Jacob Klein Science 323, 47, p. 2

Size: px
Start display at page:

Download "Jacob Klein Science 323, 47, p. 2"

Transcription

1 p. 1

2 Jacob Klein Science 323, 47, 2009 p. 2

3 BOTTLEBRUSH POLYMERS bond fluctuation model simulation SNAPSHOT Backbone chainlength N b = 131 grafting density σ = 1 side-chain length N = 6 p. 3

4 N b = 131 N = 12 σ = 1 p. 4

5 N b = 131 N = 24 σ = 1 p. 5

6 N b = 131 N = 48 σ = 1 Varying the grafting density σ and the chain length N of the side chains the STIFFNESS and hence the PERSISTENCE LENGTH of these WORMLIKE objects can be CONTROLLED! p. 6

7 LENGTH SCALES IN BOTTLEBRUSH POLYMERS L cc R e,bb coarsegrained view: flexible cylindrical worm" contour length L cc R cs lp (backbone) end-to-end distance R e,bb cross-sectional radius R cs ls persistence length l p lb R e atomistic view: backbone chain length N b backbone bond vector l b side-chain length N, bond vector l s side-chain end-to-end distance R e p. 7

8 p. 8

9 p. 9

10 p. 10

11 p. 11

12 p. 12

13 p. 13

14 < cos Θ(s) > POLYMERS IN DILUTE SOLUTION, GOOD SOLVENT CONDITIONS cos θ(s) = e-05 1e-06 1 N b s N b = 6400 N b = 3200 N b = 1600 N b = 800 N b = 400 N b s i=1 slope = s cos θ i,i+s s β, s s N b β = 2(1 ν) (ν 0.588) L. Schäfer et al. (1999) SAW model, simple cubic lattice PERM algorithm p. 14

15 p. 15

16 FLORY s LOCAL persistence length l p (k) = l b a k R e / a k 2 SELF-AVOIDING WALKS (good solvent conditions) Schäfer & Elsner (2004) 6 l p (k) l b = α [ k(nb k) N b ] 2ν 1 l p (k) N b = 6400 N b = 3200 N b = 1600 N b = 800 N b = k / N b l max p l p = l b 0 l b α(n b /4) 2ν 1, N b ds cos θ(s) does not exist, since cos θ(s) s 2(1 ν) decay too slowly p. 16

17 BOTTLEBRUSH POLYMERS (good solvent conditions) Schäfer-Elsner (2004) formula provides good fit! N b = 131 N = 48 N = 36 l p (k) l b = α [ ] 2ν 1 k(nb k) N b l p (k) / l b N = 24 N = 12 N = k p. 17

18 FLORY s LOCAL persistence length l p (k) for bottlebrush polymers l p (k) / l b N = k / N b N b good fit to l p(k) l b = α [ ] k(nb k) 2ν 1 obtain α! N b p. 18

19 prefactor α of the Schäfer-Elsner formula for BOTTLEBRUSH POLYMERS with side-chain length N = 24 α N b [ ] (Nb k)k 2ν 1 l p (k) = αl }{{} b N b measure of intrinsic stiffness" of semiflexible macromolecules under good solvent conditions p. 19

20 > / ( 2 l b N b 2 ν ) 2 < R e,b BOTTLEBRUSH-POLYMERS: END-TO-END DISTANCE SHOWS SAW-LIKE SCALING! possible definition of persistence length l p : Re,b 2 = 2l p l bnb 2ν σ = 1 N = 24 N = 18 N = 12 N = 6 N = 0 ( for Gaussian chains ν = 1/2 and l p = l p ) N b p. 20

21 p. 21

22 BOTTLEBRUSH-POLYMERS: END-TO-END DISTANCE SHOWS SAW-LIKE SCALING! > / ( 2 l b N b 2 ν ) 2 < R e,b σ = 1/2 N = 24 N = 18 N = 12 N = N b pre-asymptotic behavior: NON-GAUSSIAN, at variance with Netz & Andelman (2003) p. 22

23 SAW model + PERM p. 23

24 p. 24

25 p. 25

26 p. 26

27 p. 27

28 FURTHER EVIDENCE FOR THE LACK OF PREASYMPTOTIC GAUSSIAN BEHAVIOR: cos θ(s) = exp( sl b /l p ) 1 sl b l p <cos Θ(s)> N = 48 N = 36 N = 24 N = 12 N b = if one fits a function const. exp( sl b /l p ) to cos θ(s) for some intermediate range of s, the resulting length l p strongly depends on N b as well! s p. 28

29 STANDARD DEFINITION OF PERSISTENCE LENGTH APPLIED TO A BOTTLEBRUSH POLYMER DOES NOT DESCRIBE THEIR LOCAL INTRINSIC STIFFNESS, SINCE IT SYSTEMATICALLY INCREASES WITH N b 100 l p 10 N = 48 N = 24 N = 12 N = N b p. 29

30 p. 30

31 p. 31

32 S exp (q), S(q) B2: b400s62 b259s48 b195s48 b131s48 b99s48 b67s48 1e S exp (q), S(q) B4: b188s58 b259s24 b195s24 b131s24 b99s24 b67s24 1e q R g q R g p. 32

33 S exp (q), S(q) B1: b400s22 b259s12 b195s12 b131s12 b99s12 b67s12 1e S exp (q), S(q) B1: b400s22 b259s24 b195s24 b131s24 b99s24 b67s24 1e q R g q R g p. 33

34 qs(q) / (qs(q)) max q b =0.005 q b =0.01 q b =0.02 q b =0.03 q b =0.05 slope = -1 slope = -(1/ν-1) slope = -1/5 (q) max (qs(q)) max slope = -1/ q / q max l p p. 34

35 q* q* q* q* q* q* p. 35

36 SEARCH FOR HOLTZER PLATEAU IN KRATKY PLOTS qs(q) vs. q (SIMULATION for N b = 259, N = 24) m qs(q)/s cs(q) qs b (q) qs(q)/s cs (q) qs(q) q b259s24 S(q) total scattering from bottlebrush S b (q) scattering from BACKBONE ONLY S cs (q) cross-sectional scattering, computed from radial density profile S m cs (q) cross-sectional scattering expression, fitted to S(q)/S b (q) scattering wave number p. 36

37 SEARCH FOR HOLTZER PLATEAU in KRATKY PLOTS (SIMULATION) b259s48 N b = 259 N = m qs(q)/s cs(q) qs b (q) qs(q)/s cs (q) qs(q) q p. 37

38 ESTIMATION OF THE WAVENUMBER q DESCRIBING THE ONSET OF THE HOLTZER PLATEAU q S b (q) q N b = 131 N b = 195 N b = 259 N b = 387 N b = 515 N b = 771 side-chain length N = q N b = 1027 experiment on scattering from backbone only: Lecommandoux et al. (2002) only one value of N b! p. 38

39 WAVENUMBER q DESCRIBING ONSET OF HOLTZER PLATEAU no significant dependence on N b measure of intrinsic stiffness" but q is somewhat ill defined, because onset is gradual and NOT SHARP! 0.12 q* l p = 1/q l p l p from total end-to-end distance of the backbone N b p. 39

40 POLYMERS IN DILUTE SOLUTION, THETA SOLVENT cos θ(s) s 3/2, s s N b Shirvanyants et al. (2008) <cos Θ(s)> e-05 1e-06 N b = 6400 N b = 3200 N b = 1600 N b = 800 N b = s slope = -1.5 SAW model, simple cubic lattice energy ǫ is won if two monomers are nearest neighbors Θ-point for ǫ = k B T ln q θ, q θ = PERM algorithm p. 40

41 FLORY s LOCAL persistence length l p (k) = l b a k R e / a k 2 for SAW s at the THETA POINT 2 l p (k) R e = N b k=1 N b = 6400 N b = 3200 N b = 1600 N b = 800 N b = k / N b a k l p 1 N b l p (k) = N b k=1 N b k=1 N b i=1 l b cos θ ki N b = l b l p exists since s is finite dss 3/2 Gaussian chains: l p = l p! 0 ds cos θ(s), N b p. 41

Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment

Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment Jacob Klein Science 323, 47, 2009 Manfred Schmidt (Mainz) Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment http://www.blueberryforest.com Hsiao-Ping Hsu Institut für Physik, Johannes

More information

arxiv: v1 [cond-mat.soft] 11 Mar 2013

arxiv: v1 [cond-mat.soft] 11 Mar 2013 Estimation of Persistence Lengths of Semiflexible Polymers: Insight from Simulations Hsiao-Ping Hsu a, Wolfgang Paul b, and Kurt Binder a a Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger

More information

Appendix C - Persistence length 183. Consider an ideal chain with N segments each of length a, such that the contour length L c is

Appendix C - Persistence length 183. Consider an ideal chain with N segments each of length a, such that the contour length L c is Appendix C - Persistence length 183 APPENDIX C - PERSISTENCE LENGTH Consider an ideal chain with N segments each of length a, such that the contour length L c is L c = Na. (C.1) If the orientation of each

More information

Statistical Thermodynamics Exercise 11 HS Exercise 11

Statistical Thermodynamics Exercise 11 HS Exercise 11 Exercise 11 Release: 412215 on-line Return: 1112215 your assistant Discussion: 1512215 your tutorial room Macromolecules (or polymers) are large molecules consisting of smaller subunits (referred to as

More information

Standard Definitions of Persistence Length Do Not Describe the Local Intrinsic Stiffness of Real Polymer Chains

Standard Definitions of Persistence Length Do Not Describe the Local Intrinsic Stiffness of Real Polymer Chains 3094 Macromolecules 2010, 43, 3094 3102 DOI: 10.1021/ma902715e Standard Definitions of Persistence Length Do Not Describe the Local Intrinsic Stiffness of Real Polymer Chains Hsiao-Ping Hsu,*, Wolfgang

More information

A Monte Carlo simulation study of branched polymers

A Monte Carlo simulation study of branched polymers THE JOURNAL OF CHEMICAL PHYSICS 125, 204901 2006 A Monte Carlo simulation study of branched polymers Arun Yethiraj Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin,

More information

GEM4 Summer School OpenCourseWare

GEM4 Summer School OpenCourseWare GEM4 Summer School OpenCourseWare http://gem4.educommons.net/ http://www.gem4.org/ Lecture: Polymer Chains by Ju Li. Given August 16, 2006 during the GEM4 session at MIT in Cambridge, MA. Please use the

More information

Polymer Solution Thermodynamics:

Polymer Solution Thermodynamics: Polymer Solution Thermodynamics: 3. Dilute Solutions with Volume Interactions Brownian particle Polymer coil Self-Avoiding Walk Models While the Gaussian coil model is useful for describing polymer solutions

More information

Polymer Simulations with Pruned-Enriched Rosenbluth Method I

Polymer Simulations with Pruned-Enriched Rosenbluth Method I Polymer Simulations with Pruned-Enriched Rosenbluth Method I Hsiao-Ping Hsu Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany Polymer simulations with PERM I p. 1 Introduction Polymer:

More information

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1 D E P A R T M E N T O F M A T E R I A L S S C I E N C E A N D E N G I N E E R I N G M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y 3.014 Materials Laboratory Fall 2008 Amorphous Polymers:

More information

Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles

Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles THE JOURNAL OF CHEMICAL PHYSICS 143, 243102 (2015) Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles Aiqun Huang, 1,a) Hsiao-Ping Hsu, 2,3,b) Aniket

More information

Part 8. Special Topic: Light Scattering

Part 8. Special Topic: Light Scattering Part 8. Special Topic: Light Scattering Light scattering occurs when polarizable particles in a sample are placed in the oscillating electric field of a beam of light. The varying field induces oscillating

More information

Scale-Free Enumeration of Self-Avoiding Walks on Critical Percolation Clusters

Scale-Free Enumeration of Self-Avoiding Walks on Critical Percolation Clusters Scale-Free Enumeration of Self-Avoiding Walks on Critical Percolation Clusters Niklas Fricke and Wolfhard Janke Institut für Theoretische Physik, Universität Leipzig November 29, 2013 Self-avoiding walk

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

) is the interaction energy between a pair of chain units in the state ψ i 1

) is the interaction energy between a pair of chain units in the state ψ i 1 Persistence Length, One Application of the Ising-Chain and the RIS Model. Local features of a polymer chain such as the chain persistence, and the pair correlation function, g(r), and the associated high-q

More information

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics Proteins polymer molecules, folded in complex structures Konstantin Popov Department of Biochemistry and Biophysics Outline General aspects of polymer theory Size and persistent length of ideal linear

More information

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK Polymer Dynamics Tom McLeish Durham University, UK (see Adv. Phys., 51, 1379-1527, (2002)) Boulder Summer School 2012: Polymers in Soft and Biological Matter Schedule Coarse-grained polymer physics Experimental

More information

End-to-end length of a stiff polymer

End-to-end length of a stiff polymer End-to-end length of a stiff polymer Jellie de Vries April 21st, 2005 Bachelor Thesis Supervisor: dr. G.T. Barkema Faculteit Btawetenschappen/Departement Natuur- en Sterrenkunde Institute for Theoretical

More information

Polymer solutions and melts

Polymer solutions and melts Course M6 Lecture 9//004 (JAE) Course M6 Lecture 9//004 Polymer solutions and melts Scattering methods Effects of excluded volume and solvents Dr James Elliott Online teaching material reminder Overheads

More information

V(φ) CH 3 CH 2 CH 2 CH 3. High energy states. Low energy states. Views along the C2-C3 bond

V(φ) CH 3 CH 2 CH 2 CH 3. High energy states. Low energy states. Views along the C2-C3 bond Example V(φ): Rotational conformations of n-butane C 3 C C C 3 Potential energy of a n-butane molecule as a function of the angle φ of bond rotation. V(φ) Potential energy/kj mol -1 0 15 10 5 eclipse gauche

More information

arxiv: v1 [cond-mat.soft] 7 Jul 2011

arxiv: v1 [cond-mat.soft] 7 Jul 2011 A fast Monte Carlo algorithm for studying bottle-brush polymers Hsiao-Ping Hsu and Wolfgang Paul Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 5599 Mainz, Germany Theoretische

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 16 Jan 2005

arxiv:cond-mat/ v2 [cond-mat.soft] 16 Jan 2005 arxiv:cond-mat/412617v2 [cond-mat.soft] 16 Jan 25 On the behaviour of short Kratky-Porod chain Semjon Stepanow Martin-Luther-Universität Halle, Fachbereich Physik, D-699 Halle, Germany PACS numbers: 5.4.-a,

More information

Simulation of Coarse-Grained Equilibrium Polymers

Simulation of Coarse-Grained Equilibrium Polymers Simulation of Coarse-Grained Equilibrium Polymers J. P. Wittmer, Institut Charles Sadron, CNRS, Strasbourg, France Collaboration with: M.E. Cates (Edinburgh), P. van der Schoot (Eindhoven) A. Milchev (Sofia),

More information

Introduction to polymer physics Lecture 1

Introduction to polymer physics Lecture 1 Introduction to polymer physics Lecture 1 Boulder Summer School July August 3, 2012 A.Grosberg New York University Lecture 1: Ideal chains Course outline: Ideal chains (Grosberg) Real chains (Rubinstein)

More information

Chapter 2 Polymer Physics Concentrated Solutions and Melts

Chapter 2 Polymer Physics Concentrated Solutions and Melts Chapter 2 Polymer Physics Concentrated Solutions and Melts Chapter 1 discussed the statistical thermodynamics of an isolated polymer chain in a solvent. The conformation of an isolated polymer coil in

More information

EQUILIBRIUM PROPERTIES OF POLYMER SOLUTIONS AT SURFACES: MONTE CARLO SIMULATIONS

EQUILIBRIUM PROPERTIES OF POLYMER SOLUTIONS AT SURFACES: MONTE CARLO SIMULATIONS EQUILIBRIUM PROPERTIES OF POLYMER SOLUTIONS AT SURFACES: MONTE CARLO SIMULATIONS By JASON DE JOANNIS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

University of Groningen. Conformational properties of comb copolymer brushes de Jong, Johannes Rinse

University of Groningen. Conformational properties of comb copolymer brushes de Jong, Johannes Rinse University of Groningen Conformational properties of comb copolymer brushes de Jong, Johannes Rinse IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite

More information

Part III : M6 Polymeric Materials

Part III : M6 Polymeric Materials 16/1/004 Part III : M6 Polymeric Materials Course overview, motivations and objectives Isolated polymer chains Dr James Elliott 1.1 Course overview Two-part course building on Part IB and II First 6 lectures

More information

Perfect mixing of immiscible macromolecules at fluid interfaces

Perfect mixing of immiscible macromolecules at fluid interfaces Perfect mixing of immiscible macromolecules at fluid interfaces Sergei S. Sheiko, 1* Jing Zhou, 1 Jamie Boyce, 1 Dorota Neugebauer, 2+ Krzysztof Matyjaszewski, 2 Constantinos Tsitsilianis, 4 Vladimir V.

More information

Roland R. Netz Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany

Roland R. Netz Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany 282 2 Electrochemical Double Layers 2.7 Polyelectrolytes in Solution and at Surfaces Roland R. Netz Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany David Andelman School of Physics and

More information

3 Biopolymers Uncorrelated chains - Freely jointed chain model

3 Biopolymers Uncorrelated chains - Freely jointed chain model 3.4 Entropy When we talk about biopolymers, it is important to realize that the free energy of a biopolymer in thermal equilibrium is not constant. Unlike solids, biopolymers are characterized through

More information

Single Polymer Dynamics for Molecular Rheology. Abstract

Single Polymer Dynamics for Molecular Rheology. Abstract Single Polymer Dynamics for Molecular Rheology Charles M. Schroeder Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

Statistical and hydrodynamic properties of topological polymers for various graphs showing enhanced short-range correlation

Statistical and hydrodynamic properties of topological polymers for various graphs showing enhanced short-range correlation arxiv:1607.08726v1 [cond-mat.soft] 29 Jul 2016 Statistical and hydrodynamic properties of topological polymers for various graphs showing enhanced short-range correlation Erica Uehara and Tetsuo Deguchi

More information

This page intentionally left blank

This page intentionally left blank POLYMER SOLUTIONS This page intentionally left blank POLYMER SOLUTIONS An Introduction to Physical Properties IWAO TERAOKA Polytechnic University Brooklyn, New York WILEY- INTERSCIENCE A JOHN WILEY & SONS,

More information

Introduction. Model DENSITY PROFILES OF SEMI-DILUTE POLYMER SOLUTIONS NEAR A HARD WALL: MONTE CARLO SIMULATION

Introduction. Model DENSITY PROFILES OF SEMI-DILUTE POLYMER SOLUTIONS NEAR A HARD WALL: MONTE CARLO SIMULATION 169 DENSITY PROFILES OF SEMI-DILUTE POLYMER SOLUTIONS NEAR A HARD WALL: MONTE CARLO SIMULATION WAN Y. SHIH, WEI-HENG SHIH and ILHAN A. AKSAY Dept. of Materials Science and Engineering University of Washington,

More information

The Odijk Regime in Slits

The Odijk Regime in Slits The Odijk Regime in Slits Douglas R. Tree, Wesley F. Reinhart, and Kevin D. Dorfman Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United

More information

Swelling and Collapse of Single Polymer Molecules and Gels.

Swelling and Collapse of Single Polymer Molecules and Gels. Swelling and Collapse of Single Polymer Molecules and Gels. Coil-Globule Transition in Single Polymer Molecules. the coil-globule transition If polymer chains are not ideal, interactions of non-neighboring

More information

Chapter 7. Entanglements

Chapter 7. Entanglements Chapter 7. Entanglements The upturn in zero shear rate viscosity versus molecular weight that is prominent on a log-log plot is attributed to the onset of entanglements between chains since it usually

More information

Mean end-to-end distance of branched polymers

Mean end-to-end distance of branched polymers J. Phys. A: Math. Gen., Vol. 12, No. 9, 1979. Printed in Great Britain LETTER TO THE EDITOR Mean end-to-end distance of branched polymers S Redner Department of Physics, Boston University, Boston, Mass.

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001 Chemical Engineering 160/260 Polymer Science and Engineering Lecture 14: Amorphous State February 14, 2001 Objectives! To provide guidance toward understanding why an amorphous polymer glass may be considered

More information

arxiv:cond-mat/ v1 [cond-mat.soft] 22 Mar 2002

arxiv:cond-mat/ v1 [cond-mat.soft] 22 Mar 2002 Corrections to Scaling in the Hydrodynamic Properties of Dilute Polymer Solutions Burkhard Dünweg, Dirk eith, Martin Steinhauser, and Kurt Kremer Max Planck Institut für Polymerforschung Ackermannweg,

More information

Polymers. Hevea brasiilensis

Polymers. Hevea brasiilensis Polymers Long string like molecules give rise to universal properties in dynamics as well as in structure properties of importance when dealing with: Pure polymers and polymer solutions & mixtures Composites

More information

V = 2ze 2 n. . a. i=1

V = 2ze 2 n. . a. i=1 IITS: Statistical Physics in Biology Assignment # 3 KU Leuven 5/29/2013 Coulomb Interactions & Polymers 1. Flory Theory: The Coulomb energy of a ball of charge Q and dimension R in d spacial dimensions

More information

Dynamic Light Scattering Study of Polymer Chain Dimensions

Dynamic Light Scattering Study of Polymer Chain Dimensions DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING MASSACHUSETTS INSTITUTE OF TECHNOLOGY 3.014 Laboratory Module A, Fall 2009 Dynamic Light Scattering Study of Polymer Chain Dimensions Professor Geoffrey

More information

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 4.0 Polymers at interfaces

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 4.0 Polymers at interfaces Chemistry C302-2006: Polymers Section Dr. Edie Sevick, Research School of Chemistry, ANU 4.0 Polymers at interfaces In this section, we begin to investigate the conformation at interfaces, including multiplechains

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

Coarse-Grained Models!

Coarse-Grained Models! Coarse-Grained Models! Large and complex molecules (e.g. long polymers) can not be simulated on the all-atom level! Requires coarse-graining of the model! Coarse-grained models are usually also particles

More information

Supporting Information

Supporting Information Supporting Information Design of End-to-End Assembly of Side-Grafted Nanorods in a Homopolymer Matrix Yulong Chen 1, Qian Xu 1, Yangfu Jin 1, Xin Qian 1 *, Li Liu 2, Jun Liu 2 *, and Venkat Ganesan 3 *

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

Conformations and Dynamics of Semi-Flexible Polymers

Conformations and Dynamics of Semi-Flexible Polymers University of Central Florida Electronic Theses and Dissertations Doctoral Dissertation (Open Access) Conformations and Dynamics of Semi-Flexible Polymers 2016 Aiqun Huang University of Central Florida

More information

Semiflexible Polymers in the Bulk and Confined by Planar Walls

Semiflexible Polymers in the Bulk and Confined by Planar Walls polymers Review Semiflexible Polymers in the Bulk and Confined by Planar Walls Sergei A. Egorov 1,2, *, Andrey Milchev 3 and Kurt Binder 2 1 Department of Chemistry, University of Virginia, Charlottesville,

More information

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I)

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) Overview: General Properties of Macromolecules in Solution Molar Mass Dependencies Molar Mass Distributions Generalized Ratios Albena Lederer Leibniz-Institute

More information

Curvature Distribution of Worm-like Chains in Two and Three Dimensions

Curvature Distribution of Worm-like Chains in Two and Three Dimensions Curvature Distribution of Worm-like Chains in Two and Three Dimensions Shay M. Rappaport, Shlomi Medalion and Yitzhak Rabin Department of Physics, Bar-Ilan University, Ramat-Gan 59, Israel arxiv:8.383v

More information

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

Electronic Supplementary Information. Solution Properties of Imidazolium-Based Amphiphilic Polyelectrolyte. in Pure- and Mixed-Solvent Media

Electronic Supplementary Information. Solution Properties of Imidazolium-Based Amphiphilic Polyelectrolyte. in Pure- and Mixed-Solvent Media Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2019 Electronic Supplementary Information Solution Properties of Imidazolium-Based Amphiphilic

More information

Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix

Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix Marcel Hellmann BIOMS Group Cellular Biophysics, Deutsches Krebsforschungszentrum (DKFZ) Theoretical Biophysics Group,

More information

MAE 545: Lecture 4 (9/29) Statistical mechanics of proteins

MAE 545: Lecture 4 (9/29) Statistical mechanics of proteins MAE 545: Lecture 4 (9/29) Statistical mechanics of proteins Ideal freely jointed chain N identical unstretchable links (Kuhn segments) of length a with freely rotating joints ~r 2 a ~r ~R ~r N In first

More information

Question 1. Identify the sugars below by filling in the table below (except shaded areas). Use the page or a separate sheet

Question 1. Identify the sugars below by filling in the table below (except shaded areas). Use the page or a separate sheet Question 1. Identify the sugars below by filling in the table below (except shaded areas). Use the page or a separate sheet Sugar name aworth projection(s) of the corresponding pyranose form (Six membered

More information

Hydrodynamic Properties of Dilute S. Polymer Chemistry, III)

Hydrodynamic Properties of Dilute S. Polymer Chemistry, III) Hydrodynamic Properties of Dilute S TitlePolymers. (II). Twisted Ring Polyme Polymer Chemistry, III) Author(s) Kurata, Michio Citation Bulletin of the Institute for Chemi University (1966), 44(2): 150-154

More information

Olle Inganäs: Polymers structure and dynamics. Polymer physics

Olle Inganäs: Polymers structure and dynamics. Polymer physics Polymer physics Polymers are macromolecules formed by many identical monomers, connected through covalent bonds, to make a linear chain of mers a polymer. The length of the chain specifies the weight of

More information

Polyelectrolyte and polyampholyte. effects in synthetic and biological

Polyelectrolyte and polyampholyte. effects in synthetic and biological arxiv:1103.1908v1 [cond-mat.soft] 9 Mar 2011 Chapter 4 Polyelectrolyte and polyampholyte effects in synthetic and biological macromolecules Ngo Minh Toan, Bae-Yeun Ha and D. Thirumalai 1 2 CHAPTER 4. PE

More information

Polymers Dynamics by Dielectric Spectroscopy

Polymers Dynamics by Dielectric Spectroscopy Polymers Dynamics by Dielectric Spectroscopy What s a polymer bulk? A condensed matter system where the structural units are macromolecules Polymers Shape of a Macromolecule in the Bulk Flory's prediction

More information

This is a repository copy of Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts.

This is a repository copy of Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts. This is a repository copy of Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/57/

More information

Lab Week 4 Module α 3. Polymer Conformation. Lab. Instructor : Francesco Stellacci

Lab Week 4 Module α 3. Polymer Conformation. Lab. Instructor : Francesco Stellacci 3.014 Materials Laboratory Dec. 9 th Dec.14 th, 2004 Lab Week 4 Module α 3 Polymer Conformation Lab. Instructor : Francesco Stellacci OBJECTIVES 9 Review random walk model for polymer chains 9 Introduce

More information

On the size and shape of self-assembled micelles

On the size and shape of self-assembled micelles On the size and shape of self-assembled micelles Peter H. Nelson, Gregory C. Rutledge, and T. Alan Hatton a) Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

More information

Fluctuating Elastic Filaments Under Distributed Loads

Fluctuating Elastic Filaments Under Distributed Loads Fluctuating Elastic Filaments Under Distributed Loads Tianxiang Su, Prashant K. Purohit Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 94, USA.

More information

Lecture 8. Polymers and Gels

Lecture 8. Polymers and Gels Lecture 8 Polymers and Gels Variety of polymeric materials Polymer molecule made by repeating of covalently joint units. Many of physical properties of polymers have universal characteristic related to

More information

arxiv: v1 [math.pr] 10 Nov 2017

arxiv: v1 [math.pr] 10 Nov 2017 arxiv:7.43v math.pr] Nov 7 Convergence of the Freely Rotating Chain to the Kratky-Porod Model of Semi-flexible Polymers Philip Kilanowski, Peter March, Marko Šamara June 8, 8 Abstract The freely rotating

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/314/5801/1001/dc1 Supporting Online Material for Direct Measurement of the Full, Sequence-Dependent Folding Landscape of a Nucleic Acid Michael T. Woodside, Peter C.

More information

SUPPORTING INFORMATION. for. Length. E. Dormidontova b and Olga E. Philippova*,a

SUPPORTING INFORMATION. for. Length. E. Dormidontova b and Olga E. Philippova*,a Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2018 SUPPORTIN INFORMATION for rowth of Wormlike Surfactant Micelles Induced by Embedded Polymer:

More information

Chem728 Spr. 12 page 1 2/29/12. Assignment 2 Estimates of Hydrodynamic Radii from Dynamic Light Scattering Data. ANSWERS

Chem728 Spr. 12 page 1 2/29/12. Assignment 2 Estimates of Hydrodynamic Radii from Dynamic Light Scattering Data. ANSWERS Chem728 Spr. 12 page 1 2/29/12 Assignment 2 Estimates of Hydrodynamic Radii from Dynamic Light Scattering Data. ANSWERS Objective: Analyze experimental correlation functions of scattered light to determine

More information

The lattice model of polymer solutions

The lattice model of polymer solutions The lattice model of polymer solutions Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge February 25, 2009 1 The lattice model of polymer solutions In the last note, we

More information

Chapter 4 Polymer solutions

Chapter 4 Polymer solutions Chapter 4 Polymer solutions 4.1 Introduction Solution: any phase containing more than one component.(gas, liquid or solid) Polymer solution is important: Classical analyses of polymers are conducted on

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Faculty of math and natural science. Universty of Split. Kratky-Porod model. Nataša Vučemilovid-Alagid. February, 2013.

Faculty of math and natural science. Universty of Split. Kratky-Porod model. Nataša Vučemilovid-Alagid. February, 2013. Faculty of math and natural science Universty of Split Kratky-Porod model Nataša Vučemilovid-Alagid February, 2013. Table of contents 1.Introduction:... 3 1. DNA:... 4 2. Models of polymer elasticity:...

More information

Lattice protein models

Lattice protein models Lattice protein models Marc R. Roussel epartment of Chemistry and Biochemistry University of Lethbridge March 5, 2009 1 Model and assumptions The ideas developed in the last few lectures can be applied

More information

Aggregation of semiflexible polymers under constraints

Aggregation of semiflexible polymers under constraints Aggregation of semiflexible polymers under constraints Johannes Zierenberg, Marco Mueller, Philipp Schierz, Martin Marenz and Wolfhard Janke Institut für Theoretische Physik Universität Leipzig, Germany

More information

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 3.0 The size of chains in good and poor solvent conditions

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 3.0 The size of chains in good and poor solvent conditions Chemistry C3102-2006: Polymers Section Dr. Edie Sevick, Research School of Chemistry, ANU 3.0 The size of chains in good and poor solvent conditions Obviously, the ideal chain is a simple, first approximate

More information

8.592J HST.452J: Statistical Physics in Biology

8.592J HST.452J: Statistical Physics in Biology Assignment # 4 8.592J HST.452J: Statistical Physics in Biology Coulomb Interactions 1. Flory Theory: The Coulomb energy of a ball of charge Q and dimension R in d spacial dimensions scales as Q 2 E c.

More information

Isotropic-Nematic Behaviour of Semiflexible Polymers in the Bulk and under Confinement

Isotropic-Nematic Behaviour of Semiflexible Polymers in the Bulk and under Confinement Isotropic-Nematic Behaviour of Semiflexible Polymers in the Bulk and under Confinement S. Egorov 1, A. Milchev 2, P. Virnau 2 and K. Binder 2 1 University of Virginia 2 University of Mainz Outline Microscopic

More information

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber Scaling Theory Roger Herrigel Advisor: Helmut Katzgraber 7.4.2007 Outline The scaling hypothesis Critical exponents The scaling hypothesis Derivation of the scaling relations Heuristic explanation Kadanoff

More information

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution page 1 of 7 EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December 2013 Suggested resolution Exercise 1. [total: 25 p] a) [t: 5 p] Describe the bonding [1.5 p] and the molecular orbitals [1.5 p] of the ethylene

More information

There are self-avoiding walks of steps on Z 3

There are self-avoiding walks of steps on Z 3 There are 7 10 26 018 276 self-avoiding walks of 38 797 311 steps on Z 3 Nathan Clisby MASCOS, The University of Melbourne Institut für Theoretische Physik Universität Leipzig November 9, 2012 1 / 37 Outline

More information

Rudiments of Polymer Physics

Rudiments of Polymer Physics Rudiments of Polymer Physics Justin Bois California Institute of Technology Student of Niles Pierce and Zhen-Gang Wang 4 July, Rudiments of Polymer Physics 1 1 Introduction A polymer is a chain of several

More information

Eukaryotic DNA has several levels of organization.

Eukaryotic DNA has several levels of organization. Background Eukaryotic DNA has several levels of organization. DNA is wound around nucleosomes. Nucleosomes are organized into 30-nm chromatin fibers. The fibers form loops of different sizes. These looped

More information

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators . Polymers.1. Traditional and modern applications.. From chemistry to statistical description.3. Polymer solutions and polymer blends.4. Amorphous polymers.5. The glass transition.6. Crystalline polymers.7.

More information

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 5.0 Thermodynamics of Polymer Solutions

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 5.0 Thermodynamics of Polymer Solutions Chemistry C3102-2006: Polymers Section Dr. Edie Sevick, Research School of Chemistry, AU 5.0 Thermodynamics of Polymer Solutions In this section, we investigate the solubility of polymers in small molecule

More information

Size exclusion chromatography of branched polymers: Star and comb polymers

Size exclusion chromatography of branched polymers: Star and comb polymers Macromol. Theory Simul. 8, 513 519 (1999) 513 Size exclusion chromatography of branched polymers: Star and comb polymers Hidetaka Tobita*, Sadayuki Saito Department of Materials Science and Engineering,

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL Systematic Coarse-Grained Modeling of Complexation between Small Interfering RNA and Polycations Zonghui Wei 1 and Erik Luijten 1,2,3,4,a) 1 Graduate Program in Applied Physics, Northwestern

More information

arxiv: v1 [cond-mat.soft] 4 Jun 2013

arxiv: v1 [cond-mat.soft] 4 Jun 2013 arxiv:1306.0749v1 [cond-mat.soft] 4 Jun 2013 Molecular dynamics simulations of single-component bottle-brush polymers with a flexible backbone under poor solvent conditions Nikolaos G Fytas 1 and Panagiotis

More information

Semiflexible Chains at Surfaces: Worm-Like Chains and beyond

Semiflexible Chains at Surfaces: Worm-Like Chains and beyond polymers Review Semiflexible Chains at Surfaces: Worm-Like Chains and beyond Jörg Baschnagel 1, Hendrik Meyer 1, Joachim Wittmer 1, Igor Kulić 1, Hervé Mohrbach 1,2, Falko Ziebert 1,3, Gi-Moon Nam 1,4,,

More information

Polymer Collapse, Protein Folding, and the Percolation Threshold

Polymer Collapse, Protein Folding, and the Percolation Threshold Polymer Collapse, Protein Folding, and the Percolation Threshold HAGAI MEIROVITCH University of Pittsburgh, School of Medicine, Center for Computational Biology and Bioinformatics (CCBB), Suite 601 Kaufmann

More information

IUPAC Recommendations

IUPAC Recommendations Pure Appl. Chem. 015; 87(1): 71 10 IUPAC Recommendations Robert Stepto*, Taihyun Chang, Pavel Kratochvíl, Michael Hess, Kazuyuki Horie a, Takahiro Sato and Jiří Vohlídal Definitions of terms relating to

More information

arxiv: v1 [cond-mat.stat-mech] 4 Feb 2008

arxiv: v1 [cond-mat.stat-mech] 4 Feb 2008 Exact Solution to Ideal Chain with Fixed Angular Momentum J. M. Deutsch Department of Physics, University of California, Santa Cruz, CA 9564. arxiv:8.486v1 [cond-mat.stat-mech] 4 Feb 8 (Dated: February

More information

Polymer Theory: Freely Jointed Chain

Polymer Theory: Freely Jointed Chain Polymer Theory: Freely Jointed Chain E.H.F. February 2, 23 We ll talk today about the most simple model for a single polymer in solution. It s called the freely jointed chain model. Each monomer occupies

More information

Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks

Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2018 Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks Tom Golde, 1 Constantin

More information

Adsorption versus Depletion of polymer solutions Self-Similar Adsorption profile Tails and Loops Adsorption Kinetics Summary. Polymer Adsorption

Adsorption versus Depletion of polymer solutions Self-Similar Adsorption profile Tails and Loops Adsorption Kinetics Summary. Polymer Adsorption Polymer Adsorption J.F. Joanny Physico-Chimie Curie Institut Curie APS March meeting/ PGG Symposium Outline 1 Adsorption versus Depletion of polymer solutions Single Chain Adsorption Adsorption and Depletion

More information

Polymer Chains. Ju Li. GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA

Polymer Chains. Ju Li. GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA Polymer Chans Ju L GEM4 Summer School 006 Cell and Molecular Mechancs n BoMedcne August 7 18, 006, MIT, Cambrdge, MA, USA Outlne Freely Jonted Chan Worm-Lke Chan Persstence Length Freely Jonted Chan (FJC)

More information

Polymer Science. Prof. Dr. J.P. Rabe and Prof. Dr. I. Sokolov

Polymer Science. Prof. Dr. J.P. Rabe and Prof. Dr. I. Sokolov Polymer Science Prof. Dr. J.P. Rabe and Prof. Dr. I. Sokolov June 30, 2004 ii Contents 1 Polymer Physics 3 1.1 Polymer Physics in a nutshell.................. 4 1.2 Ideal chains............................

More information