Coarse-Grained Models!

Size: px
Start display at page:

Download "Coarse-Grained Models!"

Transcription

1 Coarse-Grained Models! Large and complex molecules (e.g. long polymers) can not be simulated on the all-atom level! Requires coarse-graining of the model! Coarse-grained models are usually also particles (beads) and interactions (springs, )! A bead represents a group of atoms! Coarse-graining a molecule is highly non-trivial, see systematic coarse-graining, VOTCA, AdResS!

2 End-to-End Distance Distribution! here R = R

3 Free Energy of an Ideal Chain! long range

4 Free Energy of an Ideal Chain!

5

6 Ex: Gaussian Polymer in a Θ-Solvent! Conformational properties of a Gaussian polymer in a Θ-solvent are that of a random walk! è Basis for bead-spring model of a polymer!! Use a harmonic potential for the bonds:! We can compute the partition function exactly! Random walk and bead-spring model generate the same partition function!!

7 Polymer Chains in Good Solvent! Θ-solvent is a special case!! Solvents are good or poor w.r. to the polymer! Good solvent can be modeled via a repulsive potential! - Use the repulsive part of Lennard-Jones (aka Weeks-Chandler-Anderson)! FENE (Finite Extensible Nonlinear Elastic) bond! - Has a maximal extension/compression! Lennard-Jones WCA FENE Harmonic - Very similar to harmonic potential at r 0!

8 Polymer Chains in Poor Solvent! n Poor solvent can be modeled via a full! Lennard-Jones potential! n Polymer monomers experience an attraction,! n n n since they want to minimize contact with solvent! the quality of the solvent can be changed by! varying the attraction via the interaction parameter ε and the cut-off!! Lennard-Jones WCA

9 9! Charged Polymers!

10 Kremer-Grest Model! K. Kremer, G. Grest, J. Chem. Phys. 92, 5057 (990) n Bead-Spring model: FENE bonds plus WCA potential for beads! Idea of Reptation

11 Kremer-Grest Polymer Melt

12 Primitive Path Analysis ->

13 Entanglements

14 MC moves in poymer simulations! Single particle moves ensure irreducibility! Other moves can be invented to faster sample the possible states! Examples for polymer simulations: pivot, double pivot, or... Reptation moves!!! Crossover moves!

15 Lattice Models for Polymers! Scaling of the end-to-end distance (= length of RW):! This can be verified with a simple 2D on-lattice model generating a number of RW (polymers) of fixed length, and taking the average value of P(N)-P(0) 2. Many static polymeric properties can be predicted (gyration radius, structure factor,...)

16 Lattice Models for Polymers! n Original: Random walk for ideal chains! n SAW for good solvent chains! n A simple SAW with local moves is not ergodic for large N, since exceptional trapped configuration like knots can appear! Solutions:! n Bond-fluctuation model! n Prune enriched Rosenbluth sampling! 6!

17 Bond-Fluctuation Model! Carmesin/Kremer. 987 Every monomer occupies 2 D lattices in D dimensions, no double occupancy. There is a maximal bond length in 2D < 4, in 3D < 0 Advantage Simple implementation Fast CPU times on a lattice Disadvantage Simplistic model Still not ergodic (less severe than SAW) 7!

18 Review:Electrostatics under pbc! Periodic boundary conditions (pbc) eliminate boundary e ects in bulk simulations Minimum image convention for short ranged potentials Coulomb potential /r is long ranged, many images contribute significantly Sum is only conditionally convergent For fully periodic boundary conditions (pbc) many e cient methods exist: Ewald (N 3/2 ), P 3 M(N log N), FMM (N) Simulation of surface e ects: both periodic and nonperiodic coordinates (2d+h / d+2h geometries) 8!

19 Conditionally Convergence! Example: The alternating harmonic series: k= ( ) k+ k = =ln2 but look at this... ( 2 ) 4 +( 3 6 ) 8 +( 5 0 ) 2 +( 7 4 ) 6... = = = 2 ln 2 9!

20 Ewald Summation in a Nutshell! E = 2 N i,j= n Z 3 q i q j r ij +nl Trick: r = erfc(,r)) r + erfc(,r) r E = E (r) + E (k) + E (s) + E (d) E (r) = erfc( r ij + ml ) q i q j 2 r i,j ij + ml m Z 3 E (k) = 4 2L 3 k 2 e k 2 /4 2 (k) 2 k =0 E (s) = q 2 i, E (d) = i 2 ( + 2 )L 3 i q i r i 2 (k) = V b d 3 r (r)e i k r = N j= q j e i k r j is the Fourier transformed charge density. Suitably truncate m and k in the exponentially convergent sums 20!

21 Methods for Coulomb Sum in 3D! periodicity 3 2 +MC Ewald (N 3/2 ) Ewald (N 2 ) Ewald (N 2 ) +MC MMM3D (N log N) MMM2D (N 5/3 ) MMMD (N 2 ) - Lekner (N 2 ) Lekner (N 2 ) Lekner (N 2 ) +MD P 3 M (N log N) P 3 MLC (N log N)? Tree codes (N log N) possible possible FMM (N) possible possible +MD Multigrid (N log N) possible possible +MC,? Maggswellian (N) possible possible Use the method most applicable to your problem MD or MC, N, density,desiredaccuracy,methodfamiliarity know which parameters need to be tuned Check accuracy 2!

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films

On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films J. Phys. IV France 1 (006) Pr1-1 c EDP Sciences, Les Ulis On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films H. Meyer, T. Kreer, A. Cavallo, J. P. Wittmer and J. Baschnagel 1

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

Systematic Coarse-Graining and Concurrent Multiresolution Simulation of Molecular Liquids

Systematic Coarse-Graining and Concurrent Multiresolution Simulation of Molecular Liquids Systematic Coarse-Graining and Concurrent Multiresolution Simulation of Molecular Liquids Cameron F. Abrams Department of Chemical and Biological Engineering Drexel University Philadelphia, PA USA 9 June

More information

Computer simulation methods (2) Dr. Vania Calandrini

Computer simulation methods (2) Dr. Vania Calandrini Computer simulation methods (2) Dr. Vania Calandrini in the previous lecture: time average versus ensemble average MC versus MD simulations equipartition theorem (=> computing T) virial theorem (=> computing

More information

Statistical and hydrodynamic properties of topological polymers for various graphs showing enhanced short-range correlation

Statistical and hydrodynamic properties of topological polymers for various graphs showing enhanced short-range correlation arxiv:1607.08726v1 [cond-mat.soft] 29 Jul 2016 Statistical and hydrodynamic properties of topological polymers for various graphs showing enhanced short-range correlation Erica Uehara and Tetsuo Deguchi

More information

Simulation of Coarse-Grained Equilibrium Polymers

Simulation of Coarse-Grained Equilibrium Polymers Simulation of Coarse-Grained Equilibrium Polymers J. P. Wittmer, Institut Charles Sadron, CNRS, Strasbourg, France Collaboration with: M.E. Cates (Edinburgh), P. van der Schoot (Eindhoven) A. Milchev (Sofia),

More information

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations The Hilltop Review Volume 7 Issue 1 Winter 2014 Article 10 December 2014 Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations Tai-Hsien Wu Western Michigan University

More information

Directed Assembly of Functionalized Nanoparticles with Amphiphilic Diblock Copolymers. Contents

Directed Assembly of Functionalized Nanoparticles with Amphiphilic Diblock Copolymers. Contents Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Electronic Supplementary Information for Directed Assembly of Functionalized Nanoparticles

More information

N-body simulations. Phys 750 Lecture 10

N-body simulations. Phys 750 Lecture 10 N-body simulations Phys 750 Lecture 10 N-body simulations Forward integration in time of strongly coupled classical particles or (rigid-body composite objects) dissipation Brownian motion Very general

More information

There are self-avoiding walks of steps on Z 3

There are self-avoiding walks of steps on Z 3 There are 7 10 26 018 276 self-avoiding walks of 38 797 311 steps on Z 3 Nathan Clisby MASCOS, The University of Melbourne Institut für Theoretische Physik Universität Leipzig November 9, 2012 1 / 37 Outline

More information

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators . Polymers.1. Traditional and modern applications.. From chemistry to statistical description.3. Polymer solutions and polymer blends.4. Amorphous polymers.5. The glass transition.6. Crystalline polymers.7.

More information

V(φ) CH 3 CH 2 CH 2 CH 3. High energy states. Low energy states. Views along the C2-C3 bond

V(φ) CH 3 CH 2 CH 2 CH 3. High energy states. Low energy states. Views along the C2-C3 bond Example V(φ): Rotational conformations of n-butane C 3 C C C 3 Potential energy of a n-butane molecule as a function of the angle φ of bond rotation. V(φ) Potential energy/kj mol -1 0 15 10 5 eclipse gauche

More information

Polymer Simulations with Pruned-Enriched Rosenbluth Method I

Polymer Simulations with Pruned-Enriched Rosenbluth Method I Polymer Simulations with Pruned-Enriched Rosenbluth Method I Hsiao-Ping Hsu Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany Polymer simulations with PERM I p. 1 Introduction Polymer:

More information

Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment

Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment Jacob Klein Science 323, 47, 2009 Manfred Schmidt (Mainz) Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment http://www.blueberryforest.com Hsiao-Ping Hsu Institut für Physik, Johannes

More information

Supplementary Information for Atomistic Simulation of Spinodal Phase Separation Preceding Polymer Crystallization

Supplementary Information for Atomistic Simulation of Spinodal Phase Separation Preceding Polymer Crystallization Supplementary Information for Atomistic Simulation of Spinodal Phase Separation Preceding Polymer Crystallization Richard H. Gee * Naida Lacevic and Laurence E. Fried University of California Lawrence

More information

Introduction to molecular dynamics

Introduction to molecular dynamics 1 Introduction to molecular dynamics Yves Lansac Université François Rabelais, Tours, France Visiting MSE, GIST for the summer Molecular Simulation 2 Molecular simulation is a computational experiment.

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

CECAM Tutorial Stuttgart, Oct. 2012

CECAM Tutorial Stuttgart, Oct. 2012 CECAM Tutorial Stuttgart, Oct. 2012 09.10.2012 ESPResSo++ CECAM Tutorial 1 / 40 ESPResSo++ ESPResSo++ is an open-source simulation package designed to perform molecular dynamics and monte carlo simulations

More information

Advanced Molecular Molecular Dynamics

Advanced Molecular Molecular Dynamics Advanced Molecular Molecular Dynamics Technical details May 12, 2014 Integration of harmonic oscillator r m period = 2 k k and the temperature T determine the sampling of x (here T is related with v 0

More information

Phase Transition in a Bond. Fluctuating Lattice Polymer

Phase Transition in a Bond. Fluctuating Lattice Polymer Phase Transition in a Bond arxiv:1204.2691v2 [cond-mat.soft] 13 Apr 2012 Fluctuating Lattice Polymer Hima Bindu Kolli and K.P.N.Murthy School of Physics, University of Hyderabad Hyderabad 500046 November

More information

Citation for published version (APA): Bulacu, M. I. (2008). Molecular dynamics studies of entangled polymer chains s.n.

Citation for published version (APA): Bulacu, M. I. (2008). Molecular dynamics studies of entangled polymer chains s.n. University of Groningen Molecular dynamics studies of entangled polymer chains Bulacu, Monica Iulia IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

COMPUTER SIMULATION OF TRACER DIFFUSION IN GEL NETWORK

COMPUTER SIMULATION OF TRACER DIFFUSION IN GEL NETWORK COMPUTER SIMULATION OF TRACER DIFFUSION IN GEL NETWORK ZHOU HUAI A THESIS SUBMITED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE

More information

LAMMPS Performance Benchmark on VSC-1 and VSC-2

LAMMPS Performance Benchmark on VSC-1 and VSC-2 LAMMPS Performance Benchmark on VSC-1 and VSC-2 Daniel Tunega and Roland Šolc Institute of Soil Research, University of Natural Resources and Life Sciences VSC meeting, Neusiedl am See, February 27-28,

More information

Non-bonded interactions

Non-bonded interactions speeding up the number-crunching continued Marcus Elstner and Tomáš Kubař December 3, 2013 why care? number of individual pair-wise interactions bonded interactions proportional to N: O(N) non-bonded interactions

More information

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 K. Kremer Max Planck Institute for Polymer Research, Mainz Overview Simulations, general considerations

More information

Early stages of dewetting of microscopically thin polymer films: A molecular dynamics study

Early stages of dewetting of microscopically thin polymer films: A molecular dynamics study JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 19 15 NOVEMBER 1998 Early stages of dewetting of microscopically thin polymer films: A molecular dynamics study Hong Liu Department of Physics, Kansas State

More information

Long-lived interchain contacts in polymer melts

Long-lived interchain contacts in polymer melts Long-lived interchain contacts in polymer melts Grzegorz Szamel and Tian Wang Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 Received 19 June 1997; accepted 8 September

More information

Multiscale Materials Modeling

Multiscale Materials Modeling Multiscale Materials Modeling Lecture 06 Polymers These notes created by David Keffer, University of Tennessee, Knoxville, 2012. Outline Multiscale Modeling of Polymers I. Introduction II. Atomistic Simulation

More information

Chapter 2 Experimental sources of intermolecular potentials

Chapter 2 Experimental sources of intermolecular potentials Chapter 2 Experimental sources of intermolecular potentials 2.1 Overview thermodynamical properties: heat of vaporization (Trouton s rule) crystal structures ionic crystals rare gas solids physico-chemical

More information

Isotropic-Nematic Behaviour of Semiflexible Polymers in the Bulk and under Confinement

Isotropic-Nematic Behaviour of Semiflexible Polymers in the Bulk and under Confinement Isotropic-Nematic Behaviour of Semiflexible Polymers in the Bulk and under Confinement S. Egorov 1, A. Milchev 2, P. Virnau 2 and K. Binder 2 1 University of Virginia 2 University of Mainz Outline Microscopic

More information

Structure, molecular dynamics, and stress in a linear polymer under dynamic strain

Structure, molecular dynamics, and stress in a linear polymer under dynamic strain Structure, molecular dynamics, and stress in a linear polymer under dynamic strain arxiv:112.5588v1 [cond-mat.soft] 27 Dec 21 Stress σ (MPa) 2 15 1 5 N=128, ρ=1., dε/dt=1.x1 9 /sec n = 1 n = 2 n = 5 n

More information

MONTE CARLO DYNAMICS OF DIAMOND-LATTICE MULTICHAIN SYSTEMS

MONTE CARLO DYNAMICS OF DIAMOND-LATTICE MULTICHAIN SYSTEMS 241 MONTE CARLO DYNAMICS OF DIAMOND-LATTICE MULTICHAIN SYSTEMS Andrzej Kolinski,* Jeffrey Skolnick t and Robert Yaris Department of Chemistry, Washington University, St. Louis, MO 63130 ABSTRACT We present

More information

Institut für Computerphysik U n i v e r s i t ä t S t u t t g a r t

Institut für Computerphysik U n i v e r s i t ä t S t u t t g a r t Institut für Computerphysik U n i v e r s i t ä t S t u t t g a r t Masterthesis A Realistic DNA Model For Electrokinetic Applications Tobias Rau WS/SS 2014/2015 23.10.2015 Erstberichter: Prof. Dr. C.

More information

Structural Bioinformatics (C3210) Molecular Mechanics

Structural Bioinformatics (C3210) Molecular Mechanics Structural Bioinformatics (C3210) Molecular Mechanics How to Calculate Energies Calculation of molecular energies is of key importance in protein folding, molecular modelling etc. There are two main computational

More information

Transitions of tethered polymer chains: A simulation study with the bond fluctuation lattice model

Transitions of tethered polymer chains: A simulation study with the bond fluctuation lattice model THE JOURNAL OF CHEMICAL PHYSICS 128, 064903 2008 Transitions of tethered polymer chains: A simulation study with the bond fluctuation lattice model Jutta Luettmer-Strathmann, 1,a Federica Rampf, 2 Wolfgang

More information

Autocorrelation Study for a Coarse-Grained Polymer Model

Autocorrelation Study for a Coarse-Grained Polymer Model Autocorrelation Study for a Coarse-Grained Polymer Model KaiK.Qi and andmichael M. Bachmann Bachmann he Center for CSP,UGA Simulational Physics he University of Georgia alk given at the 14th Leipzig Workshop

More information

Effects of interaction between nanopore and polymer on translocation time

Effects of interaction between nanopore and polymer on translocation time Effects of interaction between nanopore and polymer on translocation time Mohammadreza Niknam Hamidabad and Rouhollah Haji Abdolvahab Physics Department, Iran University of Science and Technology (IUST),

More information

Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles

Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles THE JOURNAL OF CHEMICAL PHYSICS 143, 243102 (2015) Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles Aiqun Huang, 1,a) Hsiao-Ping Hsu, 2,3,b) Aniket

More information

Author's personal copy

Author's personal copy Adsorption (2011) 17: 265 271 DOI 10.1007/s10450-011-9325-7 Monte Carlo simulation of polymer adsorption Christopher J. Rasmussen Aleksey Vishnyakov Alexander V. Neimark Received: 15 May 2010 / Accepted:

More information

Simulating Soft Matter with ESPResSo, ESPResSo++ and VOTCA!

Simulating Soft Matter with ESPResSo, ESPResSo++ and VOTCA! Simulating Soft Matter with ESPResSo, ESPResSo++ and VOTCA! Christian Holm! Institut für Computerphysik, Universität Stuttgart Stuttgart, Germany! 1! Intro to Soft Matter Simulations! What is Soft Matter?

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

Molecular Dynamics Simulations

Molecular Dynamics Simulations Molecular Dynamics Simulations Dr. Kasra Momeni www.knanosys.com Outline Long-range Interactions Ewald Sum Fast Multipole Method Spherically Truncated Coulombic Potential Speeding up Calculations SPaSM

More information

Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract

Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract In this work, a simplified Lennard-Jones (LJ) sphere model is used to simulate the aggregation,

More information

Pre-yield non-affine fluctuations and a hidden critical point in strained crystals

Pre-yield non-affine fluctuations and a hidden critical point in strained crystals Supplementary Information for: Pre-yield non-affine fluctuations and a hidden critical point in strained crystals Tamoghna Das, a,b Saswati Ganguly, b Surajit Sengupta c and Madan Rao d a Collective Interactions

More information

Chapter 2 Polymer Physics Concentrated Solutions and Melts

Chapter 2 Polymer Physics Concentrated Solutions and Melts Chapter 2 Polymer Physics Concentrated Solutions and Melts Chapter 1 discussed the statistical thermodynamics of an isolated polymer chain in a solvent. The conformation of an isolated polymer coil in

More information

Elastic Properties of Polymer Networks

Elastic Properties of Polymer Networks J. Mol. Model. 1996, 2, 293 299 Springer-Verlag 1996 Elastic Properties of Polymer Networks Ralf Everaers* and Kurt Kremer Institut für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, D-52425

More information

Part III : M6 Polymeric Materials

Part III : M6 Polymeric Materials 16/1/004 Part III : M6 Polymeric Materials Course overview, motivations and objectives Isolated polymer chains Dr James Elliott 1.1 Course overview Two-part course building on Part IB and II First 6 lectures

More information

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1 D E P A R T M E N T O F M A T E R I A L S S C I E N C E A N D E N G I N E E R I N G M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y 3.014 Materials Laboratory Fall 2008 Amorphous Polymers:

More information

Non-bonded interactions

Non-bonded interactions speeding up the number-crunching Marcus Elstner and Tomáš Kubař May 8, 2015 why care? key to understand biomolecular structure and function binding of a ligand efficiency of a reaction color of a chromophore

More information

Fluctuations in the aging dynamics of structural glasses

Fluctuations in the aging dynamics of structural glasses Fluctuations in the aging dynamics of structural glasses Horacio E. Castillo Collaborator: Azita Parsaeian Collaborators in earlier work: Claudio Chamon Leticia F. Cugliandolo José L. Iguain Malcolm P.

More information

Coarse-grained Models for Oligomer-grafted Silica Nanoparticles

Coarse-grained Models for Oligomer-grafted Silica Nanoparticles Modeling So+ Ma-er: Linking Mul3ple Length and Time Scales KITP Conference, Santa Barbara, June 4-8, 2012 Coarse-grained Models for Oligomer-grafted Silica Nanoparticles Bingbing Hong Alexandros Chremos

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

Effect of equilibration on primitive path analyses of entangled polymers

Effect of equilibration on primitive path analyses of entangled polymers PHYSICAL REVIEW E 72, 061802 2005 Effect of equilibration on primitive path analyses of entangled polymers Robert S. Hoy* and Mark O. Robbins Department of Physics and Astronomy, Johns Hopkins University,

More information

Molecular Dynamics. What to choose in an integrator The Verlet algorithm Boundary Conditions in Space and time Reading Assignment: F&S Chapter 4

Molecular Dynamics. What to choose in an integrator The Verlet algorithm Boundary Conditions in Space and time Reading Assignment: F&S Chapter 4 Molecular Dynamics What to choose in an integrator The Verlet algorithm Boundary Conditions in Space and time Reading Assignment: F&S Chapter 4 MSE485/PHY466/CSE485 1 The Molecular Dynamics (MD) method

More information

Introduction. Model DENSITY PROFILES OF SEMI-DILUTE POLYMER SOLUTIONS NEAR A HARD WALL: MONTE CARLO SIMULATION

Introduction. Model DENSITY PROFILES OF SEMI-DILUTE POLYMER SOLUTIONS NEAR A HARD WALL: MONTE CARLO SIMULATION 169 DENSITY PROFILES OF SEMI-DILUTE POLYMER SOLUTIONS NEAR A HARD WALL: MONTE CARLO SIMULATION WAN Y. SHIH, WEI-HENG SHIH and ILHAN A. AKSAY Dept. of Materials Science and Engineering University of Washington,

More information

Rare event sampling with stochastic growth algorithms

Rare event sampling with stochastic growth algorithms Rare event sampling with stochastic growth algorithms School of Mathematical Sciences Queen Mary, University of London CAIMS 2012 June 24-28, 2012 Topic Outline 1 Blind 2 Pruned and Enriched Flat Histogram

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

arxiv: v1 [cond-mat.soft] 22 Oct 2007

arxiv: v1 [cond-mat.soft] 22 Oct 2007 Conformational Transitions of Heteropolymers arxiv:0710.4095v1 [cond-mat.soft] 22 Oct 2007 Michael Bachmann and Wolfhard Janke Institut für Theoretische Physik, Universität Leipzig, Augustusplatz 10/11,

More information

Phys 450 Spring 2011 Solution set 6. A bimolecular reaction in which A and B combine to form the product P may be written as:

Phys 450 Spring 2011 Solution set 6. A bimolecular reaction in which A and B combine to form the product P may be written as: Problem Phys 45 Spring Solution set 6 A bimolecular reaction in which A and combine to form the product P may be written as: k d A + A P k d k a where k d is a diffusion-limited, bimolecular rate constant

More information

Structural and dynamical properties of Polyethylenimine in explicit water at different protonation states: A Molecular Dynamics Study

Structural and dynamical properties of Polyethylenimine in explicit water at different protonation states: A Molecular Dynamics Study This journal is The Royal Society of Chemistry Structural and dynamical properties of Polyethylenimine in explicit water at different protonation states: A Molecular Dynamics Study Chandan Kumar Choudhury

More information

ENAS 606 : Polymer Physics

ENAS 606 : Polymer Physics ENAS 606 : Polymer Physics Professor Description Course Topics TA Prerequisite Class Office Hours Chinedum Osuji 302 Mason Lab, 432-4357, chinedum.osuji@yale.edu This course covers the static and dynamic

More information

Stick and Slip Behaviour of Confined Oligomer Melts under Shear. A Molecular-Dynamics Study.

Stick and Slip Behaviour of Confined Oligomer Melts under Shear. A Molecular-Dynamics Study. EUROPHYSICS LETTERS Europhys. Lett., 24 (2), pp. 99-104 (1993) 10 October 1993 Stick and Slip Behaviour of Confined Oligomer Melts under Shear. A Molecular-Dynamics Study. E. MANIAS(*), G. HADZIIOANNOU(*),

More information

The polymer physics of single DNA confined in nanochannels. Liang Dai, C. Benjamin Renner, Patrick S. Doyle

The polymer physics of single DNA confined in nanochannels. Liang Dai, C. Benjamin Renner, Patrick S. Doyle Accepted Manuscript The polymer physics of single DNA confined in nanochannels Liang Dai, C. Benjamin Renner, Patrick S. Doyle PII: S0001-8686(15)00-5 DOI: doi: 10.1016/j.cis.015.1.00 Reference: CIS 1605

More information

Swelling and Collapse of Single Polymer Molecules and Gels.

Swelling and Collapse of Single Polymer Molecules and Gels. Swelling and Collapse of Single Polymer Molecules and Gels. Coil-Globule Transition in Single Polymer Molecules. the coil-globule transition If polymer chains are not ideal, interactions of non-neighboring

More information

Introduction to Molecular Dynamics

Introduction to Molecular Dynamics Introduction to Molecular Dynamics Dr. Kasra Momeni www.knanosys.com Overview of the MD Classical Dynamics Outline Basics and Terminology Pairwise interacting objects Interatomic potentials (short-range

More information

An Implicit Divalent Counterion Force Field for RNA Molecular Dynamics

An Implicit Divalent Counterion Force Field for RNA Molecular Dynamics An Implicit Divalent Counterion Force Field for RNA Molecular Dynamics Paul S. Henke 1 1, 2, a and Chi H. Mak 1 Department of Chemistry and 2 Center of Applied Mathematical Sciences, University of Southern

More information

Using Molecular Dynamics to Compute Properties CHEM 430

Using Molecular Dynamics to Compute Properties CHEM 430 Using Molecular Dynamics to Compute Properties CHEM 43 Heat Capacity and Energy Fluctuations Running an MD Simulation Equilibration Phase Before data-collection and results can be analyzed the system

More information

Force fields in computer simulation of soft nanomaterials

Force fields in computer simulation of soft nanomaterials Lecture 2 Part B Force fields in computer simulation of soft nanomaterials Recommended reading: Leach Chapter 4 1 Force Field Methods Force field methods are simulation methods that use classical force

More information

Intermolecular Forces and Monte-Carlo Integration 열역학특수연구

Intermolecular Forces and Monte-Carlo Integration 열역학특수연구 Intermolecular Forces and Monte-Carlo Integration 열역학특수연구 2003.3.28 Source of the lecture note. J.M.Prausnitz and others, Molecular Thermodynamics of Fluid Phase Equiliria Atkins, Physical Chemistry Lecture

More information

Experimental Soft Matter (M. Durand, G. Foffi)

Experimental Soft Matter (M. Durand, G. Foffi) Master 2 PCS/PTSC 2016-2017 10/01/2017 Experimental Soft Matter (M. Durand, G. Foffi) Nota Bene Exam duration : 3H ecture notes are not allowed. Electronic devices (including cell phones) are prohibited,

More information

Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix

Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix Marcel Hellmann BIOMS Group Cellular Biophysics, Deutsches Krebsforschungszentrum (DKFZ) Theoretical Biophysics Group,

More information

Eukaryotic DNA has several levels of organization.

Eukaryotic DNA has several levels of organization. Background Eukaryotic DNA has several levels of organization. DNA is wound around nucleosomes. Nucleosomes are organized into 30-nm chromatin fibers. The fibers form loops of different sizes. These looped

More information

Distribution of chains in polymer brushes produced by a grafting from mechanism

Distribution of chains in polymer brushes produced by a grafting from mechanism SUPPLEMENTARY INFORMATION Distribution of chains in polymer brushes produced by a grafting from mechanism Andre Martinez, Jan-Michael Y. Carrillo, Andrey V. Dobrynin,, * and Douglas H. Adamson, * Department

More information

Citation for published version (APA): Sok, R. M. (1994). Permeation of small molecules across a polymer membrane: a computer simulation study s.n.

Citation for published version (APA): Sok, R. M. (1994). Permeation of small molecules across a polymer membrane: a computer simulation study s.n. University of Groningen Permeation of small molecules across a polymer membrane Sok, Robert artin PRTANT NTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

More information

We draw on mathematical results from topology to develop quantitative methods

We draw on mathematical results from topology to develop quantitative methods Topological Methods for Polymeric Materials: Characterizing the Relationship Between Polymer Entanglement and Viscoelasticity. Eleni Panagiotou #, Ken Millett #, and Paul J. Atzberger #, # Department of

More information

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics Proteins polymer molecules, folded in complex structures Konstantin Popov Department of Biochemistry and Biophysics Outline General aspects of polymer theory Size and persistent length of ideal linear

More information

Force Fields in Molecular Mechanics

Force Fields in Molecular Mechanics Force Fields in Molecular Mechanics Rajarshi Guha (9915607) and Rajesh Sardar (9915610) March 21, 2001 1 Introduction With the advent of computers chemists have realized the utility of carrying out simulations

More information

Dissipative Particle Dynamics: Foundation, Evolution and Applications

Dissipative Particle Dynamics: Foundation, Evolution and Applications Dissipative Particle Dynamics: Foundation, Evolution and Applications Lecture 4: DPD in soft matter and polymeric applications George Em Karniadakis Division of Applied Mathematics, Brown University &

More information

Long-range Interactions in Particle Simulations ScaFaCoS. Olaf Lenz

Long-range Interactions in Particle Simulations ScaFaCoS. Olaf Lenz Long-range Interactions in Particle Simulations ScaFaCoS 1/33 Outline Many-particle Simulations Short-range Interactions Long-range Interactions: ScaFaCoS If time permits: ESPResSo and coarse-graining

More information

Rheological properties of polymer melt between rapidly oscillating plates: - an application of multiscale modeling -

Rheological properties of polymer melt between rapidly oscillating plates: - an application of multiscale modeling - http://multiscale.jp Rheological properties of polymer melt between rapidly oscillating plates: - an application of multiscale modeling - Ryoichi Yamamoto and Shugo Yasuda Dept. Chemical Engineering, Kyoto

More information

k θ (θ θ 0 ) 2 angles r i j r i j

k θ (θ θ 0 ) 2 angles r i j r i j 1 Force fields 1.1 Introduction The term force field is slightly misleading, since it refers to the parameters of the potential used to calculate the forces (via gradient) in molecular dynamics simulations.

More information

Notes on Ewald summation techniques

Notes on Ewald summation techniques February 3, 011 Notes on Ewald summation techniques Adapted from similar presentation in PHY 71 he total electrostatic potential energy of interaction between point charges {q i } at the positions {r i

More information

Dynamics of star branched polymers in a matrix of linear chains - a Monte Carlo study

Dynamics of star branched polymers in a matrix of linear chains - a Monte Carlo study Macromol. Theory Simul. 3, 715-729 (1994) 715 Dynamics of star branched polymers in a matrix of linear chains - a Monte Carlo study Andrzej Sikorski* a), Andrzej Kolinskia* b), Jeffiy Skolnick b, a) Department

More information

Untangling the Mechanics of Entangled Biopolymers

Untangling the Mechanics of Entangled Biopolymers Untangling the Mechanics of Entangled Biopolymers Rae M. Robertson-Anderson Physics Department University of San Diego students/postdocs: Cole Chapman, PhD Tobias Falzone, PhD Stephanie Gorczyca, USD 16

More information

Supporting information

Supporting information Electronic Supplementary Material ESI for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Supporting information Understanding three-body contributions to coarse-grained force

More information

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules Bioengineering 215 An Introduction to Molecular Dynamics for Biomolecules David Parker May 18, 2007 ntroduction A principal tool to study biological molecules is molecular dynamics simulations (MD). MD

More information

End-to-end length of a stiff polymer

End-to-end length of a stiff polymer End-to-end length of a stiff polymer Jellie de Vries April 21st, 2005 Bachelor Thesis Supervisor: dr. G.T. Barkema Faculteit Btawetenschappen/Departement Natuur- en Sterrenkunde Institute for Theoretical

More information

Neighbor Tables Long-Range Potentials

Neighbor Tables Long-Range Potentials Neighbor Tables Long-Range Potentials Today we learn how we can handle long range potentials. Neighbor tables Long-range potential Ewald sums MSE485/PHY466/CSE485 1 Periodic distances Minimum Image Convention:

More information

Static Rouse Modes and Related Quantities: Corrections to Chain Ideality in Polymer Melts

Static Rouse Modes and Related Quantities: Corrections to Chain Ideality in Polymer Melts EPJ manuscript o. (will be inserted by the editor) Static Rouse Modes and Related Quantities: Corrections to Chain Ideality in Polymer Melts H. Meyer, J. P. Wittmer, T. Kreer, P. Beckrich, A. Johner, J.

More information

Origin of Particle Clustering in a Simulated Polymer Nanocomposite and its Impact on Rheology

Origin of Particle Clustering in a Simulated Polymer Nanocomposite and its Impact on Rheology Wesleyan University From the SelectedWorks of Francis Starr 2003 Origin of Particle Clustering in a Simulated Polymer Nanocomposite and its Impact on Rheology Francis W. Starr, Wesleyan University J. F.

More information

Equilibrium sampling of self-associating polymer solutions: A parallel selective tempering approach

Equilibrium sampling of self-associating polymer solutions: A parallel selective tempering approach THE JOURNAL OF CHEMICAL PHYSICS 123, 124912 2005 Equilibrium sampling of self-associating polymer solutions: A parallel selective tempering approach Chakravarthy Ayyagari, a Dmitry Bedrov, and Grant D.

More information

The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity

The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity Draft: September 29, 1999 The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity N. G. Fuller 1 and R. L. Rowley 1,2 Abstract The influence of model flexibility upon simulated viscosity

More information

General-purpose Coarse-grained. Molecular Dynamics Program COGNAC

General-purpose Coarse-grained. Molecular Dynamics Program COGNAC General-purpose Coarse-grained Molecular Dynamics Program COGNAC (COarse-Grained molecular dynamics program by NAgoya Cooperation) Takeshi Aoyagi JCII, Doi project 0 sec -3 msec -6 sec -9 nsec -12 psec

More information

Polymer solutions and melts

Polymer solutions and melts Course M6 Lecture 9//004 (JAE) Course M6 Lecture 9//004 Polymer solutions and melts Scattering methods Effects of excluded volume and solvents Dr James Elliott Online teaching material reminder Overheads

More information

What is Classical Molecular Dynamics?

What is Classical Molecular Dynamics? What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential functions Newton s equations of motion are integrated

More information

Chapter 6: The Rouse Model. The Bead (friction factor) and Spring (Gaussian entropy) Molecular Model:

Chapter 6: The Rouse Model. The Bead (friction factor) and Spring (Gaussian entropy) Molecular Model: G. R. Strobl, Chapter 6 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). R. B. Bird, R. C. Armstrong, O. Hassager, "Dynamics of Polymeric Liquids", Vol. 2, John Wiley and Sons (1977). M. Doi,

More information

Electrophoresis of an end-labeled polymer chain: A molecular dynamics study

Electrophoresis of an end-labeled polymer chain: A molecular dynamics study PHYSICAL REVIEW E 66, 041806 2002 Electrophoresis of an end-labeled polymer chain: A molecular dynamics study Aniket Bhattacharya 1, * and Andrey Milchev 1,2 1 Department of Physics, University of Central

More information