EE 508 Lecture 15. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

Size: px
Start display at page:

Download "EE 508 Lecture 15. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject"

Transcription

1 EE 508 Lecture 15 Filter Transformations Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

2 Review from Last Time Thompson and Bessel pproximations Use of Bessel Filters: X I (s) X OUT (s) T( s) -sh T( s ) = e T( j ) = 1 ( ) T j = -h τ G = h It is challenging to build filters with a constant delay filter with a constant group delay and unity magnitude introduces a constant delay Bessel filters are filters that are used to approximate a constant delay Bessel filters are attractive for introducing constant delays in digital systems Some authors refer to Bessel filters as Delay Filters n ideal delay filter would - introduce a time-domain shift of a step input by the group delay - introduce a time-domain shift each spectral component by the group delay - introduce a time-domain shift of a square wave by the group delay

3 Review from Last Time Filter Transformations ( ) ( ) = Tf( s) T( s ) s f s T ( s) T s ( ) Claim: If the imaginary axis in the s-plane is mapped to the imaginary axis in the s-plane with a variable mapping function, the basic shape of the function T(s) will be preserved in the function F(T(s)) but the frequency axis may be warped and/or folded in the magnitude domain Preserving basic shape, in this context, constitutes maintaining features in the magnitude response of F(T(s)) that are in T(s) including, but not limited to, the peak amplitude, number of ripples, peaks of ripples,

4 Review from Last Time LP to BP Filter Transformations ( ) TLP ( s ) s f s TBP ( s) BP ( ) = LP ( ( )) T s T f s TLP ( j) TBP ( j) Lowpass Bandpass Will consider rational fraction mappings ( ) f s = m T i=0 n T i=0 a s Ti b s Ti i i

5 Review from Last Time Standard LP to BP Transformation apping Strategy: s-domain map s=0 to s= j1 map s=j1 to s=j B map s= j1 to s= j T LP (f(s)) -domain map =0 to =1 map =1 to = B map = 1 to = Consider variable mapping ( ) f s = a s + a s+a b s+b T T1 T0 T1 T0 With this mapping, there are 5 D.O.F and 3 mathematical constraints and the additional constraint that the Im axis maps to the Im axis Will now show that the following mapping will meet these constraints ( ) f s s+1 = or equivalently s BW s s+1 s BW This is the lowest-order mapping that will meet these constrains

6 Review from Last Time Standard LP to BP Transformation TLP ( j) s s+1 s BW TBP ( j)

7 Standard LP to BP Transformation Frequency and s-domain appings - Denormalized (subscript variable in LP approximation for notational convenience) s X s+ s BW s X X s+ s BW - BW ( ) s BW± BW s -4 X X s BW ± BW 4 ( ) + X X Exercise: Resolve the dimensional consistency in the last equation

8 Standard LP to BP Transformation Frequency and s-domain appings - Denormalized (subscript variable in LP approximation for notational convenience) T LP (s x ) s s W s X s+1 s BW s X s+ s BW T BP (s) s s+1 s BW s s W ll three approaches give same approximation Which is most practical to use? Often none of them!

9 Standard LP to BP Transformation Frequency and s-domain appings - Denormalized (subscript variable in LP approximation for notational convenience) s X s+1 s BW BP Often most practical to synthesize directly from the T BP and then do the frequency scaling of components at the circuit level rather than at the approximation level

10 Standard LP to BP Transformation Frequency and s-domain appings (subscript variable in LP approximation for notational convenience) Poles and Zeros of the BP approximations s X f s+ 1 s BW solving for s s ( ) 0 T p = LP x ( ) s BW± BW s -4 1 f X X ( ) = ( ) T s T f s BP LP ( ) TLP ( f( p )) = 0 ( ) ( ) T p T f p BP = LP ( ) = 0 Since this relationship maps the complex plane to the complex plane, it also maps the poles and zeros of the LP approximation to the poles and zeros of the BP approximation

11 Standard LP to BP Transformation Pole appings Claim: With a variable mapping transform, the variable mapping naturally defines the mapping of the poles of the transformed function p X p+1 p BW s X s+1 s BW p ( ) p BW± BW p -4 X X Exercise: Resolve the dimensional consistency in the last equation

12 Standard LP to BP Transformation Pole appings p ( ) p BW± BW p -4 X X {,Q } 0BPH LBPH {,Q } 0BPL LBPL {,Q } 0LP LP Image of the cc pole pair is the two pairs of poles

13 Standard LP to BP Transformation Pole appings {,Q } 0BPH LBPH {,Q } 0BPL LBPL Im Im {,Q } 0LP LP Re Re Can show that the upper hp pole maps to one upper hp pole and one lower hp pole as shown. Corresponding mapping of the lower hp pole is also shown

14 Standard LP to BP Transformation Pole appings p ( ) p BW± BW p -4 X X Im Im Re Re multipliity 6 ote doubling of poles, addition of zeros, and likely Q enhancement

15 LP to BP Transformation Claim: Other variable mapping transforms exist that satisfy the imaginary axis mapping properties needed to obtain the LP to BP transformation but are seldom, if ever, discussed. The Standard LP to BP transform Is by far the most popular and most authors treat it as if it is unique. s X f(s)

16 LP to BP Transformation Pole Q of BP pproximations T ( j ) T ( j) BP LP BW = - = H H L Consider a pole in the LP approximation characterized by { 0LP,Q LP } It can be shown that the corresponding BP poles have the same Q L {,Q } 0LP LP Im {,Q } 0BPH LBPH {,Q } 0BPL LBPL Im Re Re

17 Pole Q of BP pproximations LP to BP Transformation 1 TLP ( j) TBP ( j) BW {,Q } 0BPH BPH {,Q } 0BPL BPL 1 BW = - = H H L L L H {,Q } 0LP LP Define: BW δ = It can be shown that 0LP Q Q = Q = LP BPL BPH δ δ δ QLP For δ small, It can be shown that 0BP Q BP Q δ LP Q BP Q BP = δ ± δ 4 QLP Q LP ote for δ small, Q BP can get very large

18 LP to BP Transformation Pole Q of BP pproximations BW δ = 0LP Q Q = Q = LP BPL BPH δ δ δ QLP

19 LP to BP Transformation Pole locations vs Q LP and δ BW δ = 0LP

20 LP to BP Transformation 1 TLP ( j) TBP ( j) BW 1 L H Classical BP pproximations Butterworth Chebyschev Elliptic Bessel Obtained by the LP to BP transformation of the corresponding LP approximations

21 Standard LP to BP Transformation s+1 s s BW Standard LP to BP transform is a variable mapping transform aps j axis to j axis aps LP poles to BP poles Preserves basic shape but warps frequency axis Doubles order Pole Q of resultant band-pass functions can be very large for narrow pass-band Sequencing of frequency scaling and transformation does not affect final function

22 Example 1: Obtain an approximation that meets the following specifications R S L B BH BW= - B = B ssume that L, BH and satsify - - L BH = BW BW L BH

23 Example 1: Obtain an approximation that meets the following specifications R S 1 1+ε = R = S = R BW= - B = B - - L BH = BW BW L BH ε S = R = L -1 - L BW (actually is is and L that map to 1 and S respectively but show and L for convenience)

24 Example : Obtain an approximation that meets the following specifications BW= - B = B In this example, - - L BH BW BW L BH

25 Example : Obtain an approximation that meets the following specifications R 1 1+ε = R = SH =min, S R SL BW= - = B B ε = R S1 S -1 - L = BW = L - BH BH BW { } = min, S S1 S

26 Example : Obtain an approximation that meets the following specifications R 1 1+ε = R = SH =min, S R SL { } = min, S S1 S ε = R S1-1 - L = BW L BW= - = B B S = BH BH - BW { } = min, S S1 S

27

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Flat Paband/Stopband Filter T j T j Lowpa Bandpa T j T j Highpa Bandreject Review from Lat

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Theorem: If the perimeter variation and contact reitance are neglected, the tandard deviation

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Theorem: If the perimeter variation and contact reitance are neglected, the tandard deviation

More information

The Approximation Problem

The Approximation Problem EE 508 Lecture 3 The Approximation Problem Classical Approximating Functions - Thompson and Bessel Approximations Review from Last Time Elliptic Filters Can be thought of as an extension of the CC approach

More information

The Approximation Problem

The Approximation Problem EE 508 Lecture The Approximation Problem Classical Approximating Functions - Elliptic Approximations - Thompson and Bessel Approximations Review from Last Time Chebyshev Approximations T Type II Chebyshev

More information

The Approximation Problem

The Approximation Problem EE 508 Lecture The Approximation Problem Classical Approximating Functions - Elliptic Approximations - Thompson and Bessel Approximations Review from Last Time Chebyshev Approximations T Type II Chebyshev

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 569 Second order section Ts () = s as + as+ a 2 2 1 ω + s+ ω Q 2 2 ω 1 p, p = ± 1 Q 4 Q 1 2 2 57 Second order section

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 578 Second order LCR resonator-poles V o I 1 1 = = Y 1 1 + sc + sl R s = C 2 s 1 s + + CR LC s = C 2 sω 2 s + + ω

More information

Digital Control & Digital Filters. Lectures 21 & 22

Digital Control & Digital Filters. Lectures 21 & 22 Digital Controls & Digital Filters Lectures 2 & 22, Professor Department of Electrical and Computer Engineering Colorado State University Spring 205 Review of Analog Filters-Cont. Types of Analog Filters:

More information

DIGITAL SIGNAL PROCESSING. Chapter 6 IIR Filter Design

DIGITAL SIGNAL PROCESSING. Chapter 6 IIR Filter Design DIGITAL SIGNAL PROCESSING Chapter 6 IIR Filter Design OER Digital Signal Processing by Dr. Norizam Sulaiman work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

More information

EE 508 Lecture 11. The Approximation Problem. Classical Approximations the Chebyschev and Elliptic Approximations

EE 508 Lecture 11. The Approximation Problem. Classical Approximations the Chebyschev and Elliptic Approximations EE 508 Lecture The Approximation Problem Classical Approximations the Chebyschev and Elliptic Approximations Review from Last Time Butterworth Approximations Analytical formulation: All pole approximation

More information

Second-order filters. EE 230 second-order filters 1

Second-order filters. EE 230 second-order filters 1 Second-order filters Second order filters: Have second order polynomials in the denominator of the transfer function, and can have zeroth-, first-, or second-order polynomials in the numerator. Use two

More information

Input and Output Impedances with Feedback

Input and Output Impedances with Feedback EE 3 Lecture Basic Feedback Configurations Generalized Feedback Schemes Integrators Differentiators First-order active filters Second-order active filters Review from Last Time Input and Output Impedances

More information

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG INTRODUCTION TO ACTIVE AND PASSIVE ANALOG FILTER DESIGN INCLUDING SOME INTERESTING AND UNIQUE CONFIGURATIONS Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 TOPICS Introduction

More information

LINEAR-PHASE FIR FILTERS DESIGN

LINEAR-PHASE FIR FILTERS DESIGN LINEAR-PHASE FIR FILTERS DESIGN Prof. Siripong Potisuk inimum-phase Filters A digital filter is a minimum-phase filter if and only if all of its zeros lie inside or on the unit circle; otherwise, it is

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #21 Friday, October 24, 2003 Types of causal FIR (generalized) linear-phase filters: Type I: Symmetric impulse response: with order M an even

More information

Chapter 7: IIR Filter Design Techniques

Chapter 7: IIR Filter Design Techniques IUST-EE Chapter 7: IIR Filter Design Techniques Contents Performance Specifications Pole-Zero Placement Method Impulse Invariant Method Bilinear Transformation Classical Analog Filters DSP-Shokouhi Advantages

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 05 IIR Design 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Chapter 7: Filter Design 7.1 Practical Filter Terminology

Chapter 7: Filter Design 7.1 Practical Filter Terminology hapter 7: Filter Design 7. Practical Filter Terminology Analog and digital filters and their designs constitute one of the major emphasis areas in signal processing and communication systems. This is due

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #24 Tuesday, November 4, 2003 6.8 IIR Filter Design Properties of IIR Filters: IIR filters may be unstable Causal IIR filters with rational system

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids).

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids). nd-order filters The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids). T (s) A p s a s a 0 s b s b 0 As before, the poles of the transfer

More information

Filters and Tuned Amplifiers

Filters and Tuned Amplifiers Filters and Tuned Amplifiers Essential building block in many systems, particularly in communication and instrumentation systems Typically implemented in one of three technologies: passive LC filters,

More information

Analog and Digital Filter Design

Analog and Digital Filter Design Analog and Digital Filter Design by Jens Hee http://jenshee.dk October 208 Change log 28. september 208. Document started.. october 208. Figures added. 6. october 208. Bilinear transform chapter extended.

More information

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12 . ECE 40 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter IIR Filter Design ) Based on Analog Prototype a) Impulse invariant design b) Bilinear transformation ( ) ~ widely used ) Computer-Aided

More information

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS Contents: 3.1 Introduction IIR Filters 3.2 Transformation Function Derivation 3.3 Review of Analog IIR Filters 3.3.1 Butterworth

More information

Design of IIR filters

Design of IIR filters Design of IIR filters Standard methods of design of digital infinite impulse response (IIR) filters usually consist of three steps, namely: 1 design of a continuous-time (CT) prototype low-pass filter;

More information

We have shown earlier that the 1st-order lowpass transfer function

We have shown earlier that the 1st-order lowpass transfer function Tunable IIR Digital Filters We have described earlier two st-order and two nd-order IIR digital transfer functions with tunable frequency response characteristics We shall show now that these transfer

More information

Lectures on APPLICATIONS

Lectures on APPLICATIONS APP0 University of alifornia Berkeley ollege of Engineering Department of Electrical Engineering and omputer Science obert W. Brodersen EES40 Analog ircuit Design t ISE Lectures on APPLIATINS t FALL.0V

More information

Systems & Signals 315

Systems & Signals 315 1 / 15 Systems & Signals 315 Lecture 13: Signals and Linear Systems Dr. Herman A. Engelbrecht Stellenbosch University Dept. E & E Engineering 2 Maart 2009 Outline 2 / 15 1 Signal Transmission through a

More information

Basic Design Approaches

Basic Design Approaches (Classic) IIR filter design: Basic Design Approaches. Convert the digital filter specifications into an analog prototype lowpass filter specifications. Determine the analog lowpass filter transfer function

More information

FILTER DESIGN FOR SIGNAL PROCESSING USING MATLAB AND MATHEMATICAL

FILTER DESIGN FOR SIGNAL PROCESSING USING MATLAB AND MATHEMATICAL FILTER DESIGN FOR SIGNAL PROCESSING USING MATLAB AND MATHEMATICAL Miroslav D. Lutovac The University of Belgrade Belgrade, Yugoslavia Dejan V. Tosic The University of Belgrade Belgrade, Yugoslavia Brian

More information

Image Enhancement in the frequency domain. GZ Chapter 4

Image Enhancement in the frequency domain. GZ Chapter 4 Image Enhancement in the frequency domain GZ Chapter 4 Contents In this lecture we will look at image enhancement in the frequency domain The Fourier series & the Fourier transform Image Processing in

More information

MITOCW watch?v=jtj3v Rx7E

MITOCW watch?v=jtj3v Rx7E MITOCW watch?v=jtj3v Rx7E The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

1. Design a 3rd order Butterworth low-pass filters having a dc gain of unity and a cutoff frequency, fc, of khz.

1. Design a 3rd order Butterworth low-pass filters having a dc gain of unity and a cutoff frequency, fc, of khz. ECE 34 Experiment 6 Active Filter Design. Design a 3rd order Butterworth low-pass ilters having a dc gain o unity and a cuto requency, c, o.8 khz. c :=.8kHz K:= The transer unction is given on page 7 j

More information

Lecture 16 FREQUENCY RESPONSE OF SIMPLE CIRCUITS

Lecture 16 FREQUENCY RESPONSE OF SIMPLE CIRCUITS Lecture 6 FREQUENCY RESPONSE OF SIMPLE CIRCUITS Ray DeCarlo School of ECE Purdue University West Lafayette, IN 47907-285 decarlo@ecn.purdue.edu EE-202, Frequency Response p 2 R. A. DeCarlo I. WHAT IS FREQUENCY

More information

Tunable IIR Digital Filters

Tunable IIR Digital Filters Tunable IIR Digital Filters We have described earlier two st-order and two nd-order IIR digital transfer functions with tunable frequency response characteristics We shall show now that these transfer

More information

From Continuous-Time Domain to Microcontroller Code

From Continuous-Time Domain to Microcontroller Code APPLICAION NOE UnitedSiC_AN0019 October 018 From Continuous-ime Domain to Microcontroller Code By Jonathan Dodge, P.E. Introduction Control theory is one of the many aspects of electronic theory required

More information

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters. INTRODUCTION 2. IIR FILTER DESIGN 3. ANALOG FILTERS 4. THE BUTTERWORTH ANALOG FILTER 5. THE CHEBYSHEV-I

More information

INF3440/INF4440. Design of digital filters

INF3440/INF4440. Design of digital filters Last week lecture Today s lecture: Chapter 8.1-8.3, 8.4.2, 8.5.3 INF3440/INF4440. Design of digital filters October 2004 Last week lecture Today s lecture: Chapter 8.1-8.3, 8.4.2, 8.5.3 Last lectures:

More information

Computer Engineering 4TL4: Digital Signal Processing

Computer Engineering 4TL4: Digital Signal Processing Computer Engineering 4TL4: Digital Signal Processing Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December, 2003 This examination paper includes

More information

IMAGE ENHANCEMENT: FILTERING IN THE FREQUENCY DOMAIN. Francesca Pizzorni Ferrarese

IMAGE ENHANCEMENT: FILTERING IN THE FREQUENCY DOMAIN. Francesca Pizzorni Ferrarese IMAGE ENHANCEMENT: FILTERING IN THE FREQUENCY DOMAIN Francesca Pizzorni Ferrarese Contents In this lecture we will look at image enhancement in the frequency domain Jean Baptiste Joseph Fourier The Fourier

More information

2nd-order filters. EE 230 second-order filters 1

2nd-order filters. EE 230 second-order filters 1 nd-order filters Second order filters: Have second order polynomials in the denominator of the transfer function, and can have zeroth-, first-, or second-order polyinomials in the numerator. Use two reactive

More information

Design of Narrow Band Filters Part 2

Design of Narrow Band Filters Part 2 E.U.I.T. Telecomunicación 200, Madrid, Spain, 27.09 30.09.200 Design of Narrow Band Filters Part 2 Thomas Buch Institute of Communications Engineering University of Rostock Th. Buch, Institute of Communications

More information

PS403 - Digital Signal processing

PS403 - Digital Signal processing PS403 - Digital Signal processing 6. DSP - Recursive (IIR) Digital Filters Key Text: Digital Signal Processing with Computer Applications (2 nd Ed.) Paul A Lynn and Wolfgang Fuerst, (Publisher: John Wiley

More information

Digital Image Processing. Image Enhancement: Filtering in the Frequency Domain

Digital Image Processing. Image Enhancement: Filtering in the Frequency Domain Digital Image Processing Image Enhancement: Filtering in the Frequency Domain 2 Contents In this lecture we will look at image enhancement in the frequency domain Jean Baptiste Joseph Fourier The Fourier

More information

Notes on L (Optimal) Filters

Notes on L (Optimal) Filters Notes on L (Optimal) Filters by C. Bond, 20 Background In 959 A. Papoulis published a paper which completed the description of a new class of filters with optimal properties, originally reported in 958.

More information

Digital Signal Processing:

Digital Signal Processing: Digital Signal Processing: Mathematical and algorithmic manipulation of discretized and quantized or naturally digital signals in order to extract the most relevant and pertinent information that is carried

More information

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

Filter Analysis and Design

Filter Analysis and Design Filter Analysis and Design Butterworth Filters Butterworth filters have a transfer function whose squared magnitude has the form H a ( jω ) 2 = 1 ( ) 2n. 1+ ω / ω c * M. J. Roberts - All Rights Reserved

More information

EE 508 Lecture 4. Filter Concepts/Terminology Basic Properties of Electrical Circuits

EE 508 Lecture 4. Filter Concepts/Terminology Basic Properties of Electrical Circuits EE 58 Lecture 4 Filter Concepts/Terminology Basic Properties of Electrical Circuits Review from Last Time Filter Design Process Establish Specifications - possibly T D (s) or H D (z) - magnitude and phase

More information

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Multimedia Signals and Systems - Audio and Video Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Kunio Takaya Electrical and Computer Engineering University of Saskatchewan December

More information

Oversampling Converters

Oversampling Converters Oversampling Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 56 Motivation Popular approach for medium-to-low speed A/D and D/A applications requiring

More information

All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials RADIOENGINEERING, VOL. 3, NO. 3, SEPTEMBER 4 949 All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials Nikola STOJANOVIĆ, Negovan STAMENKOVIĆ, Vidosav STOJANOVIĆ University of Niš,

More information

Design IIR Butterworth Filters Using 12 Lines of Code

Design IIR Butterworth Filters Using 12 Lines of Code db Design IIR Butterworth Filters Using 12 Lines of Code While there are plenty of canned functions to design Butterworth IIR filters [1], it s instructive and not that complicated to design them from

More information

1 1.27z z 2. 1 z H 2

1 1.27z z 2. 1 z H 2 E481 Digital Signal Processing Exam Date: Thursday -1-1 16:15 18:45 Final Exam - Solutions Dan Ellis 1. (a) In this direct-form II second-order-section filter, the first stage has

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 12

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 12 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 12 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

8. Active Filters - 2. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

8. Active Filters - 2. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory 8. Active Filters - 2 Electronic Circuits Prof. Dr. Qiuting Huang Integrated Systems Laboratory Blast From The Past: Algebra of Polynomials * PP xx is a polynomial of the variable xx: PP xx = aa 0 + aa

More information

Synthesis of passband filters with asymmetric transmission zeros

Synthesis of passband filters with asymmetric transmission zeros Synthesis of passband filters with asymmetric transmission zeros Giuseppe Macchiarella Polytechnic of Milan, Italy Electronic and Information Department Passband filters with asymmetric zeros Placing asymmetric

More information

Fractional Filters: An Optimization Approach

Fractional Filters: An Optimization Approach Fractional Filters: An Optimization Approach Carlos Matos and Manuel Duarte Ortigueira 2 UNINOVA and Escola Superior de Tecnologia, Instituto Politécnico de Setúbal, Portugal cmatos@est.ips.pt, 2 UNINOVA/DEE

More information

Butterworth Filter Properties

Butterworth Filter Properties OpenStax-CNX module: m693 Butterworth Filter Properties C. Sidney Burrus This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3. This section develops the properties

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 28 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 ) Exercise 7 Ex: 7. A 0 log T [db] T 0.99 0.9 0.8 0.7 0.5 0. 0 A 0 0. 3 6 0 Ex: 7. A max 0 log.05 0 log 0.95 0.9 db [ ] A min 0 log 40 db 0.0 Ex: 7.3 s + js j Ts k s + 3 + j s + 3 j s + 4 k s + s + 4 + 3

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9 Name: Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can

More information

ESS Finite Impulse Response Filters and the Z-transform

ESS Finite Impulse Response Filters and the Z-transform 9. Finite Impulse Response Filters and the Z-transform We are going to have two lectures on filters you can find much more material in Bob Crosson s notes. In the first lecture we will focus on some of

More information

Transform Representation of Signals

Transform Representation of Signals C H A P T E R 3 Transform Representation of Signals and LTI Systems As you have seen in your prior studies of signals and systems, and as emphasized in the review in Chapter 2, transforms play a central

More information

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter?

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter? UNIT - III PART A. Mention the important features of the IIR filters? i) The physically realizable IIR filters does not have linear phase. ii) The IIR filter specification includes the desired characteristics

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

Design IIR Filters Using Cascaded Biquads

Design IIR Filters Using Cascaded Biquads Design IIR Filters Using Cascaded Biquads This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads. We ll derive how to calculate the coefficients

More information

Quadrature-Mirror Filter Bank

Quadrature-Mirror Filter Bank Quadrature-Mirror Filter Bank In many applications, a discrete-time signal x[n] is split into a number of subband signals { v k [ n]} by means of an analysis filter bank The subband signals are then processed

More information

AUTOMATIC GENERATION OF SIGNALS AND SYSTEMS EXERCISES

AUTOMATIC GENERATION OF SIGNALS AND SYSTEMS EXERCISES AUTOMATIC GENERATION OF SIGNALS AND SYSTEMS EXERCISES Juan Carlos G. de Sande Circuits and Systems Engineering Department in the EUIT de Telecomunicación at the Universidad Politécnica de Madrid (SPAIN)

More information

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. I Reading:

More information

Master Degree in Electronic Engineering. Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y Switched Capacitor

Master Degree in Electronic Engineering. Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y Switched Capacitor Master Degree in Electronic Engineering TOP-UIC Torino-Chicago Double Degree Project Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y. 2013-2014 Switched Capacitor Working Principles

More information

The basic structure of the L-channel QMF bank is shown below

The basic structure of the L-channel QMF bank is shown below -Channel QMF Bans The basic structure of the -channel QMF ban is shown below The expressions for the -transforms of various intermediate signals in the above structure are given by Copyright, S. K. Mitra

More information

Stability. X(s) Y(s) = (s + 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = +2 and s = -2. Y(s) 8X(s) G 1 G 2

Stability. X(s) Y(s) = (s + 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = +2 and s = -2. Y(s) 8X(s) G 1 G 2 Stability 8X(s) X(s) Y(s) = (s 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = 2 and s = -2 If all poles are in region where s < 0, system is stable in Fourier language s = jω G 0 - x3 x7 Y(s)

More information

Lecture 9 Infinite Impulse Response Filters

Lecture 9 Infinite Impulse Response Filters Lecture 9 Infinite Impulse Response Filters Outline 9 Infinite Impulse Response Filters 9 First-Order Low-Pass Filter 93 IIR Filter Design 5 93 CT Butterworth filter design 5 93 Bilinear transform 7 9

More information

EE 508 Lecture 22. Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration

EE 508 Lecture 22. Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration EE 58 Lecture Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration Review from last time Sensitivity Comparisons Consider 5 second-order lowpass filters (all can realize same

More information

Filter structures ELEC-E5410

Filter structures ELEC-E5410 Filter structures ELEC-E5410 Contents FIR filter basics Ideal impulse responses Polyphase decomposition Fractional delay by polyphase structure Nyquist filters Half-band filters Gibbs phenomenon Discrete-time

More information

The Discrete-Time Fourier

The Discrete-Time Fourier Chapter 3 The Discrete-Time Fourier Transform 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 3-1-1 Continuous-Time Fourier Transform Definition The CTFT of

More information

Frequency Response of Discrete-Time Systems

Frequency Response of Discrete-Time Systems Frequency Response of Discrete-Time Systems EE 37 Signals and Systems David W. Graham 6 Relationship of Pole-Zero Plot to Frequency Response Zeros Roots of the numerator Pin the system to a value of ero

More information

Sensors - February Demystifying Analog Filter Design

Sensors - February Demystifying Analog Filter Design Page 1 of 11 FEBRUARY 2002 SENSOR TECHNOLOGY AND Demystifying Analog Filter Design Armed with a little help and a little math you can hack your way fearlessly through the wild world of analog filter design

More information

EE 508 Lecture 24. Sensitivity Functions - Predistortion and Calibration

EE 508 Lecture 24. Sensitivity Functions - Predistortion and Calibration EE 508 Lecture 24 Sensitivity Functions - Predistortion and Calibration Review from last time Sensitivity Comparisons Consider 5 second-order lowpass filters (all can realize same T(s) within a gain factor)

More information

ANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE)

ANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE) 3. Linear System Response (general case) 3. INTRODUCTION In chapter 2, we determined that : a) If the system is linear (or operate in a linear domain) b) If the input signal can be assumed as periodic

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Proceing IIR Filter Deign Manar Mohaien Office: F8 Email: manar.ubhi@kut.ac.kr School of IT Engineering Review of the Precedent Lecture Propertie of FIR Filter Application of FIR Filter

More information

Responses of Digital Filters Chapter Intended Learning Outcomes:

Responses of Digital Filters Chapter Intended Learning Outcomes: Responses of Digital Filters Chapter Intended Learning Outcomes: (i) Understanding the relationships between impulse response, frequency response, difference equation and transfer function in characterizing

More information

Simple FIR Digital Filters. Simple FIR Digital Filters. Simple Digital Filters. Simple FIR Digital Filters. Simple FIR Digital Filters

Simple FIR Digital Filters. Simple FIR Digital Filters. Simple Digital Filters. Simple FIR Digital Filters. Simple FIR Digital Filters Simple Digital Filters Later in the ourse we shall review various methods of designing frequeny-seletive filters satisfying presribed speifiations We now desribe several low-order FIR and IIR digital filters

More information

Shifted-modified Chebyshev filters

Shifted-modified Chebyshev filters Turkish Journal of Electrical Engineering & Computer Sciences http:// journals. tubitak. gov. tr/ elektrik/ Research Article Turk J Elec Eng & Comp Sci (23) 2: 35 358 c TÜBİTAK doi:.396/elk-2-26 Shifted-modified

More information

Computer-Aided Design of Digital Filters. Digital Filters. Digital Filters. Digital Filters. Design of Equiripple Linear-Phase FIR Filters

Computer-Aided Design of Digital Filters. Digital Filters. Digital Filters. Digital Filters. Design of Equiripple Linear-Phase FIR Filters Computer-Aided Design of Digital Filters The FIR filter design techniques discussed so far can be easily implemented on a computer In addition, there are a number of FIR filter design algorithms that rely

More information

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra Time Series Analysis: 4. Digital Linear Filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Linear filters Filtering in Fourier domain is very easy: multiply the DFT of the input by a transfer

More information

EE Experiment 11 The Laplace Transform and Control System Characteristics

EE Experiment 11 The Laplace Transform and Control System Characteristics EE216:11 1 EE 216 - Experiment 11 The Laplace Transform and Control System Characteristics Objectives: To illustrate computer usage in determining inverse Laplace transforms. Also to determine useful signal

More information

An Iir-Filter Example: A Butterworth Filter

An Iir-Filter Example: A Butterworth Filter An Iir-Filter Example: A Butterworth Filter Josef Goette Bern University of Applied Sciences, Biel Institute of Human Centered Engineering - microlab JosefGoette@bfhch February 7, 2017 Contents 1 Introduction

More information

ECE3050 Assignment 7

ECE3050 Assignment 7 ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linear-log scales for the phase plots. On the magnitude

More information

Time series analysis in neuroscience. Lecture 6. FIR and IIR filters

Time series analysis in neuroscience. Lecture 6. FIR and IIR filters Time series analysis in neuroscience Lecture 6. FIR and IIR filters Alexander Zhigalov / Dept. of CS, University of Helsinki and Dept. of NBE, Aalto University Time series analysis in neuroscience 2 Outline

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 13 Oct 2 nd, 2018 Pranav Mantini Slides from Dr. Shishir K Shah, and Frank Liu Review f 0 0 0 1 0 0 0 0 w 1 2 3 2 8 Zero Padding 0 0 0 0 0 0 0 1 0 0 0 0

More information

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS DESIGN OF CMOS ANALOG INEGRAED CIRCUIS Franco Maloberti Integrated Microsistems Laboratory University of Pavia Discrete ime Signal Processing F. Maloberti: Design of CMOS Analog Integrated Circuits Discrete

More information

Fourier Series Representation of

Fourier Series Representation of Fourier Series Representation of Periodic Signals Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline The response of LIT system

More information

EE 508 Lecture 31. Switched Current Filters

EE 508 Lecture 31. Switched Current Filters EE 508 Lecture 31 Switched Current Filters Review from last time Current-Mode Filters I IN I 0 I 0 s+αi0 s I OUT T s 2 IOUT I 0 I 2 2 IN s + I0s+I 0 Basic Concepts of Benefits of Current-Mode Filters:

More information

Computer Engineering 4TL4: Digital Signal Processing (Fall 2003) Solutions to Final Exam

Computer Engineering 4TL4: Digital Signal Processing (Fall 2003) Solutions to Final Exam Computer Engineering TL: Digital Signal Proessing (Fall 3) Solutions to Final Exam The step response ynof a ausal, stable LTI system is: n [ ] = [ yn ] un, [ ] where un [ ] is the unit step funtion a Find

More information

EE 508 Lecture 7. Degrees of Freedom The Approximation Problem

EE 508 Lecture 7. Degrees of Freedom The Approximation Problem EE 508 Lecture 7 Degrees of Freedom The Approxmaton Problem vew from Last Tme Desgn Strategy Theorem: A crcut wth transfer functon T(s) can be obtaned from a crcut wth normalzed transfer functon T n (s

More information