Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011

Size: px
Start display at page:

Download "Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011"

Transcription

1 Quantum Criticality S. Sachdev and B. Keimer, Physics Today, February 2011 Talk online: sachdev.physics.harvard.edu HARVARD

2 What is a quantum phase transition? Non-analyticity in ground state properties as a function of some control parameter g

3 What is a quantum phase transition? Non-analyticity in ground state properties as a function of some control parameter g E g True level crossing: Usually a first-order transition

4 What is a quantum phase transition? Non-analyticity in ground state properties as a function of some control parameter g E E True level crossing: Usually a first-order transition g Avoided level crossing which becomes sharp in the infinite volume limit: second-order transition g

5 g Many levels are important near a second-order quantum phase transition

6 Why study quantum phase transitions? g c g The ground states at large and small g have wavefunctions which can usually be written as products of wavefunctions of local degrees of freedom i.e. they have negligible quantum entanglement. The quantum critical state at gc often has longrange quantum entanglement : the spooky non-local quantum correlations pointed out by Einstein, Podolsky, and Rosen survive in a macrosopic system at the longest distances.

7 Why study quantum phase transitions? g c g We are often able to describe the quantum state at gc by methods drawn from quantum field theory; expansion in g-gc then allows for a controlled theory in an intermediate coupling regime important for many experimental systems

8 Why study quantum phase transitions? T Quantum criticality g c g The quantum critical point controls properties over a wide regime of quantum criticality at non-zero temperatures. I will argue that this regime is the key to understanding the physical properties of a variety of modern electronic materials.

9 Outline 1. The quantum Ising chain A. The magnetic insulator CoNb2O6 B. Ultracold Rb atoms in an optical lattice 2. Nonzero temperatures and quantum criticality Antiferromagnetic insulators 3. Higher temperature superconductors and strange metals Quantum criticality of fermions and Fermi surfaces

10 Outline 1. The quantum Ising chain A. The magnetic insulator CoNb2O6 B. Ultracold Rb atoms in an optical lattice 2. Nonzero temperatures and quantum criticality Antiferromagnetic insulators 3. Higher temperature superconductors and strange metals Quantum criticality of fermions and Fermi surfaces

11 Degrees of freedom: j = 1 N qubits, N "large"!... # j, " j ( ) ( ) # + " $ = # % " j 1 1 or! =, j 2 2 j j j j

12 Degrees of freedom: j = 1 N qubits, N "large"!... # j, " j ( ) ( ) # + " $ = # % " j 1 1 or! =, j 2 2 j j j j Hamiltonian of decoupled qubits: H = " Jg #! 0 j x j 2Jg! j! j

13 Coupling between qubits: z z 1 j j 1 j H J!! + = " #

14 Coupling between qubits: z z 1 j j 1 j H J!! + = " # ( )( ) "! +! " "! +! " j j j+ 1 j+ 1

15 Coupling between qubits: z z 1 j j 1 j H J!! + = " # Prefers neighboring qubits are either " " or!! j j+ 1 j j+ 1 (not entangled)

16 Full Hamiltonian # ( g x z z ) j j j H = H + H =" J! +!! j g c g

17 Full Hamiltonian # ( g x z z ) j j j H = H + H =" J! +!! j g c g j... N 1 N Product state for large g

18 Full Hamiltonian # ( g x z z ) j j j H = H + H =" J! +!! j g c g j... N 1 N or j... N 1 N Product state for small g

19 Full Hamiltonian # ( g x z z ) j j j H = H + H =" J! +!! j g c g Entangled state at quantum critical point, involving complicated superposition of 2 N qubit configurations

20 Outline 1. The quantum Ising chain A. The magnetic insulator CoNb2O6 B. Ultracold Rb atoms in an optical lattice 2. Nonzero temperatures and quantum criticality Antiferromagnetic insulators 3. Higher temperature superconductors and strange metals Quantum criticality of fermions and Fermi surfaces

21 c a b Quasi-1D Ising ferromagnet CoNb 2 O 6 Co 2+ spin chain along c-axis c Oxygen Ferromagnetic superexchange ~ 90 bond Co-O-Co ~ 20K ~ 2meV Co 2+ Co 2+ CoO 6 distorted octahedron Strong easy-axis (Ising) 30 mev Single crystal of CoNb 2 O 6 (Oxford image furnace) 4 cm R. Coldea, D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer, Science 327, 177 (2010).

22 c a b Co 2+ spin chain along c-axis c Quasi-1D Ising ferromagnet CoNb 2 O 6 Magnetic long-range order Bragg peak Co 2+ Transverse field Jg (Tesla) R. Coldea, D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer, Science 327, 177 (2010).

23 Outline 1. The quantum Ising chain A. The magnetic insulator CoNb2O6 B. Ultracold Rb atoms in an optical lattice 2. Nonzero temperatures and quantum criticality Antiferromagnetic insulators 3. Higher temperature superconductors and strange metals Quantum criticality of fermions and Fermi surfaces

24 Superfluid-insulator transition of 87 Rb atoms in a magnetic trap and an optical lattice potential M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

25 Mott insulator of 87 Rb atoms in a magnetic trap and an optical lattice potential M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

26 Applying an electric field to the Mott insulator

27

28 Why is there a peak (and not a threshold) when E = U?

29

30

31 Resonant transition when E U

32 Virtual state

33

34 Virtual state

35

36 Resonant transition when E U

37 Resonant transition when E U

38

39

40

41

42

43 Phase diagram (E-U)/t S. Sachdev, K. Sengupta, and S.M. Girvin, Phys. Rev. B 66, (2002)

44 Phase diagram Ising quantum phase transition (E-U)/t S. Sachdev, K. Sengupta, and S.M. Girvin, Phys. Rev. B 66, (2002)

45 Hamiltonian of resonant subspace Effective Hamiltonian can be written as spin model = up = down = x-y plane

46 Hamiltonian of resonant subspace Effective Hamiltonian can be written as spin model = up = down = x-y plane

47 Hamiltonian of resonant subspace Effective Hamiltonian can be written as spin model = up = down = x-y plane

48 Hamiltonian of resonant subspace Effective Hamiltonian can be written as spin model = up = down = x-y plane

49 Hamiltonian of resonant subspace Effective Hamiltonian can be written as spin model = up = down = x-y plane

50 Hamiltonian of resonant subspace Effective Hamiltonian can be written as spin model = up = down = x-y plane Constraint: forbidden!

51 Hamiltonian of resonant subspace Effective Hamiltonian can be written as spin model = up = down = x-y plane Constraint: forbidden! Include a term (J/4) i (σz i 1) σ z i+1 1 and send J. Infinite exchange interaction!

52 Hamiltonian of resonant subspace Effective Hamiltonian can be written as spin model Δ=E-U <0 Paramagnetic state

53 Hamiltonian of resonant subspace Effective Hamiltonian can be written as spin model Δ=E-U > 0 Antiferromagnetic state, two fold degenerate

54 Hamiltonian of resonant subspace + Antiferromagnetic state, two fold degenerate

55 Phase diagram of spin model h z /J H = i J 4 σz i σ z i+1 h z 2 σz i h x 2 σx i J, h z = J +(U E), h x =2 2t h x /J hx =0: classical first order phase transition Finite hx: quantum phase transition, second order

56 J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Nature 472, 307 (2011)

57 Quantum gas microscope J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Nature 472, 307 (2011)

58

59

60 In-situ imaging of antiferromagnetic chains J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Nature 472, 307 (2011)

61 In-situ imaging of antiferromagnetic chains = = J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Nature 472, 307 (2011)

62 In-situ imaging of antiferromagnetic chains Antiferromagnetic order = = = 1/g J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Nature 472, 307 (2011)

63 Hanbury-Brown-Twiss noise correlations measure Fourier transform of boson density J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Nature 472, 307 (2011)

64 Hanbury-Brown-Twiss noise correlations measure Fourier transform of boson density Peaks from antiferromagnetic order J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Nature 472, 307 (2011)

65 Outline 1. The quantum Ising chain A. The magnetic insulator CoNb2O6 B. Ultracold Rb atoms in an optical lattice 2. Nonzero temperatures and quantum criticality Antiferromagnetic insulators 3. Higher temperature superconductors and strange metals Quantum criticality of fermions and Fermi surfaces

66 Outline 1. The quantum Ising chain A. The magnetic insulator CoNb2O6 B. Ultracold Rb atoms in an optical lattice 2. Nonzero temperatures and quantum criticality Antiferromagnetic insulators 3. Higher temperature superconductors and strange metals Quantum criticality of fermions and Fermi surfaces

67 The cuprate superconductors

68 Square lattice antiferromagnet H = ij J ij Si S j Ground state has long-range Néel order Order parameter is a single vector field ϕ = η isi η i = ±1 on two sublattices ϕ = 0 in Néel state.

69 Square lattice antiferromagnet H = ij J ij Si S j J J/λ Weaken some bonds to induce spin entanglement in a new quantum phase

70 Square lattice antiferromagnet H = ij J ij Si S j J J/λ Ground state is a quantum paramagnet with spins locked in valence bond singlets = 1 2

71 = 1 2 λ c λ

72 = 1 2 λ c λ Pressure in TlCuCl3 A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, Journal of the Physical Society of Japan, 73, 1446 (2004).

73 TlCuCl 3 An insulator whose spin susceptibility vanishes exponentially as the temperature T tends to zero.

74 TlCuCl 3 Quantum paramagnet at ambient pressure

75 TlCuCl 3 Neel order under pressure A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, Journal of the Physical Society of Japan, 73, 1446 (2004).

76 = 1 2 λ c λ

77 Excitation spectrum in the paramagnetic phase λ c Spin S =1 λ triplon

78 Excitation spectrum in the paramagnetic phase λ c Spin S =1 λ triplon

79 Excitation spectrum in the paramagnetic phase λ c Spin S =1 λ triplon

80 Excitation spectrum in the paramagnetic phase λ c Spin S =1 λ triplon

81 Excitation spectrum in the paramagnetic phase λ c Spin S =1 triplon λ

82 Excitation spectrum in the Néel phase λ c λ Spin waves

83 Excitation spectrum in the Néel phase λ c λ Spin waves

84 Excitation spectrum in the Néel phase λ c λ Spin waves

85 TlCuCl 3 with varying pressure Energy [mev] Pressure [kbar] Triplon in the quantum paramagnet. Spin waves and a new Higgs particle in the Néel phase: the latter represents longitudinal oscillations in the magnitude of the Néel order. Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, (2008)

86 TlCuCl 3 with varying pressure Energy [mev] Triplon energy gap (λ λ c ) zν Pressure [kbar] Triplon in the quantum paramagnet. Spin waves and a new Higgs particle in the Néel phase: the latter represents longitudinal oscillations in the magnitude of the Néel order. Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, (2008)

87 TlCuCl 3 with varying pressure Energy [mev] Spin waves Pressure [kbar] Triplon in the quantum paramagnet. Spin waves and a new Higgs particle in the Néel phase: the latter represents longitudinal oscillations in the magnitude of the Néel order. Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, (2008)

88 TlCuCl 3 with varying pressure Energy [mev] Higgs Pressure [kbar] Triplon in the quantum paramagnet. Spin waves and a new Higgs particle in the Néel phase: the latter represents longitudinal oscillations in the magnitude of the Néel order. Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, (2008)

89 TlCuCl 3 with varying pressure Energy [mev] Pressure [kbar] Triplon in the quantum paramagnet. Spin waves and a new Higgs particle in the Néel phase: the latter represents longitudinal oscillations in the magnitude of the Néel order. Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, (2008)

90 = 1 2 λ c λ Quantum critical point with non-local entanglement in spin wavefunction

91 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, (1994). Quantum critical Classical spin waves Dilute triplon gas Neel order Pressure in TlCuCl3

92 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, (1994). Quantum critical Triplon energy gap Classical spin waves (λ λ c ) zν ; crossover at k B T. Dilute triplon gas Neel order Pressure in TlCuCl3

93 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, (1994). Quantum critical Classical Boltzmann theory of Classical spin waves triplon particles: Leads to relaxation and thermal equilibration times of order (/k B T )e /k BT Dilute triplon gas Neel order Pressure in TlCuCl3

94 Neutron scattering measurements of the collisions between triplons in Y 2 BaNiO 5 Guangyong Xu, C. Broholm, Yeong-Ah Soh, G. Aeppli, J. F. DiTusa, Ying Chen, M. Kenzelmann, C. D. Frost, T. Ito, K. Oka, H. Takagi, Science 317, 1049 (2007)

95 Neutron scattering measurements of the collisions between triplons in Y 2 BaNiO 5 Guangyong Xu, C. Broholm, Yeong-Ah Soh, G. Aeppli, J. F. DiTusa, Ying Chen, M. Kenzelmann, C. D. Frost, T. Ito, K. Oka, H. Takagi, Science 317, 1049 (2007) Theoretical prediction Γ =1.20k B Te /k BT K. Damle and S. Sachdev, Phys. Rev. B 57, 8307 (1998)

96 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, (1994). Quantum critical Classical Boltzmann theory of Classical spin waves triplon particles: Leads to relaxation and thermal equilibration times of order (/k B T )e /k BT Dilute triplon gas Neel order Pressure in TlCuCl3

97 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, (1994). Classical spin waves Quantum critical Classical non-linear spin waves, also with Dilute triplon gas relaxational and equilibration times /k B T Neel order Pressure in TlCuCl3

98 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, (1994). Quantum critical Classical spin waves Dilute triplon gas Neel order Pressure in TlCuCl3

99 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, (1994). Quantum critical Classical spin waves Dilute triplon gas Neel order Pressure in TlCuCl3

100 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, (1994). Quantum critical Classical spin waves Strongly coupled dynamics and transport with no particle/wave interpretation, and relaxation thermal equilibration times are universally proportional to /k B T Neel order Dilute triplon gas Pressure in TlCuCl3

101 Quantum critical transport Quantum nearly perfect fluid with shortest possible relaxation time, τ R τ R = C k B T where C is a universal constant S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

102 Non-zero temperature crossovers for the quantum Ising chain 0 0 Color density plot of dξ 1 /dt,whereξ is the spin correlation length. This quantity measures the strength of the interactions between the thermal excitations.

103 Neutron scattering measurements on La 1.86 Sr 0.14 Cu O 4, showing scaling of the dynamic spin susceptibility at an incommensurate wavevector: χ (ω,t)= A ω T 2 η Φ k B T G. Aeppli, T. E. Mason, S. M. Hayden, H. A. Mook and J. Kulda, Science, 278, 1432 (1997).

104 Outline 1. The quantum Ising chain A. The magnetic insulator CoNb2O6 B. Ultracold Rb atoms in an optical lattice 2. Nonzero temperatures and quantum criticality Antiferromagnetic insulators 3. Higher temperature superconductors and strange metals Quantum criticality of fermions and Fermi surfaces

105 Outline 1. The quantum Ising chain A. The magnetic insulator CoNb2O6 B. Ultracold Rb atoms in an optical lattice 2. Nonzero temperatures and quantum criticality Antiferromagnetic insulators 3. Higher temperature superconductors and strange metals Quantum criticality of fermions and Fermi surfaces

106 The cuprate superconductors

107 Square lattice antiferromagnet H = ij J ij Si S j Ground state has long-range Néel order Order parameter is a single vector field ϕ = η isi η i = ±1 on two sublattices ϕ = 0 in Néel state.

108 Holedoped Electrondoped

109 Electron-doped cuprate superconductors Holedoped Electrondoped

110 Electron-doped cuprate superconductors n 2 Holedoped Electrondoped Figure prepared by K. Jin and and R. L. Greene based on N. P. Fournier, P. Armitage, and R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010). Resistivity ρ 0 + AT n

111 Electron-doped cuprate superconductors n 2 Holedoped Electrondoped Figure prepared by K. Jin and and R. L. Greene based on N. P. Fournier, P. Armitage, and R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010). Resistivity ρ 0 + AT n

112 Electron-doped cuprate superconductors Strange Metal n Holedoped Electrondoped 1 Figure prepared by K. Jin and and R. L. Greene based on N. P. Fournier, P. Armitage, and R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010). Resistivity ρ 0 + AT n

113 Iron pnictides: a new class of high temperature superconductors

114 Iron pnictides: a new class of high temperature superconductors Ort Tet Ishida, Nakai, and Hosono arxiv: v1 50 AFM / Ort 0 SC S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, A. I. Goldman, Physical Review Letters 104, (2010).

115 Temperature-doping phase diagram of the iron pnictides: BaFe 2 (As 1-x P x ) 2 T 0 T SDW T c SDW! " Resistivity ρ 0 + AT α Superconductivity 0 SDW= spin density wave = antiferromagnetism in a metal S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)

116 Temperature-doping phase diagram of the iron pnictides: BaFe 2 (As 1-x P x ) 2 T 0 T SDW T c SDW! " Resistivity ρ 0 + AT α Superconductivity 0 SDW= spin density wave = antiferromagnetism in a metal S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)

117 Temperature-doping phase diagram of the iron pnictides: Strange Metal BaFe 2 (As 1-x P x ) 2 T 0 T SDW T c! " SDW Resistivity ρ 0 + AT α Superconductivity 0 SDW= spin density wave = antiferromagnetism in a metal S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)

118 Organic Bechgaard compounds Resistivity ρ 0 + AT α Doiron-Leyraud et al., PRB 80, (2009)

119 Organic Bechgaard compounds Resistivity ρ 0 + AT α Doiron-Leyraud et al., PRB 80, (2009)

120 Organic Bechgaard compounds Strange Metal Resistivity ρ 0 + AT α Doiron-Leyraud et al., PRB 80, (2009)

121 Lower Tc superconductivity in the heavy fermion compounds G. Knebel, D. Aoki, and J. Flouquet, arxiv:

122 Fermi surface Metal with large Fermi surface Momenta with electronic states empty Momenta with electronic states occupied

123 Fermi surface+antiferromagnetism Metal with large Fermi surface + The electron spin polarization obeys S(r, τ) = ϕ (r, τ)e ik r where K is the ordering wavevector.

124 Metal with large Fermi surface

125 Fermi surfaces translated by K =(π, π).

126 Electron and hole pockets in antiferromagnetic phase with ϕ =0

127 Fermi surface+antiferromagnetism ncreasing SDW ϕ =0 ϕ =0 Metal with electron and hole pockets Metal with large Fermi surface Increasing interaction S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

128 Quantum oscillations Nd 2 x Ce x CuO 4 T. Helm, M. V. Kartsovnik, M. Bartkowiak, N. Bittner, M. Lambacher, A. Erb, J. Wosnitza, and R. Gross, Phys. Rev. Lett. 103, (2009).

129 Increasing SDW order s Quantum oscillations Nd 2 x Ce x CuO 4 T. Helm, M. V. Kartsovnik, M. Bartkowiak, N. Bittner, M. Lambacher, A. Erb, J. Wosnitza, and R. Gross, Phys. Rev. Lett. 103, (2009).

130 Fermi surface+antiferromagnetism ncreasing SDW ϕ =0 ϕ =0 Metal with electron and hole pockets Metal with large Fermi surface Increasing interaction S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

131 Quantum criticality of antiferromagnetism and Fermi surfaces T * Fluctuating Fermi pockets Quantum Strange Critical Metal Large Fermi surface ncreasing SDW Spin density wave (SDW)

132 Quantum criticality of antiferromagnetism and Fermi surfaces T * Fluctuating Fermi pockets Quantum Strange Critical Metal Large Fermi surface ncreasing SDW Spin density wave (SDW)

133 Quantum criticality of antiferromagnetism and Fermi surfaces T * Fluctuating Fermi pockets Strange Quantum Metal Critical Large Fermi surface ncreasing SDW Spin density wave (SDW)

134 Conclusions Paradigm of quantum phase transitions: the quantum Ising chain, realized in the ferromagnetic insulator CoNb2O6, and ultracold atoms in tilted optical lattices

135 Conclusions Described excitations spectrum of the coupled-dimer antiferromagnet TlCuCl3. It has regimes of classical dynamics of triplon particles, and of non-linear spin waves, and a regime of quantum-criticality with characteristic equilibration time /k B T

136 Conclusions Quantum criticality of antiferromagnetism and Fermi surface reconstruction controls strange metal regime of quasi-two dimensional higher temperature superconductors

The phase diagrams of the high temperature superconductors

The phase diagrams of the high temperature superconductors The phase diagrams of the high temperature superconductors Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski, Harvard Eun Gook Moon, Harvard HARVARD The cuprate superconductors Square lattice

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Cincinnati March 30, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Imperial College May 16, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565 sachdev.physics.harvard.edu

More information

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions in condensed matter physics, with connections to string theory Quantum phase transitions in condensed matter physics, with connections to string theory sachdev.physics.harvard.edu HARVARD High temperature superconductors Cuprates High temperature superconductors Pnictides

More information

The quantum phases of matter. sachdev.physics.harvard.edu

The quantum phases of matter. sachdev.physics.harvard.edu The quantum phases of matter sachdev.physics.harvard.edu The phases of matter: The phases of matter: Solids Liquids Gases The phases of matter: Solids Liquids Gases Theory of the phases of matter: Theory

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Max Metlitski, Harvard Sean Hartnoll, Harvard Christopher

More information

Saturday, April 3, 2010

Saturday, April 3, 2010 Phys. Rev. Lett. 1990 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T σ = 4e2 h Σ Quantum Σ, auniversalnumber.

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD Max Metlitski Erez Berg HARVARD Max Metlitski Erez Berg Sean Hartnoll

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless trillions of electrons

More information

Strange metals and gauge-gravity duality

Strange metals and gauge-gravity duality Strange metals and gauge-gravity duality Loughborough University, May 17, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/0109419. Quantum Phase

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Quantum phase transitions and Fermi surface reconstruction

Quantum phase transitions and Fermi surface reconstruction Quantum phase transitions and Fermi surface reconstruction Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski Matthias Punk Erez Berg HARVARD 1. Fate of the Fermi surface: reconstruction or

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

AdS/CFT and condensed matter. Talk online: sachdev.physics.harvard.edu

AdS/CFT and condensed matter. Talk online: sachdev.physics.harvard.edu AdS/CFT and condensed matter Talk online: sachdev.physics.harvard.edu Particle theorists Sean Hartnoll, KITP Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Condensed matter theorists

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University Course at Harvard University: Physics 268r Classical and Quantum Phase Transitions. MWF 10 in Jefferson 256

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES JÖRG SCHMALIAN AMES LABORATORY AND IOWA STATE UNIVERSITY Collaborators theory Ames: Rafael Fernandes Rutgers: Premala Chandra UCLA: Elihu Abrahams experiment

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Talk online:

More information

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates Talk online: sachdev.physics.harvard.edu HARVARD Where is the quantum critical point

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Physics of iron-based high temperature superconductors. Abstract

Physics of iron-based high temperature superconductors. Abstract Physics of iron-based high temperature superconductors Yuji Matsuda Department of Physics, Kyoto University, Kyoto 606-8502, Japan Abstract The discovery of high-t c iron pnictide and chalcogenide superconductors

More information

Quantum criticality and high temperature superconductivity

Quantum criticality and high temperature superconductivity Quantum criticality and high temperature superconductivity University of Waterloo February 14, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD William Witczak-Krempa Perimeter Erik

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions HARVARD From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions ARO MURI review, University of Maryland October 13, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Quantum criticality and the phase diagram of the cuprates

Quantum criticality and the phase diagram of the cuprates Quantum criticality and the phase diagram of the cuprates Talk online: sachdev.physics.harvard.edu HARVARD Victor Galitski, Maryland Ribhu Kaul, Harvard Kentucky Max Metlitski, Harvard Eun Gook Moon, Harvard

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Resistivity studies in magnetic materials. Makariy A. Tanatar

Resistivity studies in magnetic materials. Makariy A. Tanatar Resistivity studies in magnetic materials 590B Makariy A. Tanatar November 30, 2018 Classical examples Quantum criticality Nematicity Density waves: nesting Classics: resistivity anomaly at ferromagnetic

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Detecting boson-vortex duality in the cuprate superconductors

Detecting boson-vortex duality in the cuprate superconductors Detecting boson-vortex duality in the cuprate superconductors Physical Review B 71, 144508 and 144509 (2005), cond-mat/0602429 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Quantum transitions of d-wave superconductors in a magnetic field

Quantum transitions of d-wave superconductors in a magnetic field Quantum transitions of d-wave superconductors in a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 86, 479 (1999). Transparencies

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Quantum theory of vortices in d-wave superconductors

Quantum theory of vortices in d-wave superconductors Quantum theory of vortices in d-wave superconductors Physical Review B 71, 144508 and 144509 (2005), Annals of Physics 321, 1528 (2006), Physical Review B 73, 134511 (2006), cond-mat/0606001. Leon Balents

More information

arxiv: v4 [cond-mat.str-el] 26 Oct 2011

arxiv: v4 [cond-mat.str-el] 26 Oct 2011 Quantum phase transitions of antiferromagnets and the cuprate superconductors Subir Sachdev arxiv:1002.3823v4 [cond-mat.str-el] 26 Oct 2011 Abstract I begin with a proposed global phase diagram of the

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Quantum critical transport and AdS/CFT

Quantum critical transport and AdS/CFT Quantum critical transport and AdS/CFT Lars Fritz, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Mueller, Trieste Joerg Schmalian, Iowa Dam Son, Washington

More information

Quantum critical transport, duality, and M-theory

Quantum critical transport, duality, and M-theory Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington) Talks online at http://sachdev.physics.harvard.edu

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Quantum simulations, adiabatic transformations,

Quantum simulations, adiabatic transformations, Quantum simulations, adiabatic transformations, and resonating valence bond states Aspen June 2009 Simon Trebst Microsoft Station Q UC Santa Barbara Ulrich Schollwöck Matthias Troyer Peter Zoller High

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Alain Aspect, Adilet Imambekov, Vladimir Gritsev, Takuya Kitagawa,

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Department of Physics Yale University P.O. Box 208120, New Haven, CT 06520-8120 USA E-mail: subir.sachdev@yale.edu May 19, 2004 To appear in Encyclopedia of Mathematical

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Quantum criticality in condensed matter

Quantum criticality in condensed matter Quantum criticality in condensed matter Inaugural Symposium of the Wolgang Pauli Center Hamburg, April 17, 2013 Subir Sachdev Scientific American 308, 44 (January 2013) HARVARD Sommerfeld-Pauli-Bloch theory

More information

Condensed Matter Physics in the City London, June 20, 2012

Condensed Matter Physics in the City London, June 20, 2012 Entanglement, holography, and the quantum phases of matter Condensed Matter Physics in the City London, June 20, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

Nematic quantum paramagnet in spin-1 square lattice models

Nematic quantum paramagnet in spin-1 square lattice models Nematic quantum paramagnet in spin-1 square lattice models Fa Wang( 王垡 ) Peking University Ref.: arxiv:1501.00844 Acknowledgments Prof. Dung-Hai Lee, UC Berkeley Prof. Kivelson, Stanford Discussions with

More information

Experimental Evidences of Quantum Phase Transition in a Spin Cluster Compound

Experimental Evidences of Quantum Phase Transition in a Spin Cluster Compound Experimental Evidences of Quantum Phase Transition in a Spin Cluster Compound Tanmoy Chakraborty 1, Harkirat Singh 1 and Chiranjib Mitra 1, a) 1 Indian Institute of Science Education and Research (IISER)

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Tuning order in the cuprate superconductors

Tuning order in the cuprate superconductors Tuning order in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Unexpected Connections in Physics: From Superconductors to Black Holes. Talk online: sachdev.physics.harvard.edu

Unexpected Connections in Physics: From Superconductors to Black Holes. Talk online: sachdev.physics.harvard.edu Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu The main unsolved problem in theoretical physics today: Unification of The main unsolved

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010 2157-6 Workshop on Principles and Design of Strongly Correlated Electronic Systems 2-13 August 2010 Selection of Magnetic Order and Magnetic Excitations in the SDW State of Iron-based Superconductors Ilya

More information

Tuning order in the cuprate superconductors by a magnetic field

Tuning order in the cuprate superconductors by a magnetic field Tuning order in the cuprate superconductors by a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies

More information

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Explana'on of the Higgs par'cle

Explana'on of the Higgs par'cle Explana'on of the Higgs par'cle Condensed ma7er physics: The Anderson- Higgs excita'on Press release of Nature magazine Unity of Physics laws fev pev nev µev mev ev kev MeV GeV TeV pk nk µk mk K Cold atoms

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Vortices in the cuprate superconductors

Vortices in the cuprate superconductors Vortices in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information