Elastic collisions in two dimensions 5C

Size: px
Start display at page:

Download "Elastic collisions in two dimensions 5C"

Transcription

1 Elastic collisions in two dimensions 5C 1 No change in component of velocity perpendicular to line of centres. So component of velocity for A=6sin10 Since B is stationary before impact, it will be moving along the line of centres. 6cos10 = 4w v w v= 6cos10 (1) 1 w+ v= 6cos10 = 3cos10 () Adding equations (1) and () gives: 3w= 9 cos10 w= 3cos10 Substituting in equation () gives: v= 0 So, after the impact, A has velocity 6sin10 =1.04ms 1 (3 s.f.) perpendicular to the line of centres, and B has velocity 3cos10 =.95ms 1 (3 s.f.) parallel to the line of centres. Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 1

2 No change in component of velocity perpendicular to line of centres. So component of velocity for A=4sin30 = Since B is stationary before impact, it will be moving along the line of centres. 4 4cos30 = 4v+ w w+ v= 8cos30 (1) 1 4 w v= 4cos30 = cos30 () 3 3 Adding equation (1) and equation () gives: w= 8+ cos 30 w= = Substituting in equation () gives: v= v= A has speed () = = 08 7 = = 4 39 ms 1 9 A is moving at arctan = arctan = arctan = 46.1 (3 s.f.) to the line of centres B has speed ms 1 along the line of centres Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free.

3 3 No change in component of velocity perpendicular to line of centres. So component of velocity fora=5sin45 = 5 Since B is stationary before impact, it will be moving along the line of centres. 3 5cos45 = 3v+ 4w 15 4w+ 3 v= (1) 1 5 w v= 5cos45 = () 4 Adding equation (1) and 3 equation () gives: w= + w= 4 8 Substituting in equation () gives: v= v= = A has speed = = = 5 5 = ms 1 A is moving at arctan B has speed 45 8 ms 1 along the line of centres =arctan7=81.9 (3 s.f.) to the line of centres Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 3

4 4 No change in component of velocity perpendicular to line of centres. So for A, the component perpendicular to the line of centres is vsinθ. mvcosθ =mv 1 mv vcosθ =v 1 v (1) v 1 +v =evcosθ v 1 =evcosθ v () Substituting for v 1 in equation (1) gives: vcosθ= ( evcos θ v ) v = evcosθ 3v = vcos θ(e 1) v= 3 1 vsinθ 3vsinθ tan(90 θ) = = = tanθ v vcos θ(e 1) So 1 3tanθ = tan θ e 1 e 1 tan θ 3 Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 4

5 5 After impact: No change in component of velocity perpendicular to line of centres. mv=mv A +mv B v=v A +v B (1) va vb= v () 3 Adding equations (1) and () gives: 1 And by substitution vb = v va = v va = v 3 6 A has speed A is moving at 5 ( ) 6 v= v= 36 6 vms arctan = arctan = 50. (3 s.f.) to the line of centres. 5 B is moving along the line of centres with speed 1 1 ms. 6 v Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 5

6 6 a Perpendicular to the line of centres, component of velocity of A is usinα mucosα =mv+mw ucosα =v+w (1) w v=eucosα () Solving equations (1) and (): v=ucosα eucosα =ucosα(1 e) tanβ= usinα usinα = v ucosα(1 e) = tanα 1 e b The path of A has been deflected through an angle equal to β α tanα tanβ tanα 1 e tanα tan( β α) = = 1+ tanα tanβ 1+ tanα tanα 1 e tan α (1 e)tan α (1 + e)tanα = = 1 e+ tan α tan α+ 1 e (1+e)tanα Hence β α =arctan tan α+1 e Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 6

7 7 a After impact: No change in the components of velocity perpendicular to the line of centres. 1 cos60 3cos45 =v w v w=1 3 (1) v+ w= (3cos45 + cos60 ) v+ w= 1+ () 3 3 Solving equations (1) and (): w= 1+ + = + =.06ms (4 s.f.) v= v= = ms (3 s.f.) Kinetic energy lost in the impact= 1 ((3cos45 ) v )+ 1 1 ((cos60 ) w ) = 1 ((3cos45 ) )+ 1 1 ((cos60 ).06 ) = =.53J (3 s.f.) b Impulse on B =1(w+cos60 )=3.06Ns (3 s.f.) Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 7

8 8 a After impact: No change in the components of velocity perpendicular to the line of centres. So after the collision the components of velocity perpendicular to the line of centres are 3 m s 1 and 4 m s 1. 3 m 3 cos45 m 5 = mw mv w v= 0 (1) 5 3 v+ w= 3 cos v+ w= () Solving equations (1) and () gives v=w= A has speed +3 = 13ms 1 B has speed +4 = 0= 5ms 1 b Total kinetic energy after impact= 1 m ( 13) + 1 m ( 5) = 33 mj Total kinetic energy before impact = m (3 ) + m 5 = m J Fraction lost= = Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 8

9 9 Line of centres parallel to j so no change in the components of velocity parallel to i 1+4 1= s 4 t s t=1 (1) 1 s+ t= (1 + 1) s+ t= 1 () Solving equations (1) and (): 3s=3 s=1 And by substitutiont=0 Velocity of A is 4i + j m s 1 Velocity of B is i m s 1 Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 9

10 10 Line of centres parallel to i so no change in the components of velocity parallel to j =w 3v w 3v= 1 (1) 3 v+ w= (4 + 1) 4 v+ 4 w= 15 () 4 Solving equations (1) and (): 4w 1v= 4 16v=19 v= 19 41,w= After the impact, speed of A= =3.3ms 1 (3 s.f.) Speed of B= =3.5ms 1 (3 s.f) Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 10

11 11 Line of centres parallel to i so no change in the components of velocity parallel to j 1 1=w v w v=0 (1) 3 v+ w= ( + 1) 5 v+ 5 w= 9 () 5 Solving equations (1) and (): w= 9 w= and v= 5 5 As components of velocity unchanged parallel to j all kinetic energy lost is parallel to i Kinetic energy lost= = 48 5 =1.9J Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 11

12 1 a Let velocity of B immediately after the collision be v Using conservation of momentum: m(i+5j)+m(3i j)=m(3i+j)+mv v=i(+ 3 3)+j(5 1 )=5i+j v= 5 i+ 1 j b Impulse on A= m((3i+ j) (i+ 5 j)) = m( i+ 3 j) Therefore the line of centres is parallel to 1 ( i 3 j ) a Let velocity of B immediately after the collision be v Using conservation of momentum: 3m(3i 5j)+m(4i+j)=3m(4i 4j)+mv v=i( )+j( )=i j Speed of B is 1 + = 5ms 1 b 3m m m m = (3(34 3) + (17 5)) = (6+ 1) = 9m J Kinetic energy lost = ((3 + 5 ) (4 + 4 )) + ((4 + 1 ) 5) 14 a Let velocity of B immediately after the collision be v Using conservation of momentum: m(i+5j)+m(i j)=m(3i+4j)+mv v=i( + 3)+j( 5 4)=0 b B is brought to a halt in the collision, therefore the line of centres must be parallel to the original direction of motion of B, i.e. ( i j ) In this direction, speed of A before impact = (i+ 5 j). ( i j ) = ( 5) = 3 Speed of A after impact = (3i+ 4 j). ( i j ) = (3 4) = Speed of B before = Speed of B after = 0 Therefore the impact law gives e= = Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 1

13 15 After impact: Before collision, components of velocity of A are 1 m s 1 perpendicular to the lines of centres and m s 1 parallel to the line. The components of the velocity of B are 3 m s 1 perpendicular to the line, and m s 1 parallel to it. 1 =1 w v w v= (1) w+v=e(+)= w+v= () Solving equations (1) and (): w=,v=0 After the collision, the speed of A is 1 m s 1 and speed of B is 3 + = 13ms 1 Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 13

14 16 Parallel to the line of centres, using conservation of momentum and the law of restitution gives: mucos45 =mv+mwandw v=eucos45 By subtracting: v= ucos45 (1 e) u (1 e) v= 4 u sin 45 So tanα = = 1 e θ = α 45 u (1 e) ( ) 4 tanα tan 45 1 e 1 1+ e 1+ e tanθ = = = = 1+ tanα tan e+ 3 e 1 e Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 14

15 Challenge 1 Tangent perpendicular to radius sinα = Initial components of velocity of A are ucosα parallel to the line of centres, and usinα perpendicular to the line of centres. mucosα=mv+mw ucosα=v+w (1) () w v=eucosα Subtracting equation () from equation (1) gives: v= ucosα eucosα 1 ucosα1 3 1 u u 3 v= = = 8 u usinα 4 tan( θ+ α) = = = v u tan( θ + α) tanα tanθ = = = = = 1+ tan( θ+ α)tanα Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 15

Mixed Exercise 5. For motion parallel to the wall: For motion perpendicular to the wall:

Mixed Exercise 5. For motion parallel to the wall: For motion perpendicular to the wall: Mixed Exercise 5 For motion parallel to the wall: 4u cos β u cos45 5 4u u cos β () 5 For motion perpendicular to the wall: 4u sin β eu sin45 5 4u eu sin β () 5 Squaring and adding equations () and () gives:

More information

Elastic collisions in two dimensions 5A

Elastic collisions in two dimensions 5A Elastic collisions in two dimensions 5A 1 a e= 1 3, tanα = 3 4 cosα = 4 5 and sinα = 3 5 (from Pythagoras theorem) For motion parallel to the wall: 4 vcosβ = ucosα vcos β = u (1) 5 For motion perpendicular

More information

Elastic collisions in two dimensions 5B

Elastic collisions in two dimensions 5B Elastic collisions in two dimensions 5B a First collision: e=0.5 cos α = cos30 () sin α = 0.5 sin30 () Squaring and adding equations () and () gies: cos α+ sin α = 4cos 30 + sin 30 (cos α+ sin α)= 4 3

More information

A level Exam-style practice

A level Exam-style practice A level Exam-style practice 1 a e 0 b Using conservation of momentum for the system : 6.5 40 10v 15 10v 15 3 v 10 v 1.5 m s 1 c Kinetic energy lost = initial kinetic energy final kinetic energy 1 1 6.5

More information

Version 1.0. General Certificate of Education (A-level) June Mathematics MM03. (Specification 6360) Mechanics 3. Final.

Version 1.0. General Certificate of Education (A-level) June Mathematics MM03. (Specification 6360) Mechanics 3. Final. Version 1.0 General Certificate of Education (A-level) June 011 Mathematics MM03 (Specification 6360) Mechanics 3 Final Mark Scheme Mark schemes are prepared by the Principal Examiner and considered, together

More information

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y =

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y = Review exercise The equation of the line is: y y x x y y x x y 8 x+ 6 8 + y 8 x+ 6 y x x + y 0 y ( ) ( x 9) y+ ( x 9) y+ x 9 x y 0 a, b, c Using points A and B: y y x x y y x x y x 0 k 0 y x k ky k x a

More information

Proof by induction ME 8

Proof by induction ME 8 Proof by induction ME 8 n Let f ( n) 9, where n. f () 9 8, which is divisible by 8. f ( n) is divisible by 8 when n =. Assume that for n =, f ( ) 9 is divisible by 8 for. f ( ) 9 9.9 9(9 ) f ( ) f ( )

More information

Mark Scheme (Results) June GCE Mechanics M4 (6680) Paper 1

Mark Scheme (Results) June GCE Mechanics M4 (6680) Paper 1 Mark (Results) June 011 GCE Mechanics M4 (6680) Paper 1 Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including

More information

b UVW is a right-angled triangle, therefore VW is the diameter of the circle. Centre of circle = Midpoint of VW = (8 2) + ( 2 6) = 100

b UVW is a right-angled triangle, therefore VW is the diameter of the circle. Centre of circle = Midpoint of VW = (8 2) + ( 2 6) = 100 Circles 6F a U(, 8), V(7, 7) and W(, ) UV = ( x x ) ( y y ) = (7 ) (7 8) = 8 VW = ( 7) ( 7) = 64 UW = ( ) ( 8) = 8 Use Pythagoras' theorem to show UV UW = VW 8 8 = 64 = VW Therefore, UVW is a right-angled

More information

Elastic collisions in one dimension 4D

Elastic collisions in one dimension 4D Elastic collisions in one dimension 4D 1 a First collision (between A and B) 5+ 1 1= u+ v u+ v= 11 (1) 1 v u e= = 5 1 v u= () Subtracting equation () from equation (1) gives: 3u=9 u=3 Substituting into

More information

Elastic collisions in one dimension Mixed Exercise 4

Elastic collisions in one dimension Mixed Exercise 4 Elastic collisions in one dimension Mixed Exercise 1 u w A (m) B (m) A (m) B (m) Using conseration of linear momentum for the system ( ): mu m= mw u = w (1) 1 w e= = 3 u ( ) u+ = 3 w () Adding equations

More information

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a Further Maths Core Pure (AS/Year 1) Unit Test : Matrices Q Scheme Marks AOs Pearson Finds det M 3 p p 4 p 4 p 6 1 Completes the square to show p 4 p 6 p M1.a Concludes that (p + ) + > 0 for all values

More information

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so:

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so: Taylor Series 6B a We can evaluate the it directly since there are no singularities: 7+ 7+ 7 5 5 5 b Again, there are no singularities, so: + + c Here we should divide through by in the numerator and denominator

More information

Q Scheme Marks AOs Pearson ( ) 2. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Q Scheme Marks AOs Pearson ( ) 2. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a Further Maths Core Pure (AS/Year 1) Unit Test : Matrices Q Scheme Marks AOs Pearson Finds det M = 3 p p+ 4 = p + 4 p+ 6 1 ( )( ) ( )( ) ( ) Completes the square to show p + 4p+ 6= p+ + M1.a Concludes that

More information

Elastic strings and springs Mixed exercise 3

Elastic strings and springs Mixed exercise 3 Elastic strings and springs Mixed exercise ( )T cosθ mg By Hooke s law 5mgx T 6a a sinθ a + x () () () a 4 5mg Ifcos θ, T from () 5 8 5mg 5mgx so, from () 8 6a a x 4 If cos θ, then sinθ 5 5 a sinθ from

More information

Moments Mixed exercise 4

Moments Mixed exercise 4 Moments Mixed exercise 4 1 a The plank is in equilibrium. Let the reaction forces at the supports be R and R D. Considering moments about point D: R (6 1.5 1) = (100+ 145) (3 1.5) 3.5R = 245 1.5 3.5R =

More information

MEI Structured Mathematics. Module Summary Sheets. Mechanics 2 (Version B: reference to new book)

MEI Structured Mathematics. Module Summary Sheets. Mechanics 2 (Version B: reference to new book) MEI Mathematics in Education and Industry MEI Structured Mathematics Module Summary Sheets Mechanics (Version : reference to new book) Topic : Force Model for Friction Moments of Force Freely pin-jointed

More information

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1 1 w z k k States or implies that 4 i TBC Uses the definition of argument to write 4 k π tan 1 k 4 Makes an attempt to solve for k, for example 4 + k = k is seen. M1.a Finds k = 6 (4 marks) Pearson Education

More information

Q Scheme Marks AOs. 1a States or uses I = F t M1 1.2 TBC. Notes

Q Scheme Marks AOs. 1a States or uses I = F t M1 1.2 TBC. Notes Q Scheme Marks AOs Pearson 1a States or uses I = F t M1 1.2 TBC I = 5 0.4 = 2 N s Answer must include units. 1b 1c Starts with F = m a and v = u + at Substitutes to get Ft = m(v u) Cue ball begins at rest

More information

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( )

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( ) Momentum and impulse Mixed exercise 1 1 a Using conseration of momentum: ( ) 6mu 4mu= 4m 1 u= After the collision the direction of Q is reersed and its speed is 1 u b Impulse = change in momentum I = (3m

More information

Version 1.0. General Certificate of Education (A-level) June 2012 MM03. Mathematics. (Specification 6360) Mechanics 3. Mark Scheme

Version 1.0. General Certificate of Education (A-level) June 2012 MM03. Mathematics. (Specification 6360) Mechanics 3. Mark Scheme Version 1.0 General Certificate of Education (-level) June 01 Mathematics (Specification 6360) Mechanics 3 Mark Scheme Mark schemes are prepared by the Principal Examiner and considered, together with

More information

9 Mixed Exercise. vector equation is. 4 a

9 Mixed Exercise. vector equation is. 4 a 9 Mixed Exercise a AB r i j k j k c OA AB 7 i j 7 k A7,, and B,,8 8 AB 6 A vector equation is 7 r x 7 y z (i j k) j k a x y z a a 7, Pearson Education Ltd 7. Copying permitted for purchasing institution

More information

Trigonometric Functions Mixed Exercise

Trigonometric Functions Mixed Exercise Trigonometric Functions Mied Eercise tan = cot, -80 90 Þ tan = tan Þ tan = Þ tan = ± Calculator value for tan = + is 54.7 ( d.p.) 4 a i cosecq = cotq, 0

More information

Trigonometric Functions 6C

Trigonometric Functions 6C Trigonometric Functions 6C a b c d e sin 3 q æ ö ø 4 tan 6 q 4 æ ö tanq ø cos q æ ö ø 3 cosec 3 q - sin q sin q cos q sin q (using sin q + cos q ) So - sin q sin q æ ö ø 6 4cot 6 q sec q cot q secq cos

More information

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 2: Coordinate geometry in the (x, y) plane

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 2: Coordinate geometry in the (x, y) plane Mark scheme Pure Mathematics Year 1 (AS) Unit Test : Coordinate in the (x, y) plane Q Scheme Marks AOs Pearson 1a Use of the gradient formula to begin attempt to find k. k 1 ( ) or 1 (k 4) ( k 1) (i.e.

More information

Circles, Mixed Exercise 6

Circles, Mixed Exercise 6 Circles, Mixed Exercise 6 a QR is the diameter of the circle so the centre, C, is the midpoint of QR ( 5) 0 Midpoint = +, + = (, 6) C(, 6) b Radius = of diameter = of QR = of ( x x ) + ( y y ) = of ( 5

More information

The gradient of the radius from the centre of the circle ( 1, 6) to (2, 3) is: ( 6)

The gradient of the radius from the centre of the circle ( 1, 6) to (2, 3) is: ( 6) Circles 6E a (x + ) + (y + 6) = r, (, ) Substitute x = and y = into the equation (x + ) + (y + 6) = r + + + 6 = r ( ) ( ) 9 + 8 = r r = 90 = 0 b The line has equation x + y = 0 y = x + y = x + The gradient

More information

( ) Applications of forces 7D. 1 Suppose that the rod has length 2a. Taking moments about A: acos30 3

( ) Applications of forces 7D. 1 Suppose that the rod has length 2a. Taking moments about A: acos30 3 Applications of forces 7D Suppose that the rod has length a. Taking moments about A: at 80 acos0 T 80 T 0. 6 N R( ), F T sin0 0 7. N R, T cos0 + R 80 R 80 0 50N In order for the rod to remain in equilibrium,

More information

Applications of forces Mixed exercise 7

Applications of forces Mixed exercise 7 Applications of forces Mied eercise 7 a Finding the components of P along each ais: ( ): P cos70 + 0sin7 ( ): P sin70 0cos7 Py tanθ P y sin70 0cos7 tanθ 0.634... cos70 + 0sin7 θ 3.6... The angle θ is 3.3

More information

( y) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios, Mixed Exercise 9. 2 b. Using the sine rule. a Using area of ABC = sin x sin80. So 10 = 24sinθ.

( y) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios, Mixed Exercise 9. 2 b. Using the sine rule. a Using area of ABC = sin x sin80. So 10 = 24sinθ. Trigonometric ratios, Mixed Exercise 9 b a Using area of ABC acsin B 0cm 6 8 sinθ cm So 0 4sinθ So sinθ 0 4 θ 4.6 or 3 s.f. (.) As θ is obtuse, ABC 3 s.f b Using the cosine rule b a + c ac cos B AC 8 +

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question The curve C, with equation y = x ln x, x > 0, has a stationary point P. Find, in terms of e, the coordinates of P. (7) y = x ln x, x > 0 Differentiate as a product: = x + x

More information

Pure Mathematics Year 1 (AS) Unit Test 1: Algebra and Functions

Pure Mathematics Year 1 (AS) Unit Test 1: Algebra and Functions Pure Mathematics Year (AS) Unit Test : Algebra and Functions Simplify 6 4, giving your answer in the form p 8 q, where p and q are positive rational numbers. f( x) x ( k 8) x (8k ) a Find the discriminant

More information

A Level. A Level Physics. MECHANICS: Momentum and Collisions (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30

A Level. A Level Physics. MECHANICS: Momentum and Collisions (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA, Edexcel, OCR A Level A Level Physics MECHANICS: Momentum and Collisions (Answers) Name: Total Marks: /30 Maths Made Easy Complete

More information

Finds the value of θ: θ = ( ). Accept awrt θ = 77.5 ( ). A1 ft 1.1b

Finds the value of θ: θ = ( ). Accept awrt θ = 77.5 ( ). A1 ft 1.1b 1a States that a = 4. 6 + a = 0 may be seen. B1 1.1b 4th States that b = 5. 4 + 9 + b = 0 may be seen. B1 1.1b () Understand Newton s first law and the concept of equilibrium. 1b States that R = i 9j (N).

More information

Trigonometry and modelling 7E

Trigonometry and modelling 7E Trigonometry and modelling 7E sinq +cosq º sinq cosa + cosq sina Comparing sin : cos Comparing cos : sin Divide the equations: sin tan cos Square and add the equations: cos sin (cos sin ) since cos sin

More information

IMPACT (Section 15.4)

IMPACT (Section 15.4) IMPACT (Section 15.4) Today s Objectives: Students will be able to: a) Understand and analyze the mechanics of impact. b) Analyze the motion of bodies undergoing a collision, in both central and oblique

More information

Differentiation 9I. 1 a. sin x 0 for 0 x π. So f ( x ) is convex on the interval. [0, π]. f ( x) 6x 6 0 for x 1. So f ( x ) is concave for all x

Differentiation 9I. 1 a. sin x 0 for 0 x π. So f ( x ) is convex on the interval. [0, π]. f ( x) 6x 6 0 for x 1. So f ( x ) is concave for all x Differentiation 9I a f ( ) f ( ) 6 6 f ( ) 6 ii f ( ) is concave when f ( ) sin for π So f ( ) is concave on the interval [, π]. i f ( ) is conve when f ( ) 6 6 for So f ( ) is conve for all or on the

More information

Teacher Support Materials. Maths GCE. Paper Reference MM03

Teacher Support Materials. Maths GCE. Paper Reference MM03 klm Teacher Support Materials Maths GCE Paper Reference MM03 Copyright 2008 AQA and its licensors. All rights reserved. Permission to reproduce all copyrighted material has been applied for. In some cases,

More information

Slide 1 / 47. Momentum by Goodman & Zavorotniy

Slide 1 / 47. Momentum by Goodman & Zavorotniy Slide 1 / 47 Momentum 2009 by Goodman & Zavorotniy Slide 2 / 47 Conservation of Momentum s we pointed out with energy, the most powerful concepts in science are called "conservation principles". These

More information

( ) Trigonometric identities and equations, Mixed exercise 10

( ) Trigonometric identities and equations, Mixed exercise 10 Trigonometric identities and equations, Mixed exercise 0 a is in the third quadrant, so cos is ve. The angle made with the horizontal is. So cos cos a cos 0 0 b sin sin ( 80 + 4) sin 4 b is in the fourth

More information

Linear Momentum and Collisions Conservation of linear momentum

Linear Momentum and Collisions Conservation of linear momentum Unit 4 Linear omentum and Collisions 4.. Conseration of linear momentum 4. Collisions 4.3 Impulse 4.4 Coefficient of restitution (e) 4.. Conseration of linear momentum m m u u m = u = u m Before Collision

More information

Version 1.0. klm. General Certificate of Education June Mathematics. Mechanics 3. Mark Scheme

Version 1.0. klm. General Certificate of Education June Mathematics. Mechanics 3. Mark Scheme Version.0 klm General Certificate of Education June 00 Mathematics MM03 Mechanics 3 Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together with the relevant questions,

More information

Topic 3 Motion in two dimensions Position of points in two dimensions is represented in vector form

Topic 3 Motion in two dimensions  Position of points in two dimensions is represented in vector form Page1 Position of points in two dimensions is represented in vector form r 1 = x 1 i + y 1 j and r = x i + y j If particle moves from r1 position to r position then Displacement is final position initial

More information

IMPACT Today s Objectives: In-Class Activities:

IMPACT Today s Objectives: In-Class Activities: Today s Objectives: Students will be able to: 1. Understand and analyze the mechanics of impact. 2. Analyze the motion of bodies undergoing a collision, in both central and oblique cases of impact. IMPACT

More information

UNITS, DIMENSION AND MEASUREMENT

UNITS, DIMENSION AND MEASUREMENT UNITS, DIMENSION AND MEASUREMENT Measurement of large distance (Parallax Method) D = b θ Here D = distance of the planet from the earth. θ = parallax angle. b = distance between two place of observation

More information

Momentum. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47. Conservation of Momentum. Conservation of Momentum

Momentum. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47. Conservation of Momentum. Conservation of Momentum Slide 1 / 47 Momentum 2009 by Goodman & Zavorotniy onservation of Momentum Slide 2 / 47 s we pointed out with energy, the most powerful concepts in science are called "conservation principles". These principles

More information

Q Scheme Marks AOs Pearson Progression Step and Progress descriptor. and sin or x 6 16x 6 or x o.e

Q Scheme Marks AOs Pearson Progression Step and Progress descriptor. and sin or x 6 16x 6 or x o.e 1a A 45 seen or implied in later working. B1 1.1b 5th Makes an attempt to use the sine rule, for example, writing sin10 sin 45 8x3 4x1 States or implies that sin10 3 and sin 45 A1 1. Solve problems involving

More information

PhysicsAndMathsTutor.com. Mark Scheme (Results) Summer Pearson Edexcel GCE in Mechanics 2 (6678_01)

PhysicsAndMathsTutor.com. Mark Scheme (Results) Summer Pearson Edexcel GCE in Mechanics 2 (6678_01) Mark Scheme (Results) Summer 016 Pearson Edexcel GCE in Mechanics (6678_01) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK s largest awarding body. We provide

More information

PhysicsAndMathsTutor.com. Mark Scheme (Results) Summer Pearson Edexcel GCE in Mechanics 4 (6680/01)

PhysicsAndMathsTutor.com. Mark Scheme (Results) Summer Pearson Edexcel GCE in Mechanics 4 (6680/01) Mark Scheme (Results) Summer 015 Pearson Edexcel GCE in Mechanics 4 (6680/01) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK s largest awarding body. We

More information

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ APPLICATIONS CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: The quality of a tennis ball

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . [In this question i and j are perpendicular unit vectors in a horizontal plane.] A ball of mass 0. kg is moving with velocity (0i + j) ms when it is struck by a bat. Immediately after the impact the

More information

THE COMPOUND ANGLE IDENTITIES

THE COMPOUND ANGLE IDENTITIES TRIGONOMETRY THE COMPOUND ANGLE IDENTITIES Question 1 Prove the validity of each of the following trigonometric identities. a) sin x + cos x 4 4 b) cos x + + 3 sin x + 2cos x 3 3 c) cos 2x + + cos 2x cos

More information

Review exercise

Review exercise Review eercise y cos sin When : 8 y and 8 gradient of normal is 8 y When : 9 y and 8 Equation of normal is y 8 8 y8 8 8 8y 8 8 8 8y 8 8 8 8y 8 8 8 y e ln( ) e ln e When : y e ln and e Equation of tangent

More information

Applications of forces 7C

Applications of forces 7C Applications of forces 7C 1 Let the normal reaction be R N, the friction force be F N and the coefficient of friction be µ. Resolve horizontally to find F, vertically to find R and use F µr to find µ:

More information

Mark Schemes for "Solomon" M2 practice papers A to F

Mark Schemes for Solomon M2 practice papers A to F Mark Schemes for "Solomon" M practice papers A to F M Paper A Marking Guide. cons. of mom: m(5) m() m + m M + 5 ( ) 4 sole simul. giing m s - so speed is m s -, m s - (6). (a) dr dt (t )i + t j when t

More information

t-tw~4 F = ( 100 )( 20 ) = N (100 kg) (20 mls) - Fave(0.110 s) = 0 /).t = s = -Fm(0.110s) = (18182 N) (0.110 s) PROBLEM 13.

t-tw~4 F = ( 100 )( 20 ) = N (100 kg) (20 mls) - Fave(0.110 s) = 0 /).t = s = -Fm(0.110s) = (18182 N) (0.110 s) PROBLEM 13. ;6 t-tw~4 PROBLEM 13.144 An estimate of the expected load on over-the-shoulder seat belts is made before designing prototype belts that will be evaluated in automobile crash tests. Assuming that an automobile

More information

( ) ( ) 2 1 ( ) Conic Sections 1 2E. 1 a. 1 dy. At (16, 8), d y 2 1 Tangent is: dx. Tangent at,8. is 1

( ) ( ) 2 1 ( ) Conic Sections 1 2E. 1 a. 1 dy. At (16, 8), d y 2 1 Tangent is: dx. Tangent at,8. is 1 Conic Sections E a y y so At (6, ), d y y ( 6) y 6 y+ 6 y 6+ y+ 6 d y y At, 6 When, y, angent at, is y 6 y 6+ 6+ y 6+ y 6 y y so,, d y At y ( ) y ( ) y y+ y + y+ e 6+ y 6 y 7 7 y 7 so d d y 7 At ( 7, 7),

More information

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = =

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = = Review Eercise a Use m m a a, so a a a Use c c 6 5 ( a ) 5 a First find Use a 5 m n m n m a m ( a ) or ( a) 5 5 65 m n m a n m a m a a n m or m n (Use a a a ) cancelling y 6 ecause n n ( 5) ( 5)( 5) (

More information

OCR Maths M2. Topic Questions from Papers. Projectiles. Answers

OCR Maths M2. Topic Questions from Papers. Projectiles. Answers OCR Maths M Topic Questions from Papers Projectiles Answers PhysicsAndMathsTutor.com 1 v = x9.8x10 energy:½mv =½mu + mgh v = 14 ½v = ½.36 + 9.8x10 speed = (14 + 6 ) (must be 6 ) v = 36+196=3 speed = 15.

More information

Exam Question 5: Work, Energy, Impacts and Collisions. June 18, Applied Mathematics: Lecture 5. Brendan Williamson.

Exam Question 5: Work, Energy, Impacts and Collisions. June 18, Applied Mathematics: Lecture 5. Brendan Williamson. Exam Question 5: Work, Energy, Impacts and June 18, 016 In this section we will continue our foray into forces acting on objects and objects acting on each other. We will first discuss the notion of energy,

More information

Background Trigonmetry (2A) Young Won Lim 5/5/15

Background Trigonmetry (2A) Young Won Lim 5/5/15 Background Trigonmetry (A) Copyright (c) 014 015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1. or

More information

Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary Centre No. Candidate No. Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary Wednesday 16 May 2012 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical

More information

h (1- sin 2 q)(1+ tan 2 q) j sec 4 q - 2sec 2 q tan 2 q + tan 4 q 2 cosec x =

h (1- sin 2 q)(1+ tan 2 q) j sec 4 q - 2sec 2 q tan 2 q + tan 4 q 2 cosec x = Trigonometric Functions 6D a Use + tan q sec q with q replaced with q + tan q ( ) sec ( q ) b (secq -)(secq +) sec q - (+ tan q) - tan q c tan q(cosec q -) ( ) tan q (+ cot q) - tan q cot q tan q d (sec

More information

AS MATHEMATICS MECHANICS 1B

AS MATHEMATICS MECHANICS 1B AS MATHEMATICS MECHANICS 1B MB Final Mark Scheme 660 June 017 Version/Stage: v1.0 Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel

More information

Mark scheme. 65 A1 1.1b. Pure Mathematics Year 1 (AS) Unit Test 5: Vectors. Pearson Progression Step and Progress descriptor. Q Scheme Marks AOs

Mark scheme. 65 A1 1.1b. Pure Mathematics Year 1 (AS) Unit Test 5: Vectors. Pearson Progression Step and Progress descriptor. Q Scheme Marks AOs Pure Mathematics Year (AS) Unit Test : Vectors Makes an attempt to use Pythagoras theorem to find a. For example, 4 7 seen. 6 A.b 4th Find the unit vector in the direction of a given vector Displays the

More information

Mark Scheme (Results) Summer GCE Mechanics M2 (6678) Paper 1

Mark Scheme (Results) Summer GCE Mechanics M2 (6678) Paper 1 Mark Scheme (Results) Summer 01 GCE Mechanics M (6678) Paper 1 Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the world s leading learning company. We provide a wide

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6678/01 Edexcel GCE Mechanics M2 Gold Level G3 Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Pink) Items included with question papers Nil Candidates

More information

PMT A-LEVEL MATHEMATICS. Mechanics 1B MM1B Mark scheme June Version/Stage V1.0 Final

PMT A-LEVEL MATHEMATICS. Mechanics 1B MM1B Mark scheme June Version/Stage V1.0 Final A-LEVEL MATHEMATICS Mechanics 1B MM1B Mark scheme 660 June 014 Version/Stage V1.0 Final Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by

More information

1a States correct answer: 5.3 (m s 1 ) B1 2.2a 4th Understand the difference between a scalar and a vector. Notes

1a States correct answer: 5.3 (m s 1 ) B1 2.2a 4th Understand the difference between a scalar and a vector. Notes 1a States correct answer: 5.3 (m s 1 ) B1.a 4th Understand the difference between a scalar and a vector. 1b States correct answer: 4.8 (m s 1 ) B1.a 4th Understand the difference between a scalar and a

More information

Review of Linear Momentum And Rotational Motion

Review of Linear Momentum And Rotational Motion Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 7 Review of Linear Momentum And Rotational Motion Slide 1 of 29 Physics 7B Lecture 7 17-Feb-2010 Slide 2 of 29 The Definition of Impulse Recall that

More information

Mark Scheme (Results) Summer Pearson Edexcel GCE in Mechanics 4 (6680/01)

Mark Scheme (Results) Summer Pearson Edexcel GCE in Mechanics 4 (6680/01) Mark Scheme (Results) Summer 016 Pearson Edexcel GCE in Mechanics 4 (6680/01) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK s largest awarding body. We

More information

Solutionbank C1 Edexcel Modular Mathematics for AS and A-Level

Solutionbank C1 Edexcel Modular Mathematics for AS and A-Level Heinemann Solutionbank: Core Maths C Page of Solutionbank C Exercise A, Question Find the values of x for which f ( x ) = x x is a decreasing function. f ( x ) = x x f ( x ) = x x Find f ( x ) and put

More information

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios 9E. b Using the line of symmetry through A. 1 a. cos 48 = 14.6 So y = 29.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios 9E. b Using the line of symmetry through A. 1 a. cos 48 = 14.6 So y = 29. Trigonometric ratios 9E a b Using the line of symmetry through A y cos.6 So y 9. cos 9. s.f. Using sin x sin 6..7.sin 6 sin x.7.sin 6 x sin.7 7.6 x 7.7 s.f. So y 0 6+ 7.7 6. y 6. s.f. b a Using sin sin

More information

Physics 5A Final Review Solutions

Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

More information

LINEAR MOMENTUM AND COLLISIONS

LINEAR MOMENTUM AND COLLISIONS LINEAR MOMENTUM AND COLLISIONS Chapter 9 Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass

More information

Mark scheme Mechanics Year 1 (AS) Unit Test 7: Kinematics 1 (constant acceleration)

Mark scheme Mechanics Year 1 (AS) Unit Test 7: Kinematics 1 (constant acceleration) 1a Figure 1 General shape of the graph is correct. i.e. horizontal line, followed by negative gradient, followed by a positive gradient. Vertical axis labelled correctly. Horizontal axis labelled correctly.

More information

Momentum. Slide 2 / 69. Slide 1 / 69. Slide 4 / 69. Slide 3 / 69. Slide 5 / 69. Slide 6 / 69. Conservation of Momentum. Conservation of Momentum

Momentum. Slide 2 / 69. Slide 1 / 69. Slide 4 / 69. Slide 3 / 69. Slide 5 / 69. Slide 6 / 69. Conservation of Momentum. Conservation of Momentum Slide 1 / 69 Momentum 2009 by Goodman & Zavorotniy Slide 2 / 69 onservation of Momentum The most powerful concepts in science are called "conservation principles". Without worrying about the details of

More information

Dylan Humenik Ben Daily Srikrishnan Varadarajan Double Cart Collisions

Dylan Humenik Ben Daily Srikrishnan Varadarajan Double Cart Collisions Double Cart Collisions Objective: -Apply knowledge of collisions in analysis of collision -Find momentum and kinetic energy of two different collisions (elastic and inelastic) Data: Mass (kg) Cart 1 (moving)

More information

Mark Scheme (Results) January 2011

Mark Scheme (Results) January 2011 Mark (Results) January 2011 GCE GCE Mechanics (6677) Paper 1 Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH Edexcel is one of the leading

More information

Constant acceleration, Mixed Exercise 9

Constant acceleration, Mixed Exercise 9 Constant acceleration, Mixed Exercise 9 a 45 000 45 km h = m s 3600 =.5 m s 3 min = 80 s b s= ( a+ bh ) = (60 + 80).5 = 5 a The distance from A to B is 5 m. b s= ( a+ bh ) 5 570 = (3 + 3 + T ) 5 ( T +

More information

Exam-style practice: Paper 3, Section A: Statistics

Exam-style practice: Paper 3, Section A: Statistics Exam-style practice: Paper 3, Section A: Statistics a Use the cumulative binomial distribution tables, with n = 4 and p =.5. Then PX ( ) P( X ).5867 =.433 (4 s.f.). b In order for the normal approximation

More information

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company Section 1 Momentum and Impulse Preview Objectives Linear Momentum Section 1 Momentum and Impulse Objectives Compare the momentum of different moving objects. Compare the momentum of the same object moving

More information

OCR Maths M2. Topic Questions from Papers. Collisions

OCR Maths M2. Topic Questions from Papers. Collisions OCR Maths M2 Topic Questions from Papers Collisions 41 Three smooth spheres A, B and C, ofequalradiusandofmassesm kg, 2m kg and 3m kg respectively, lie in a straight line and are free to move on a smooth

More information

Mark Scheme (Results) January Pearson Edexcel International Advanced Level. Mechanics 2 (WME02/01)

Mark Scheme (Results) January Pearson Edexcel International Advanced Level. Mechanics 2 (WME02/01) Mark (Results) January 014 Pearson Edexcel International Advanced Level Mechanics (WME0/01) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the world s leading learning

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

STEP Support Programme. Mechanics STEP Questions

STEP Support Programme. Mechanics STEP Questions STEP Support Programme Mechanics STEP Questions This is a selection of mainly STEP I questions with a couple of STEP II questions at the end. STEP I and STEP II papers follow the same specification, the

More information

PH 253 Exam I Solutions

PH 253 Exam I Solutions PH 253 Exam I Solutions. An electron and a proton are each accelerated starting from rest through a potential difference of 0.0 million volts (0 7 V). Find the momentum (in MeV/c) and kinetic energy (in

More information

Mark Scheme (Results) Summer Pearson Edexcel GCE In Mechanics M4 (6680/01)

Mark Scheme (Results) Summer Pearson Edexcel GCE In Mechanics M4 (6680/01) Mark Scheme (Results) Summer 07 Pearson Edexcel GCE In Mechanics M4 (6680/0) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK s largest awarding body. We provide

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS

5.3 SOLVING TRIGONOMETRIC EQUATIONS 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two smooth niform spheres S and T have eqal radii. The mass of S is 0. kg and the mass of T is 0.6 kg. The spheres are moving on a smooth horizontal plane and collide obliqely. Immediately before the

More information

Chapter 8 LINEAR MOMENTUM AND COLLISIONS

Chapter 8 LINEAR MOMENTUM AND COLLISIONS Chapter 8 LINEAR MOMENTUM AND COLLISIONS Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass Systems with Changing

More information

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 6 Inverse Circular Functions and Trigonometric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 6.2 Trigonometric Equations Linear Methods Zero-Factor Property Quadratic Methods Trigonometric

More information

4762 Mark Scheme June 2005

4762 Mark Scheme June 2005 76 Mark Scheme June 00 Q mark Sub (a) (i) 0 i N s B M Equating to their 0 i in this part (A) 0 i = 70 i +0 v so v =. i m s A FT 0 i (B) 0 i = 70u i 0u i M Must have u in both RHS terms and opposite signs

More information

First Year Physics: Prelims CP1 Classical Mechanics: DR. Ghassan Yassin

First Year Physics: Prelims CP1 Classical Mechanics: DR. Ghassan Yassin First Year Physics: Prelims CP1 Classical Mechanics: DR. Ghassan Yassin MT 2007 Problems I The problems are divided into two sections: (A) Standard and (B) Harder. The topics are covered in lectures 1

More information

Vectors 1C. 6 k) = =0 = =17

Vectors 1C. 6 k) = =0 = =17 Vectors C For each problem, calculate the vector product in the bracet first and then perform the scalar product on the answer. a b c= 3 0 4 =4i j 3 a.(b c=(5i+j.(4i j 3 =0 +3= b c a = 3 0 4 5 = 8i+3j+6

More information

Quiz Samples for Chapter 9 Center of Mass and Linear Momentum

Quiz Samples for Chapter 9 Center of Mass and Linear Momentum Name: Department: Student ID #: Notice +2 ( 1) points per correct (incorrect) answer No penalty for an unanswered question Fill the blank ( ) with ( ) if the statement is correct (incorrect) : corrections

More information

ADDITIONAL MATHEMATICS

ADDITIONAL MATHEMATICS 005-CE A MATH HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 005 ADDITIONAL MATHEMATICS :00 pm 5:0 pm (½ hours) This paper must be answered in English 1. Answer ALL questions in Section A and any FOUR

More information

Circle correct course: PHYS 1P21 or PHYS 1P91 BROCK UNIVERSITY. Course: PHYS 1P21/1P91 Number of students: 260 Examination date: 10 November 2014

Circle correct course: PHYS 1P21 or PHYS 1P91 BROCK UNIVERSITY. Course: PHYS 1P21/1P91 Number of students: 260 Examination date: 10 November 2014 Tutorial #: Circle correct course: PHYS P or PHYS P9 Name: Student #: BROCK UNIVERSITY Test 5: November 04 Number of pages: 5 + formula sheet Course: PHYS P/P9 Number of students: 0 Examination date: 0

More information