics Section 1 Chapter 2: Kinematics To simplify the concept of motion, we will first consider motion that takes place in one direction. To measure motion, you must choose a frame of reference. Frame of reference

More information

Motion in 1 Dimension. By Prof. Massimiliano Galeazzi, University of Miami

Motion in 1 Dimension. By Prof. Massimiliano Galeazzi, University of Miami Motion in 1 Dimension By Prof. Massimiliano Galeazzi, University of Miami When you throw a pebble straight up, how high does it go? How fast is it when it gets back? If you are in your car at a red light

More information

SPH3U1 Lesson 01 Kinematics

SPH3U1 Lesson 01 Kinematics POSITION, MOTION AND DISPLACEMENT LEARNING GOALS Students will: Define what is meant by a vector quantity and by a scalar quantity. Understand the concept of position (a vector quantity). Relate a change

More information

The Language of Motion

The Language of Motion The Language of Motion Textbook pages 344 361 Section 8.1 Summary Before You Read What does the term uniform mean to you? If motion is uniform, how does it behave? Write your ideas in the lines below.

More information

Linear Motion 1. Scalars and Vectors. Scalars & Vectors. Scalars: fully described by magnitude (or size) alone. That is, direction is not involved.

Linear Motion 1. Scalars and Vectors. Scalars & Vectors. Scalars: fully described by magnitude (or size) alone. That is, direction is not involved. Linear Motion 1 Aristotle 384 B.C. - 322 B.C. Galileo 1564-1642 Scalars and Vectors The motion of objects can be described by words such as distance, displacement, speed, velocity, and acceleration. Scalars

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Chapter 2 Kinematics in One Dimension:

Chapter 2 Kinematics in One Dimension: Chapter 2 Kinematics in One Dimension: Vector / Scaler Quantities Displacement, Velocity, Acceleration Graphing Motion Distance vs Time Graphs Velocity vs Time Graphs Solving Problems Free Falling Objects

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

Chapter 2 Motion in One Dimension. Slide 2-1

Chapter 2 Motion in One Dimension. Slide 2-1 Chapter 2 Motion in One Dimension Slide 2-1 MasteringPhysics, PackBack Answers You should be on both by now. MasteringPhysics first reading quiz Wednesday PackBack should have email & be signed up 2014

More information

AP Physics 1- Kinematics Practice Problems (version 2)

AP Physics 1- Kinematics Practice Problems (version 2) AP Physics 1- Kinematics Practice Problems (version 2) FACT: Kinematics is the branch of Newtonian mechanics concerned with the motion of objects without reference to the forces that cause the motion.

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

BELL RINGER: Define Displacement. Define Velocity. Define Speed. Define Acceleration. Give an example of constant acceleration.

BELL RINGER: Define Displacement. Define Velocity. Define Speed. Define Acceleration. Give an example of constant acceleration. BELL RINGER: Define Displacement. Define Velocity. Define Speed. Define Acceleration. Give an example of constant acceleration. What does the below equation tell us? v = d t NOTES 2.1: ONE-DIMENSIONAL

More information

The key difference between speed and velocity is the. object s motion, while velocity designates an object s speed plus the direction of its motion.

The key difference between speed and velocity is the. object s motion, while velocity designates an object s speed plus the direction of its motion. Article retrieved from Brittanica, Retrieved 6/27/2016 Velocity Velocity has a scientific meaning that is slightly different from that of speed. Speed is the rate of an object s motion, while velocity

More information

Engage 1. Compare the total distance traveled between A and B, if both paths arrive at the factory.

Engage 1. Compare the total distance traveled between A and B, if both paths arrive at the factory. Unit 1: Phenomenon The Physics of Skydiving Lesson 2.f Displacement and Velocity Student Performance Objectives Students will define displacement. Students will define velocity. Students will differentiate

More information

Unit 2 - Linear Motion and Graphical Analysis

Unit 2 - Linear Motion and Graphical Analysis Unit 2 - Linear Motion and Graphical Analysis Motion in one dimension is particularly easy to deal with because all the information about it can be encapsulated in two variables: x, the position of the

More information

Kinematics in One Dimension

Kinematics in One Dimension Honors Physics Kinematics in One Dimension Life is in infinite motion; at the same time it is motionless. Debasish Mridha Mechanics The study of motion Kinematics Description of how things move Dynamics

More information

FACT: Kinematics is the branch of Newtonian mechanics concerned with the motion of objects without reference to the forces that cause the motion.

FACT: Kinematics is the branch of Newtonian mechanics concerned with the motion of objects without reference to the forces that cause the motion. AP Physics 1- Kinematics Practice Problems FACT: Kinematics is the branch of Newtonian mechanics concerned with the motion of objects without reference to the forces that cause the motion. FACT: Displacement

More information

Describing Motion Verbally with Distance and Displacement

Describing Motion Verbally with Distance and Displacement Describing Motion Verbally with Distance and Displacement Read from Lesson 1 of the 1-D Kinematics chapter at The Physics Classroom: http://www.physicsclassroom.com/class/1dkin/u1l1a.cfm http://www.physicsclassroom.com/class/1dkin/u1l1b.cfm

More information

SCIENCE 1206 Unit 3. Physical Science Motion

SCIENCE 1206 Unit 3. Physical Science Motion SCIENCE 1206 Unit 3 Physical Science Motion Section 1: Units, Measurements and Error What is Physics? Physics is the study of motion, matter, energy, and force. Qualitative and Quantitative Descriptions

More information

Describing Motion Verbally with Distance and Displacement

Describing Motion Verbally with Distance and Displacement Name: Describing Motion Verbally with Distance and Displacement Read from Lesson 1 of the 1-D Kinematics chapter at The Physics Classroom: http://www.physicsclassroom.com/class/1dkin/u1l1a.html http://www.physicsclassroom.com/class/1dkin/u1l1b.html

More information

Problem Set : Kinematics in 1 Dimension

Problem Set : Kinematics in 1 Dimension Problem Set : Kinematics in 1 Dimension Assignment One-Dimensional Motion Page 1 of 6 Name: Date: Solve the following problems and answer the questions on separate paper. Be neat and complete. Include

More information

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s)

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s) RECAP!! What is uniform motion? > Motion in a straight line > Moving at a constant speed Yes or No? Yes or No? Paul is a safe driver who always drives the speed limit. Here is a record of his driving on

More information

Chapter 2: 2-Dimensional Motion

Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion 2.1 Position 2.2 Distance and Displacement 2.3 Average Speed and Average Velocity 2.4 Instant Speed and Instant

More information

Lesson 3A: How Fast Are You Moving?

Lesson 3A: How Fast Are You Moving? Lesson 3A: How Fast Are You Moving? 3.1 Observe and represent Decide on a starting point. You will need 2 cars (or other moving objects). For each car, you will mark its position at each second. Make sure

More information

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school.

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school. Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

CHAPTER 2. Motion Notes

CHAPTER 2. Motion Notes CHAPTER 2 Motion Notes DISTANCE AND DISPLACEMENT Distance and displacement are two quantities which may seem to mean the same thing, yet have distinctly different definitions and meanings. DISTANCE Distance

More information

The Science of Physics

The Science of Physics Assessment The Science of Physics Chapter Test B MULTIPLE CHOICE In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. A hiker

More information

1.1 Motion and Motion Graphs

1.1 Motion and Motion Graphs Figure 1 A highway is a good example of the physics of motion in action. kinematics the study of motion without considering the forces that produce the motion dynamics the study of the causes of motion

More information

Chapter 2: Motion in One Dimension

Chapter 2: Motion in One Dimension Chapter : Motion in One Dimension Review: velocity can either be constant or changing. What is the mathematical meaning of v avg? The equation of a straight line is y = mx + b. From the definition of average

More information

Unit 2 - Motion. Chapter 3 - Distance and Speed. Unit 2 - Motion 1 / 76

Unit 2 - Motion. Chapter 3 - Distance and Speed. Unit 2 - Motion 1 / 76 Unit 2 - Motion Chapter 3 - Distance and Speed Unit 2 - Motion 1 / 76 Precision and Accuracy Precision is a measure of how closely individual measurements agree with one another. Accuracy refers to how

More information

PHYSICS - CLUTCH CH 02: 1D MOTION (KINEMATICS)

PHYSICS - CLUTCH CH 02: 1D MOTION (KINEMATICS) !! www.clutchprep.com CONSTANT / AVERAGE VELOCITY AND SPEED Remember there are two terms that deal with how much something moves: - Displacement ( ) is a vector (has direction; could be negative) - Distance

More information

? 4. Like number bonds, a formula is useful because it helps us know what operation to use depending on which pieces of information we have.

? 4. Like number bonds, a formula is useful because it helps us know what operation to use depending on which pieces of information we have. UNIT SIX DECIMALS LESSON 168 PROBLEM-SOLVING You ve covered quite a distance in your journey through our number system, from whole numbers through fractions, to decimals. Today s math mysteries all have

More information

Chapter 2: 1-D Kinematics

Chapter 2: 1-D Kinematics Chapter : 1-D Kinematics Types of Motion Translational Motion Circular Motion Projectile Motion Rotational Motion Natural Motion Objects have a proper place Objects seek their natural place External forces

More information

INTRODUCTION. 1. One-Dimensional Kinematics

INTRODUCTION. 1. One-Dimensional Kinematics INTRODUCTION Mechanics is the area of physics most apparent to us in our everyday lives Raising an arm, standing up, sitting down, throwing a ball, opening a door etc all governed by laws of mechanics

More information

In 1-D, all we needed was x. For 2-D motion, we'll need a displacement vector made up of two components: r = r x + r y + r z

In 1-D, all we needed was x. For 2-D motion, we'll need a displacement vector made up of two components: r = r x + r y + r z D Kinematics 1. Introduction 1. Vectors. Independence of Motion 3. Independence of Motion 4. x-y motions. Projectile Motion 3. Relative motion Introduction Using + or signs was ok in 1 dimension but is

More information

Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a

Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer. C potential difference

More information

Position, Speed and Velocity Position is a variable that gives your location relative to an origin. The origin is the place where position equals 0.

Position, Speed and Velocity Position is a variable that gives your location relative to an origin. The origin is the place where position equals 0. Position, Speed and Velocity Position is a variable that gives your location relative to an origin. The origin is the place where position equals 0. The position of this car at 50 cm describes where the

More information

Chapter 2: Representing Motion. Click the mouse or press the spacebar to continue.

Chapter 2: Representing Motion. Click the mouse or press the spacebar to continue. Chapter 2: Representing Motion Click the mouse or press the spacebar to continue. Chapter 2 Representing Motion In this chapter you will: Represent motion through the use of words, motion diagrams, and

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

Velocity, Speed, and Acceleration. Unit 1: Kinematics

Velocity, Speed, and Acceleration. Unit 1: Kinematics Velocity, Speed, and Acceleration Unit 1: Kinematics Speed vs Velocity Speed is a precise measurement of how fast you are going. It is your distance traveled over time. Speed is a scalar quantity. To measure

More information

Position-versus-Time Graphs

Position-versus-Time Graphs Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

One Dimensional Motion. Motion in x or y only

One Dimensional Motion. Motion in x or y only One Dimensional Motion Motion in x or y only Scalar vs. Vector Scalar Defined as quantity with magnitude (size) only Example: 3 m, 62 seconds, 4.2 miles EASY Math!!! Vector Defined as quantity with magnitude

More information

Chapter 2 1D KINEMATICS

Chapter 2 1D KINEMATICS Chapter 2 1D KINEMATICS The motion of an American kestrel through the air can be described by the bird s displacement, speed, velocity, and acceleration. When it flies in a straight line without any change

More information

Chapter 2: 1-D Kinematics. Paul E. Tippens, Professor of Physics Southern Polytechnic State University Editing by Mr. Gehman

Chapter 2: 1-D Kinematics. Paul E. Tippens, Professor of Physics Southern Polytechnic State University Editing by Mr. Gehman Chapter 2: 1-D Kinematics Paul E. Tippens, Professor of Physics Southern Polytechnic State University Editing by Mr. Gehman 2007 The Cheetah: A cat that is built for speed. Its strength and agility allow

More information

One dimensional Motion test 8/24

One dimensional Motion test 8/24 8/16/017 One dimensional Motion test 8/4 The Nature of Science Observation: important first step toward scientific theory; requires imagination to tell what is important. Theories: created to explain observations;

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

Grade 6 Math Circles October 9 & Visual Vectors

Grade 6 Math Circles October 9 & Visual Vectors Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 9 & 10 2018 Visual Vectors Introduction What is a vector? How does it differ

More information

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio AP Physics 1 Summer Assignment 2018 Mrs. DeMaio demaiod@middletownk12.org Welcome to AP Physics 1 for the 2018-2019 school year. AP Physics 1 is an algebra based, introductory college-level physics course.

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

The result is; distances are contracted in the direction of motion.

The result is; distances are contracted in the direction of motion. The result is; distances are contracted in the direction of motion. t = t/(1 v 2 /c 2 ) 0.5 d = d(1- v 2 /c 2 ) 0.5 These are the Lorentz equations. The Twin-Paradox. A woman astronaut is going to fly

More information

Introduction to 1-D Motion Distance versus Displacement

Introduction to 1-D Motion Distance versus Displacement Introduction to 1-D Motion Distance versus Displacement Kinematics! Kinematics is the branch of mechanics that describes the motion of objects without necessarily discussing what causes the motion.! 1-Dimensional

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter One-Dimensional Kinematics Units of Chapter Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications of

More information

KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES

KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES 014.08.06. KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES www.biofizika.aok.pte.hu Premedical course 04.08.014. Fluids Kinematics Dynamics MECHANICS Velocity and acceleration

More information

Look over: Chapter 2 Sections 1-9 Sample Problems 1, 2, 5, 7. Look over: Chapter 2 Sections 1-7 Examples 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 PHYS 2211

Look over: Chapter 2 Sections 1-9 Sample Problems 1, 2, 5, 7. Look over: Chapter 2 Sections 1-7 Examples 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 PHYS 2211 PHYS 2211 Look over: Chapter 2 Sections 1-9 Sample Problems 1, 2, 5, 7 PHYS 1111 Look over: Chapter 2 Sections 1-7 Examples 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Topics Covered 1) Average Speed 2) Average Velocity

More information

Lecture Presentation Chapter 1 Representing Motion

Lecture Presentation Chapter 1 Representing Motion Lecture Presentation Chapter 1 Representing Motion Suggested Videos for Chapter 1 Prelecture Videos Introduction Putting Numbers on Nature Video Tutor Solutions Representing Motion Class Videos Series

More information

PHYSICS Principles and Problems. Chapter 2: Representing Motion

PHYSICS Principles and Problems. Chapter 2: Representing Motion PHYSICS Principles and Problems Chapter 2: Representing Motion CHAPTER 2 Representing Motion BIG IDEA You can use displacement and velocity to describe an object s motion. CHAPTER 2 Table Of Contents Section

More information

2 KINEMATICS. Learning Objectives

2 KINEMATICS. Learning Objectives CHAPTER 2 KINEMATICS 35 2 KINEMATICS Figure 2.1 The motion of an American kestrel through the air can be described by the bird s displacement, speed, velocity, and acceleration. When it flies in a straight

More information

From last time. Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force.

From last time. Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force. From last time Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force. I.e. either at rest, or straight line motion at constant speed This

More information

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Unit 01 Motion with constant velocity. What we asked about

Unit 01 Motion with constant velocity. What we asked about Unit 01 Motion with constant velocity Outline for this unit: Displacement, Velocity: numerically and graphically Mechanics Lecture 1, Slide 1 What we asked about Would like to see more practice problems

More information

SCIENCE 1206 Unit 3. Physical Science Motion

SCIENCE 1206 Unit 3. Physical Science Motion SCIENCE 1206 Unit 3 Physical Science Motion Converting Base Units The Step Stair Method is a simple trick to converting these units. Kilo (k) Hecta (h) Deka (D) Larger unit as you go up the steps! Divide

More information

Section 11.1 Distance and Displacement (pages )

Section 11.1 Distance and Displacement (pages ) Name Class Date Section 11.1 Distance and Displacement (pages 328 331) This section defines distance and displacement. Methods of describing motion are presented. Vector addition and subtraction are introduced.

More information

Final Exam Review Answers

Final Exam Review Answers Weight (Pounds) Final Exam Review Answers Questions 1-8 are based on the following information: A student sets out to lose some weight. He made a graph of his weight loss over a ten week period. 180 Weight

More information

Displacement * Albert Hall. Based on Displacement by OpenStax

Displacement * Albert Hall. Based on Displacement by OpenStax OpenStax-CNX module: m57711 1 Displacement * Albert Hall Based on Displacement by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract

More information

Which car/s is/are undergoing an acceleration?

Which car/s is/are undergoing an acceleration? Which car/s is/are undergoing an acceleration? Which car experiences the greatest acceleration? Match a Graph Consider the position-time graphs below. Each one of the 3 lines on the position-time graph

More information

Kinematics Unit. Measurement

Kinematics Unit. Measurement Kinematics Unit Measurement The Nature of Science Observation: important first step toward scientific theory; requires imagination to tell what is important. Theories: created to explain observations;

More information