Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment

Size: px
Start display at page:

Download "Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment"

Transcription

1 Jacob Klein Science 323, 47, 2009 Manfred Schmidt (Mainz) Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment Hsiao-Ping Hsu Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany with Wolfgang Paul (Mainz, Halle) Silke Rathgeber, Kurt Binder (Mainz) Bottle-brush polymers p.1

2 Model and Algorithm Bond fluctuation model: self-avoiding walks on a simple cubic lattice with bond constraints 108 bond vectors r b are from: [2,0,0], [2,1,0], [2,1,1], [2,2,1], [3,0,0], [3,1,0] 2 r b 10 linear polymer chain bottle-brush polymer Bottle-brush polymers p.2

3 Geometry of bottle-brush polymers: σ = 1 σ = 1/2 N tot = N b + n c N: total # of monomers N b = [(n c 1)/σ + 1] + 2: monomers in a backbone N: monomers in a side chain n c : # of side chains, σ: grafting density Algorithm: L26 move, pivot algorithm Bottle-brush polymers p.3

4 Autocorrelation functions c(a, t) c(a, t) = < A(t 0)A(t 0 + t) > < A(t 0 ) >< A(t + t 0 ) > < A(t 0 ) 2 > < A(t 0 ) > 2. A = R 2 g,c : square radius of gyration of side chain monomers A = R 2 g,b : square radius of gyration of backbone monomers Bottle-brush polymers p.4

5 Snapshots: N b = 131, σ = 1 N = 6 N = 24 N = 12 N = 48 backbone chain length N b, side chain length N grafting density σ n c /N b (n c : number of side chains) solvent quality: temperature, PH,... (good solvent) Bottle-brush polymers p.5

6 Structural characterization Coarse-grained description of a bottle-brush polymer as a flexible spheocylinder: L cc : length of the axes of the cylinder L cc R e,bb R e,bb : end-to-end vector of the backbone chain ls R cs lp R cs : cross-sectional radius l p : persistence length R e : end-to-end vector of the side chain lb R e l s : bond vector connecting monomers in the side chains l b : bond vector connecting monomers in the backbone chain Bottle-brush polymers p.6

7 Structure factor S w (q) The structure factor for the bottle-brush polymers S w (q) = 1 N tot N tot < c( r i )c( r j ) > sin(q r i r j ) N tot q r i r j i=1 j=1 c( r i ) = 1 (0) if r i is occupied (unoccupied) N = 48 N = 24 N = 12 N = 6 Rathgeber et. al., J. Chem. 122, (2005) S w (q) 100 N tot (1-q 2 <R 2 g >/3) q -1/ N b = 259 q q Bottle-brush polymers p.7

8 Structure factor S w (q) The structure factor for the bottle-brush polymers S w (q) = 1 N tot N tot < c( r i )c( r j ) > sin(q r i r j ) N tot q r i r j i=1 j=1 c( r i ) = 1 (0) if r i is occupied (unoccupied) S w (q) N tot (1-q 2 <R 2 g >/3) N b = q N = 48 N = 24 N = 12 N = 6 q -1 q -1/0.588 small q (Guinier regime): S w (q) N tot [1 q 2 < R 2 g,bb > /3] intermediate q-value: S w (q) q 1/ν, ν = large q: almost rigid segments Bottle-brush polymers p.7

9 Experimental results: (Rathgeber et. al., J. Chem. 122, (2005)) (σ 1, good solvent) Structure formula of the bottle brush polymer (n butyl acrylate) (hydroxyethylmetacrylate) Techniques: static light scattering, small angle neutron scattering, x-ray scattering Bottle-brush polymers p.8

10 Experimental results: (Rathgeber et. al., J. Chem. 122, (2005)) (σ 1, good solvent) Exp Backbone chain length exp b Side chain length exp ( N N ) Simulation ( N N ) b Techniques: static light scattering, small angle neutron scattering, x-ray scattering Bottle-brush polymers p.8

11 Exp. and sim.: S(q) S exp (q 0) = 1 q qr, R exp g,bb 30.5 nm (Guinier formula) 1 S exp (q) exp 1-(q R g,bb ) 2 /3 B2: b400s q R g R g = R 2 g 1/2 Bottle-brush polymers p.9

12 Exp. and sim.: S(q) 1 S exp (q), S(q) 0.1 B2: b400s b259s48 b195s48 b131s b99s48 b67s q R g Exp. (b400s62): N b = 400, N = 62, R exp g,bb = 30.5 nm Sim. (b259s48): N b = 259, N = 48, R g,bb = lattice spacing 1 nm 3.79 lattice spacing Bottle-brush polymers p.9

13 Exp. and sim.: S(q) 1 S exp (q), S(q) 0.1 B4: b188s b259s24 b195s24 b131s b99s24 b67s q R g Exp. (b188s58): N b = 188, N = 58, R exp g,bb = 21 nm Sim. (b99s24): N b = 99, N = 24, R g,bb = lattice spacing 1 nm lattice spacing Bottle-brush polymers p.9

14 Radial density profile ρ cs (r) Assumptions in the analysis of experimental data: Gaussian profile: ρ cs (r) exp( r 2 / R 2 g,cs ) R 2 g,cs = 2π 0 rdrρ cs (r)r 2, 2π 0 rdrρ cs (r) = 1 Decoupling approximations for the scattering data: S w (q) S b (q)s cs (q) Scattering function of the backbone S b (q): S b (q) = [1 χ(q)]s SAW chain (q) + χ(q)s rod (q) Cross sectional scattering S cs (q): S cs (q) = [2π 0 drrρ cs (r)j 0 (qr)] 2 J 0 (r): the zeroth order Bessel function Bottle-brush polymers p.10

15 Simulations: ρ(r) ^ x j l c ^ y j C.M. ^ z j backbone: undulating line On a coarse-grained scale l c cylindrical-like object (straight rigid backbone of l c + 1 monomers) direction ẑ = 1 l c lc i êi going through C.M. length: R c e = r n+l c r n Monomers located within this cylinder segment are counted Bottle-brush polymers p.11

16 ρ(r) = 1 ns n s j=1 ρ j (r), n s = N b l c ρ(r) l c = 130 l c = 64 l c = 48 l c = 28 l c = 18 l c = 12 l c = 3 (N b = 131, N = 48) For each cylindrical-like object j: ρ j (r) = N(r) r N(r) = N N r, N(r): # of monomers in the interval [r, r + dr] N r : # of lattice sites (x j, y j ) satisfying the constraint r 2 = x 2 j + y2 j l c l p (persistence length) 1e r Bottle-brush polymers p.12

17 Persistence length of backbone l (k) p : the projection of the end-to-end vector, R e,b, on the segment vector r k : l (k) p = rk r k R e,b R e,b k 1 r k k l s : the length over which correlations in the direction of the tangent are lost. < cos θ(s) > = e s/l s 1 N b 1 s N b 1 s i=1 u i u i+s (worm likechain), u i = r i r i Bottle-brush polymers p.13

18 Persistence length l p : Scaling law of mean square end-to-end distance of the backbone: R 2 e,b (N) = 2l pl b N 2ν b as N b 40 N = 24 > / ( l b N b 2 ν ) 2 < R e,b N = 18 N = 12 N = 6 N = 0 N: side chain length ν (3D SAW) N b Local intrinsic stiffness of the backbone of bottle-brush polymer Bottle-brush polymers p.14

19 Exp. and Sim.: S(q), ρ cs (r), R g,cs experiment simulation Gaussian b259s48 S(q) 0.01 ρ cs (r) e q R g r [nm] Experiment (N b = 400, N = 62): R g,cs = 6.30 nm Simulation (N = 259, N = 48): R g,cs = 5.04 nm Bottle-brush polymers p.15

20 References: "How to Define Variation of Physical Properties Normal to an Undulating One-Dimensional Object, phys. rev. lett. 103, (2009). "Characteristic Length Scales and Radial Monomer Density Profiles of Molecular Bottle-Brushes: Simulation and Experiment, preprint (2009). "Standard Definitions of Persistence Length Do Not Describe the Local Intrinsic Stiffness of Real Polymer Chains, preprint (2009). Deutsche Forschungsgemeinschaft (DPG), grant No. SFB 625/A3 European Science Foundation (ESF) under the STIPOMAT program Bottle-brush polymers p.16

Jacob Klein Science 323, 47, p. 2

Jacob Klein Science 323, 47, p. 2 p. 1 Jacob Klein Science 323, 47, 2009 p. 2 BOTTLEBRUSH POLYMERS bond fluctuation model simulation SNAPSHOT Backbone chainlength N b = 131 grafting density σ = 1 side-chain length N = 6 p. 3 N b = 131

More information

arxiv: v1 [cond-mat.soft] 11 Mar 2013

arxiv: v1 [cond-mat.soft] 11 Mar 2013 Estimation of Persistence Lengths of Semiflexible Polymers: Insight from Simulations Hsiao-Ping Hsu a, Wolfgang Paul b, and Kurt Binder a a Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger

More information

A Monte Carlo simulation study of branched polymers

A Monte Carlo simulation study of branched polymers THE JOURNAL OF CHEMICAL PHYSICS 125, 204901 2006 A Monte Carlo simulation study of branched polymers Arun Yethiraj Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin,

More information

Polymer Simulations with Pruned-Enriched Rosenbluth Method I

Polymer Simulations with Pruned-Enriched Rosenbluth Method I Polymer Simulations with Pruned-Enriched Rosenbluth Method I Hsiao-Ping Hsu Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany Polymer simulations with PERM I p. 1 Introduction Polymer:

More information

arxiv: v1 [cond-mat.soft] 7 Jul 2011

arxiv: v1 [cond-mat.soft] 7 Jul 2011 A fast Monte Carlo algorithm for studying bottle-brush polymers Hsiao-Ping Hsu and Wolfgang Paul Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 5599 Mainz, Germany Theoretische

More information

Coarse-Grained Models!

Coarse-Grained Models! Coarse-Grained Models! Large and complex molecules (e.g. long polymers) can not be simulated on the all-atom level! Requires coarse-graining of the model! Coarse-grained models are usually also particles

More information

Part 8. Special Topic: Light Scattering

Part 8. Special Topic: Light Scattering Part 8. Special Topic: Light Scattering Light scattering occurs when polarizable particles in a sample are placed in the oscillating electric field of a beam of light. The varying field induces oscillating

More information

Introduction to X-ray and neutron scattering

Introduction to X-ray and neutron scattering UNESCO/IUPAC Postgraduate Course in Polymer Science Lecture: Introduction to X-ray and neutron scattering Zhigunov Alexander Institute of Macromolecular Chemistry ASCR, Heyrovsky sq., Prague -16 06 http://www.imc.cas.cz/unesco/index.html

More information

Supporting Information

Supporting Information Supporting Information Design of End-to-End Assembly of Side-Grafted Nanorods in a Homopolymer Matrix Yulong Chen 1, Qian Xu 1, Yangfu Jin 1, Xin Qian 1 *, Li Liu 2, Jun Liu 2 *, and Venkat Ganesan 3 *

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 8 Oct 1996

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 8 Oct 1996 December 21, 2013 arxiv:cond-mat/9610066v1 [cond-mat.stat-mech] 8 Oct 1996 Some Finite Size Effects in Simulations of Glass Dynamics Jürgen Horbach, Walter Kob, Kurt Binder Institut für Physik, Johannes

More information

Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles

Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles THE JOURNAL OF CHEMICAL PHYSICS 143, 243102 (2015) Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles Aiqun Huang, 1,a) Hsiao-Ping Hsu, 2,3,b) Aniket

More information

Appendix C - Persistence length 183. Consider an ideal chain with N segments each of length a, such that the contour length L c is

Appendix C - Persistence length 183. Consider an ideal chain with N segments each of length a, such that the contour length L c is Appendix C - Persistence length 183 APPENDIX C - PERSISTENCE LENGTH Consider an ideal chain with N segments each of length a, such that the contour length L c is L c = Na. (C.1) If the orientation of each

More information

End-to-end length of a stiff polymer

End-to-end length of a stiff polymer End-to-end length of a stiff polymer Jellie de Vries April 21st, 2005 Bachelor Thesis Supervisor: dr. G.T. Barkema Faculteit Btawetenschappen/Departement Natuur- en Sterrenkunde Institute for Theoretical

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix

Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix Marcel Hellmann BIOMS Group Cellular Biophysics, Deutsches Krebsforschungszentrum (DKFZ) Theoretical Biophysics Group,

More information

On the size and shape of self-assembled micelles

On the size and shape of self-assembled micelles On the size and shape of self-assembled micelles Peter H. Nelson, Gregory C. Rutledge, and T. Alan Hatton a) Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

More information

Physica A. A semi-flexible attracting segment model of two-dimensional polymer collapse

Physica A. A semi-flexible attracting segment model of two-dimensional polymer collapse Physica A 389 (2010) 1619 1624 Contents lists available at ScienceDirect Physica A journal homepage: www.elsevier.com/locate/physa A semi-flexible attracting segment model of two-dimensional polymer collapse

More information

Simulation of Coarse-Grained Equilibrium Polymers

Simulation of Coarse-Grained Equilibrium Polymers Simulation of Coarse-Grained Equilibrium Polymers J. P. Wittmer, Institut Charles Sadron, CNRS, Strasbourg, France Collaboration with: M.E. Cates (Edinburgh), P. van der Schoot (Eindhoven) A. Milchev (Sofia),

More information

Aggregation of semiflexible polymers under constraints

Aggregation of semiflexible polymers under constraints Aggregation of semiflexible polymers under constraints Johannes Zierenberg, Marco Mueller, Philipp Schierz, Martin Marenz and Wolfhard Janke Institut für Theoretische Physik Universität Leipzig, Germany

More information

Isotropic-Nematic Behaviour of Semiflexible Polymers in the Bulk and under Confinement

Isotropic-Nematic Behaviour of Semiflexible Polymers in the Bulk and under Confinement Isotropic-Nematic Behaviour of Semiflexible Polymers in the Bulk and under Confinement S. Egorov 1, A. Milchev 2, P. Virnau 2 and K. Binder 2 1 University of Virginia 2 University of Mainz Outline Microscopic

More information

Small Angle X-ray Scattering (SAXS)

Small Angle X-ray Scattering (SAXS) Small Angle X-ray Scattering (SAXS) We have considered that Bragg's Law, d = λ/(2 sinθ), supports a minimum size of measurement of λ/2 in a diffraction experiment (limiting sphere of inverse space) but

More information

Transitions of tethered polymer chains: A simulation study with the bond fluctuation lattice model

Transitions of tethered polymer chains: A simulation study with the bond fluctuation lattice model THE JOURNAL OF CHEMICAL PHYSICS 128, 064903 2008 Transitions of tethered polymer chains: A simulation study with the bond fluctuation lattice model Jutta Luettmer-Strathmann, 1,a Federica Rampf, 2 Wolfgang

More information

Institut fur Theoretische Physik. Universitat Heidelberg. Philosophenweg 19. Germany. and. Interdisziplinares Zentrum. fur Wissenschaftliches Rechnen

Institut fur Theoretische Physik. Universitat Heidelberg. Philosophenweg 19. Germany. and. Interdisziplinares Zentrum. fur Wissenschaftliches Rechnen A new general model with non-spherical interactions for dense polymer systems and a potential parametrization for Bisphenol-A-Polycarbonate Klaus M. Zimmer, Andreas Linke and Dieter W. Heermann Institut

More information

University of Groningen. Conformational properties of comb copolymer brushes de Jong, Johannes Rinse

University of Groningen. Conformational properties of comb copolymer brushes de Jong, Johannes Rinse University of Groningen Conformational properties of comb copolymer brushes de Jong, Johannes Rinse IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite

More information

Statistical Thermodynamics Exercise 11 HS Exercise 11

Statistical Thermodynamics Exercise 11 HS Exercise 11 Exercise 11 Release: 412215 on-line Return: 1112215 your assistant Discussion: 1512215 your tutorial room Macromolecules (or polymers) are large molecules consisting of smaller subunits (referred to as

More information

Methoden moderner Röntgenphysik II: Streuung und Abbildung

Methoden moderner Röntgenphysik II: Streuung und Abbildung . Methoden moderner Röntgenphysik II: Streuung und Abbildung Lecture 7 Vorlesung zum Haupt/Masterstudiengang Physik SS 2014 G. Grübel, M. Martins, E. Weckert Location: Hörs AP, Physik, Jungiusstrasse Tuesdays

More information

Chapter 2 Polymer Physics Concentrated Solutions and Melts

Chapter 2 Polymer Physics Concentrated Solutions and Melts Chapter 2 Polymer Physics Concentrated Solutions and Melts Chapter 1 discussed the statistical thermodynamics of an isolated polymer chain in a solvent. The conformation of an isolated polymer coil in

More information

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea The Scaled Effective Solvent Method for Predicting the Equilibrium Ensemble of Structures with Analysis of Thermodynamic Properties of Amorphous Polyethylene Glycol-Water Mixtures Hyeyoung Shin a, Tod

More information

Standard Definitions of Persistence Length Do Not Describe the Local Intrinsic Stiffness of Real Polymer Chains

Standard Definitions of Persistence Length Do Not Describe the Local Intrinsic Stiffness of Real Polymer Chains 3094 Macromolecules 2010, 43, 3094 3102 DOI: 10.1021/ma902715e Standard Definitions of Persistence Length Do Not Describe the Local Intrinsic Stiffness of Real Polymer Chains Hsiao-Ping Hsu,*, Wolfgang

More information

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1 D E P A R T M E N T O F M A T E R I A L S S C I E N C E A N D E N G I N E E R I N G M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y 3.014 Materials Laboratory Fall 2008 Amorphous Polymers:

More information

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators . Polymers.1. Traditional and modern applications.. From chemistry to statistical description.3. Polymer solutions and polymer blends.4. Amorphous polymers.5. The glass transition.6. Crystalline polymers.7.

More information

Introduction. Model DENSITY PROFILES OF SEMI-DILUTE POLYMER SOLUTIONS NEAR A HARD WALL: MONTE CARLO SIMULATION

Introduction. Model DENSITY PROFILES OF SEMI-DILUTE POLYMER SOLUTIONS NEAR A HARD WALL: MONTE CARLO SIMULATION 169 DENSITY PROFILES OF SEMI-DILUTE POLYMER SOLUTIONS NEAR A HARD WALL: MONTE CARLO SIMULATION WAN Y. SHIH, WEI-HENG SHIH and ILHAN A. AKSAY Dept. of Materials Science and Engineering University of Washington,

More information

Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9

Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9 Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9 Open Book Exam Work on your own for this exam. You may consult your

More information

Disordered Structures. Part 2

Disordered Structures. Part 2 Disordered Structures Part 2 Composites and mixtures Consider inhomogeneities on length scales > 10-20 Å Phase separation two (or multi-) phase mixtures Mixtures of particles of different kinds - solids,

More information

arxiv: v1 [cond-mat.soft] 16 Apr 2014

arxiv: v1 [cond-mat.soft] 16 Apr 2014 arxiv:44.459v [cond-mat.soft] 6 Apr 24 Phase behaviour of two-component bottle-brush polymers with flexible backbones under poor solvent conditions Nikolaos G Fytas and Panagiotis E Theodorakis 2 Applied

More information

V(φ) CH 3 CH 2 CH 2 CH 3. High energy states. Low energy states. Views along the C2-C3 bond

V(φ) CH 3 CH 2 CH 2 CH 3. High energy states. Low energy states. Views along the C2-C3 bond Example V(φ): Rotational conformations of n-butane C 3 C C C 3 Potential energy of a n-butane molecule as a function of the angle φ of bond rotation. V(φ) Potential energy/kj mol -1 0 15 10 5 eclipse gauche

More information

Supplementary Material for. Concentration Dependent Effects of Urea. Binding to Poly-N-isopropylacrylamide Brushes:

Supplementary Material for. Concentration Dependent Effects of Urea. Binding to Poly-N-isopropylacrylamide Brushes: Electronic Supplementary Material (ESI for Physical Chemistry Chemical Physics. his journal is the Owner Societies 2016 Supplementary Material for Concentration Dependent Effects of Urea Binding to Poly-N-isopropylacrylamide

More information

ENAS 606 : Polymer Physics

ENAS 606 : Polymer Physics ENAS 606 : Polymer Physics Professor Description Course Topics TA Prerequisite Class Office Hours Chinedum Osuji 302 Mason Lab, 432-4357, chinedum.osuji@yale.edu This course covers the static and dynamic

More information

MONTE CARLO DYNAMICS OF DIAMOND-LATTICE MULTICHAIN SYSTEMS

MONTE CARLO DYNAMICS OF DIAMOND-LATTICE MULTICHAIN SYSTEMS 241 MONTE CARLO DYNAMICS OF DIAMOND-LATTICE MULTICHAIN SYSTEMS Andrzej Kolinski,* Jeffrey Skolnick t and Robert Yaris Department of Chemistry, Washington University, St. Louis, MO 63130 ABSTRACT We present

More information

arxiv: v1 [cond-mat.soft] 22 Oct 2007

arxiv: v1 [cond-mat.soft] 22 Oct 2007 Conformational Transitions of Heteropolymers arxiv:0710.4095v1 [cond-mat.soft] 22 Oct 2007 Michael Bachmann and Wolfhard Janke Institut für Theoretische Physik, Universität Leipzig, Augustusplatz 10/11,

More information

3 Biopolymers Uncorrelated chains - Freely jointed chain model

3 Biopolymers Uncorrelated chains - Freely jointed chain model 3.4 Entropy When we talk about biopolymers, it is important to realize that the free energy of a biopolymer in thermal equilibrium is not constant. Unlike solids, biopolymers are characterized through

More information

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK Polymer Dynamics Tom McLeish Durham University, UK (see Adv. Phys., 51, 1379-1527, (2002)) Boulder Summer School 2012: Polymers in Soft and Biological Matter Schedule Coarse-grained polymer physics Experimental

More information

Supporting Information for: Complexation of β-lactoglobulin Fibrils and Sulfated Polysaccharides

Supporting Information for: Complexation of β-lactoglobulin Fibrils and Sulfated Polysaccharides Supporting Information for: Complexation of β-lactoglobulin Fibrils and Sulfated Polysaccharides Owen G Jones 1, Stephaandschin 1, Jozef Adamcik 1, Ludger Harnau 2, Sreenath Bolisetty 1, and Raffaele Mezzenga

More information

MAE 545: Lecture 4 (9/29) Statistical mechanics of proteins

MAE 545: Lecture 4 (9/29) Statistical mechanics of proteins MAE 545: Lecture 4 (9/29) Statistical mechanics of proteins Ideal freely jointed chain N identical unstretchable links (Kuhn segments) of length a with freely rotating joints ~r 2 a ~r ~R ~r N In first

More information

Forces by and on a Polymer Grafted to a Repulsive Wall

Forces by and on a Polymer Grafted to a Repulsive Wall International Journal of Modern Physics C c World Scientific Publishing Company Forces by and on a Polymer Grafted to a Repulsive Wall Jens Odenheimer Institut für Theoretische Physik, Universität Heidelberg,

More information

Dynamic lattice liquid (DLL) model in computer simulation of the structure and dynamics of polymer condensed systems

Dynamic lattice liquid (DLL) model in computer simulation of the structure and dynamics of polymer condensed systems e-polymers 2012, no. 079 http://www.e-polymers.org ISSN 1618-7229 Dynamic lattice liquid (DLL) model in computer simulation of the structure and dynamics of polymer condensed systems Anna Blim *, Tomasz

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

Computer Simulation of Peptide Adsorption

Computer Simulation of Peptide Adsorption Computer Simulation of Peptide Adsorption M P Allen Department of Physics University of Warwick Leipzig, 28 November 2013 1 Peptides Leipzig, 28 November 2013 Outline Lattice Peptide Monte Carlo 1 Lattice

More information

GEM4 Summer School OpenCourseWare

GEM4 Summer School OpenCourseWare GEM4 Summer School OpenCourseWare http://gem4.educommons.net/ http://www.gem4.org/ Lecture: Polymer Chains by Ju Li. Given August 16, 2006 during the GEM4 session at MIT in Cambridge, MA. Please use the

More information

Layers of semiflexible chain molecules endgrafted at interfaces: An off-lattice Monte Carlo simulation

Layers of semiflexible chain molecules endgrafted at interfaces: An off-lattice Monte Carlo simulation Layers of semiflexible chain molecules endgrafted at interfaces: An off-lattice Monte Carlo simulation F. M. Haas Institut für Physik, Universität Mainz, D-55099 Mainz, Germany R. Hilfer Institut für Physik,

More information

Experimental Soft Matter (M. Durand, G. Foffi)

Experimental Soft Matter (M. Durand, G. Foffi) Master 2 PCS/PTSC 2016-2017 10/01/2017 Experimental Soft Matter (M. Durand, G. Foffi) Nota Bene Exam duration : 3H ecture notes are not allowed. Electronic devices (including cell phones) are prohibited,

More information

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics Proteins polymer molecules, folded in complex structures Konstantin Popov Department of Biochemistry and Biophysics Outline General aspects of polymer theory Size and persistent length of ideal linear

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 16 Jan 2005

arxiv:cond-mat/ v2 [cond-mat.soft] 16 Jan 2005 arxiv:cond-mat/412617v2 [cond-mat.soft] 16 Jan 25 On the behaviour of short Kratky-Porod chain Semjon Stepanow Martin-Luther-Universität Halle, Fachbereich Physik, D-699 Halle, Germany PACS numbers: 5.4.-a,

More information

On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films

On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films J. Phys. IV France 1 (006) Pr1-1 c EDP Sciences, Les Ulis On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films H. Meyer, T. Kreer, A. Cavallo, J. P. Wittmer and J. Baschnagel 1

More information

arxiv: v1 [cond-mat.soft] 4 Jun 2013

arxiv: v1 [cond-mat.soft] 4 Jun 2013 arxiv:1306.0749v1 [cond-mat.soft] 4 Jun 2013 Molecular dynamics simulations of single-component bottle-brush polymers with a flexible backbone under poor solvent conditions Nikolaos G Fytas 1 and Panagiotis

More information

Jan Philippe B. Sambo, Jinky B. Bornales, Beverly V. Gemao Minadanao State University Iligan Institute of Technology

Jan Philippe B. Sambo, Jinky B. Bornales, Beverly V. Gemao Minadanao State University Iligan Institute of Technology Jan Philippe B. Sambo, Jinky B. Bornales, Beverly V. Gemao Minadanao State University Iligan Institute of Technology A paper presented in the, Polymer Applications Biodegradable Plastics Drug Enhancers

More information

Models for Single Molecule Experiments

Models for Single Molecule Experiments Models for Single Molecule Experiments Binding Unbinding Folding - Unfolding -> Kramers Bell theory 1 Polymer elasticity: - Hooke s law (?) - FJC (Freely joined chain) - WLC (Worm-like chain) 3 Molecular

More information

arxiv:physics/ v2 [physics.chem-ph] 8 Dec 2004

arxiv:physics/ v2 [physics.chem-ph] 8 Dec 2004 arxiv:physics/0407001v2 [physics.chem-ph] 8 Dec 2004 Size Information Obtained Using Static Light Scattering Technique Yong Sun February 2, 2008 Abstract Detailed investigation of static light scattering

More information

Polymer Physics, Electrical Conductivity of Metals and Cosmology

Polymer Physics, Electrical Conductivity of Metals and Cosmology Polymer Physics, Electrical Conductivity of Metals and Cosmology P. R. Silva Retired associate professor Departamento de Física ICEx Universidade Federal de Minas Gerais email: prsilvafis@gmail.com ABSTRACT

More information

Self-Assembly of Polyelectrolyte Rods in Polymer Gel and in Solution: Small-Angle Neutron Scattering Study

Self-Assembly of Polyelectrolyte Rods in Polymer Gel and in Solution: Small-Angle Neutron Scattering Study 4466 Macromolecules 2002, 35, 4466-4471 Self-Assembly of Polyelectrolyte Rods in Polymer Gel and in Solution: Small-Angle Neutron Scattering Study Yu. D. Zaroslov, V. I. Gordeliy, A. I. Kuklin, A. H. Islamov,

More information

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I)

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) Overview: General Properties of Macromolecules in Solution Molar Mass Dependencies Molar Mass Distributions Generalized Ratios Albena Lederer Leibniz-Institute

More information

Out-of-equilibrium characteristics of a forced translocating chain through a nanopore

Out-of-equilibrium characteristics of a forced translocating chain through a nanopore PHYSICAL REVIEW E 8, 8 Out-of-equilibrium characteristics of a forced locating chain through a nanopore Aniket Bhattacharya, * and Kurt Binder Department of Physics, University of Central Florida, Orlando,

More information

Polymer solutions and melts

Polymer solutions and melts Course M6 Lecture 9//004 (JAE) Course M6 Lecture 9//004 Polymer solutions and melts Scattering methods Effects of excluded volume and solvents Dr James Elliott Online teaching material reminder Overheads

More information

Structural characterization. Part 2

Structural characterization. Part 2 Structural characterization Part Determining partial pair distribution functions X-ray absorption spectroscopy (XAS). Atoms of different elements have absorption edges at different energies. Structure

More information

Size exclusion chromatography of branched polymers: Star and comb polymers

Size exclusion chromatography of branched polymers: Star and comb polymers Macromol. Theory Simul. 8, 513 519 (1999) 513 Size exclusion chromatography of branched polymers: Star and comb polymers Hidetaka Tobita*, Sadayuki Saito Department of Materials Science and Engineering,

More information

Structural characterization. Part 2

Structural characterization. Part 2 Structural characterization Part Scattering angle Crystalline materials Bragg s law: Scattering vector Q ~ d -1, where d is interplanar distance Q has dimension [m -1 ], hence large Q (large scattering

More information

Phase Transition in a Bond. Fluctuating Lattice Polymer

Phase Transition in a Bond. Fluctuating Lattice Polymer Phase Transition in a Bond arxiv:1204.2691v2 [cond-mat.soft] 13 Apr 2012 Fluctuating Lattice Polymer Hima Bindu Kolli and K.P.N.Murthy School of Physics, University of Hyderabad Hyderabad 500046 November

More information

Electronic Supplementary Information. Solution Properties of Imidazolium-Based Amphiphilic Polyelectrolyte. in Pure- and Mixed-Solvent Media

Electronic Supplementary Information. Solution Properties of Imidazolium-Based Amphiphilic Polyelectrolyte. in Pure- and Mixed-Solvent Media Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2019 Electronic Supplementary Information Solution Properties of Imidazolium-Based Amphiphilic

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL Systematic Coarse-Grained Modeling of Complexation between Small Interfering RNA and Polycations Zonghui Wei 1 and Erik Luijten 1,2,3,4,a) 1 Graduate Program in Applied Physics, Northwestern

More information

Mean end-to-end distance of branched polymers

Mean end-to-end distance of branched polymers J. Phys. A: Math. Gen., Vol. 12, No. 9, 1979. Printed in Great Britain LETTER TO THE EDITOR Mean end-to-end distance of branched polymers S Redner Department of Physics, Boston University, Boston, Mass.

More information

End-to-End Distribution Function of Two-Dimensional Stiff Polymers for all Persistence Lengths

End-to-End Distribution Function of Two-Dimensional Stiff Polymers for all Persistence Lengths End-to-End Distribution Function of Two-Dimensional Stiff Polymers for all Persistence Lengths B. Hamprecht 1, W. Janke and H. Kleinert 1 1 Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee

More information

Chapter 7. Entanglements

Chapter 7. Entanglements Chapter 7. Entanglements The upturn in zero shear rate viscosity versus molecular weight that is prominent on a log-log plot is attributed to the onset of entanglements between chains since it usually

More information

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain , L. Tiator and M. Ostrick Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Germany E-mail: kashevar@uni-mainz.de, tiator@uni-mainz.de, ostrick@uni-mainz.de A phenomenological analysis of

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

Available online at ScienceDirect. Physics Procedia 57 (2014 ) 82 86

Available online at  ScienceDirect. Physics Procedia 57 (2014 ) 82 86 Available online at www.sciencedirect.com ScienceDirect Physics Procedia 57 (2014 ) 82 86 27th Annual CSP Workshops on Recent Developments in Computer Simulation Studies in Condensed Matter Physics, CSP

More information

Supporting Information

Supporting Information This journal is The Royal Society of Chemistry 013 Supporting Information Control over the Electrostatic Self-assembly of Nanoparticle Semiflexible Biopolyelectrolyte Complexes Li Shi, a,b Florent Carn,

More information

Curvature Distribution of Worm-like Chains in Two and Three Dimensions

Curvature Distribution of Worm-like Chains in Two and Three Dimensions Curvature Distribution of Worm-like Chains in Two and Three Dimensions Shay M. Rappaport, Shlomi Medalion and Yitzhak Rabin Department of Physics, Bar-Ilan University, Ramat-Gan 59, Israel arxiv:8.383v

More information

Methoden moderner Röntgenphysik II: Streuung und Abbildung

Methoden moderner Röntgenphysik II: Streuung und Abbildung . Methoden moderner Röntgenphysik II: Streuung und Abbildung Lecture 5 Vorlesung zum Haupt/Masterstudiengang Physik SS 2014 G. Grübel, M. Martins, E. Weckert Today: 1 st exercises!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

Supplementary Information for Observation of dynamic atom-atom correlation in liquid helium in real space

Supplementary Information for Observation of dynamic atom-atom correlation in liquid helium in real space 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 Supplementary Information for Observation of dynamic atom-atom correlation in liquid helium in real space Supplementary Note : Total PDF The total (snap-shot) PDF is obtained

More information

V = 2ze 2 n. . a. i=1

V = 2ze 2 n. . a. i=1 IITS: Statistical Physics in Biology Assignment # 3 KU Leuven 5/29/2013 Coulomb Interactions & Polymers 1. Flory Theory: The Coulomb energy of a ball of charge Q and dimension R in d spacial dimensions

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 27 Mar 1997

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 27 Mar 1997 arxiv:cond-mat/9703237v1 [cond-mat.dis-nn] 27 Mar 1997 Molecular Dynamics Computer Simulation of the Dynamics of Supercooled Silica J. Horbach, W. Kob 1 and K. Binder Institute of Physics, Johannes Gutenberg-University,

More information

Part III : M6 Polymeric Materials

Part III : M6 Polymeric Materials 16/1/004 Part III : M6 Polymeric Materials Course overview, motivations and objectives Isolated polymer chains Dr James Elliott 1.1 Course overview Two-part course building on Part IB and II First 6 lectures

More information

Glass-Transition and Side-Chain Dynamics in Thin Films: Explaining. Dissimilar Free Surface Effects for Polystyrene and Poly(methyl methacrylate)

Glass-Transition and Side-Chain Dynamics in Thin Films: Explaining. Dissimilar Free Surface Effects for Polystyrene and Poly(methyl methacrylate) Supporting Information for Glass-Transition and Side-Chain Dynamics in Thin Films: Explaining Dissimilar Free Surface Effects for Polystyrene and Poly(methyl methacrylate) David D. Hsu, Wenjie Xia, Jake

More information

Supplementary Information for Atomistic Simulation of Spinodal Phase Separation Preceding Polymer Crystallization

Supplementary Information for Atomistic Simulation of Spinodal Phase Separation Preceding Polymer Crystallization Supplementary Information for Atomistic Simulation of Spinodal Phase Separation Preceding Polymer Crystallization Richard H. Gee * Naida Lacevic and Laurence E. Fried University of California Lawrence

More information

Hydrogels in charged solvents

Hydrogels in charged solvents Hydrogels in charged solvents Peter Košovan, Christian Holm, Tobias Richter 27. May 2013 Institute for Computational Physics Pfaffenwaldring 27 D-70569 Stuttgart Germany Tobias Richter (ICP, Stuttgart)

More information

University of Groningen

University of Groningen University of Groningen Diagram of state of stiff amphiphilic macromolecules Markov, Vladimir A.; Vasilevskaya, Valentina V.; Khalatur, Pavel G.; ten Brinke, Gerrit; Khokhlov, Alexei R. Published in: Macromolecular

More information

There are self-avoiding walks of steps on Z 3

There are self-avoiding walks of steps on Z 3 There are 7 10 26 018 276 self-avoiding walks of 38 797 311 steps on Z 3 Nathan Clisby MASCOS, The University of Melbourne Institut für Theoretische Physik Universität Leipzig November 9, 2012 1 / 37 Outline

More information

) is the interaction energy between a pair of chain units in the state ψ i 1

) is the interaction energy between a pair of chain units in the state ψ i 1 Persistence Length, One Application of the Ising-Chain and the RIS Model. Local features of a polymer chain such as the chain persistence, and the pair correlation function, g(r), and the associated high-q

More information

Structure Analysis by Small-Angle X-Ray and Neutron Scattering

Structure Analysis by Small-Angle X-Ray and Neutron Scattering Structure Analysis by Small-Angle X-Ray and Neutron Scattering L. A. Feigin and D. I. Svergun Institute of Crystallography Academy of Sciences of the USSR Moscow, USSR Edited by George W. Taylor Princeton

More information

Statistical and hydrodynamic properties of topological polymers for various graphs showing enhanced short-range correlation

Statistical and hydrodynamic properties of topological polymers for various graphs showing enhanced short-range correlation arxiv:1607.08726v1 [cond-mat.soft] 29 Jul 2016 Statistical and hydrodynamic properties of topological polymers for various graphs showing enhanced short-range correlation Erica Uehara and Tetsuo Deguchi

More information

A Light Scattering Study of the Self-Assembly of Dendron Rod-Coil Molecules

A Light Scattering Study of the Self-Assembly of Dendron Rod-Coil Molecules 9730 J. Phys. Chem. B 2002, 106, 9730-9736 A Light Scattering Study of the Self-Assembly of Dendron Rod-Coil Molecules B. J. de Gans and S. Wiegand* Max Planck Institut für Polymerforschung, Ackermannweg

More information

Detection and visualization of physical knots in macromolecules

Detection and visualization of physical knots in macromolecules Physics Procedia Physics Procedia 00 (2010) 1 9 Physics Procedia 6 (2010) 117 125 www.elsevier.com/locate/procedia Detection and visualization of physical knots in macromolecules Peter Virnau Johannes

More information

The lattice model of polymer solutions

The lattice model of polymer solutions The lattice model of polymer solutions Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge February 25, 2009 1 The lattice model of polymer solutions In the last note, we

More information

Solution structure and dynamics of biopolymers

Solution structure and dynamics of biopolymers Solution structure and dynamics of biopolymers Atomic-detail vs. low resolution structure Information available at different scales Mobility of macromolecules in solution Brownian motion, random walk,

More information

Introduction to polymer physics Lecture 1

Introduction to polymer physics Lecture 1 Introduction to polymer physics Lecture 1 Boulder Summer School July August 3, 2012 A.Grosberg New York University Lecture 1: Ideal chains Course outline: Ideal chains (Grosberg) Real chains (Rubinstein)

More information

Scale-Free Enumeration of Self-Avoiding Walks on Critical Percolation Clusters

Scale-Free Enumeration of Self-Avoiding Walks on Critical Percolation Clusters Scale-Free Enumeration of Self-Avoiding Walks on Critical Percolation Clusters Niklas Fricke and Wolfhard Janke Institut für Theoretische Physik, Universität Leipzig November 29, 2013 Self-avoiding walk

More information

SELF-CONDENSING VINYL POLYMERIZATION: THEORETICAL ASPECTS AND APPLICATION TO GROUP TRANSFER POLYMERIZATION OF METHACRYLATES.

SELF-CONDENSING VINYL POLYMERIZATION: THEORETICAL ASPECTS AND APPLICATION TO GROUP TRANSFER POLYMERIZATION OF METHACRYLATES. SELF-CNDENSING VINYL PLYMERIZATIN: THERETICAL ASPECTS AND APPLICATIN T GRUP TRANSFER PLYMERIZATIN F METHACRYLATES. Peter. F. W. Simon, Wolfgang Radke, Deyue Yan, a) Axel H. E. Müller Institut für Physikalische

More information

First steps toward the construction of a hyperphase diagram that covers different classes of short polymer chains

First steps toward the construction of a hyperphase diagram that covers different classes of short polymer chains Cent. Eur. J. Phys. 12(6) 2014 421-426 DOI: 10.2478/s11534-014-0461-z Central European Journal of Physics First steps toward the construction of a hyperphase diagram that covers different classes of short

More information

Semiflexible Polymers in the Bulk and Confined by Planar Walls

Semiflexible Polymers in the Bulk and Confined by Planar Walls polymers Review Semiflexible Polymers in the Bulk and Confined by Planar Walls Sergei A. Egorov 1,2, *, Andrey Milchev 3 and Kurt Binder 2 1 Department of Chemistry, University of Virginia, Charlottesville,

More information

Diffusion of a chain : concentration effects

Diffusion of a chain : concentration effects Diffusion of a chain : concentration effects M. Daoud, G. Jannink To cite this version: M. Daoud, G. Jannink. Diffusion of a chain : concentration effects. Journal de Physique Lettres, 1980, 41 (9), pp.217220.

More information