Lectures on Quantum sine-gordon Models

Size: px
Start display at page:

Download "Lectures on Quantum sine-gordon Models"

Transcription

1 Lectures on Quantum sine-gordon Models Juan Mateos Guilarte 1, 1 Departamento de Física Fundamental (Universidad de Salamanca) IUFFyM (Universidad de Salamanca) Universidade Federal de Matto Grosso Cuiabá, Brazil, 010

2 Outline 1 3

3 Surfaces of constant negative curvature Let u, v be Tchebyshev coordinates in hyperbolic geometry (skip umbilical points): ds = du + cosφ(u, v)dudv + dv u = constant and v = constant are asymptotic lines (normal curvature null). φ: angle between the two asymptotic lines. Metric tensor components and Christoffel symbols: g 11 = g = 1, g 11 = g 1 = sin φ g 1 = g 1 = cosφ, g 1 = g 1 = cosφ Γ 1 11 = cotφ φ, Γ 1 u Γ 11 = cosecφ φ u = cosecφ φ v, Γ 1 = cotφ φ v sin φ, Γ 1 1 = Γ1 1 = 0, Γ 1 = Γ 1 = 0

4 Codazzi-Mainardi Scalar curvature, Gauss curvature and principal curvatures S = K = κ 1 κ = g ik R j ijk = cosecφ φ u v with Gaussian curvature K = 1 are tantamount to solutions of the sine-gordon φ = sinφ(u, v) (1) u v The sine-gordon (1) is the Codazzi- Mainardi of compatibility between the first and second fundamental forms I = Edu + Fdudv + Gdv = du + cosφ(u, v)dudv + dv II = Ldu + Mdudv + Ndv = sinφ(u, v)dudv ( ) = M Γ 1 11 Γ1 1, M u M ( v = M Γ Γ 1 )

5 Pseudospherical congruences Σ 1, Σ : in R 3. Let l : Σ 1 Σ be a diffeomorphism between the two. l is a pseudospherical congruence with constant θ if: 1 The line joining s 1 Σ 1 with s = l(s 1 ) Σ is tangent to both Σ 1 and Σ The angle between the normal of Σ 1 at s 1 and the normal of Σ at s = l(s 1 ) is θ 3 d(s 1, l(s 1 )) = sinθ, s 1 Σ 1 Theorem. If l : Σ 1 Σ is a pseudospherical congruence of constant θ: 1 Σ 1 and Σ are pseudospherical. The Tchebyshev coordinates u, v in Σ 1 are mapped into the Tchebyshev coordinates u, v in Σ. 3 Let φ 1 (u, v) the solution of the sge corresponding to Σ 1. The solution φ of the first-order PDE system φ u = φ ( ) 1 u + asin φ + φ 1 φ, v = φ 1 v + ( ) a sin φ φ 1, () where a = tan θ, is the solution of the sge corresponding to Σ. 4 The system () is solvable if φ 1 solves the sge.

6 BT check and one-soliton solution BT check: Derive the left in () and use the right in (): ( ) φ u v φ 1 φ + φ 1 = a cos u v v (φ + φ 1 ) ( ) ( ) φ φ 1 φ + φ 1 = sin cos = sinφ sinφ 1 One-soliton solution. Start from: φ 1 = 0. Integration of BT ( ) dφ sin φ = log tan φ = au + f (v) + c u = v + g(v) + cv 4 a One step BT transformation φ (u, v) = 4arctan[Cexp(au + v )], C = cu cv = constant a

7 Bianchi permutability theorem Bianchi miracle: after the first step, the procedure can be carried out algebraically. Consider the successive BT: 1 u (φ φ 1 ) = a 1 sin φ + φ 1 1, u (φ 3 φ 1 ) = a sin φ 3 + φ 1 1 u (φ 4 φ ) = a sin φ 4 + φ 1, u (φ 4 φ 3 ) = a 1 sin φ 4 + φ 3 Add and subtract these s in such a way that the derivatives disappear ( ) ( )] ( ) ( )] φ + φ 1 φ4 + φ 3 φ3 + φ 1 φ4 + φ a 1 [sin sin = a [sin sin tan φ 4 φ 1 4 Two step transformation = a 1 + a tan φ φ 3 a 1 a 4

8 Start from φ (u, v) = 4 arctan Two- φ 4 (u, v) = 4 arctan Two-soliton and breather solutions [ )] [ )] C 1 exp (a 1 u + va1, φ 3 (u, v) = 4 arctan C exp (a u + va [ a1 + a [ tan arctan (C 1 e v +a a 1 u ) 1 arctan (C e v +a a u )]] a 1 a Breather solutions. Choose C 1 = C = 1, a 1 = sin θ i cos θ, and a = sin θ + i cos θ [ sin θ sin( u v ] cos θ) φ 4 (u, v) = 4 arctan cos θ cosh( u+v sin θ) Three- ( v +a φ 6 (u, v) = 4 arctan C e a u ) + + [ [ [ [ ( a1 + a 3 a1 + a v +a 4 arctan tan arctan tan arctan C 1 e a 1 u ) ( v +a 1 arctan C e a u )]] a 1 a 3 a 1 a + + [ [ ( a + a v 3 +a arctan tan arctan C e a u ) ( v +a arctan C 3 e a 3 u )]]]] 3 a 3 a

9 Pseudospherical One-soliton : a = 1, tractroid, and a 1, Dini Two-soliton. Kuen and breather ( 1 cos φ Singularities: det cos φ 1 ) = 0 C. L. Terng and K. Uhlenbeck: Geometry of solitons, Notices of AMS, 47(000) 17-5

LECTURE 6: PSEUDOSPHERICAL SURFACES AND BÄCKLUND S THEOREM. 1. Line congruences

LECTURE 6: PSEUDOSPHERICAL SURFACES AND BÄCKLUND S THEOREM. 1. Line congruences LECTURE 6: PSEUDOSPHERICAL SURFACES AND BÄCKLUND S THEOREM 1. Line congruences Let G 1 (E 3 ) denote the Grassmanian of lines in E 3. A line congruence in E 3 is an immersed surface L : U G 1 (E 3 ), where

More information

DIFFERENTIAL GEOMETRY HW 4. Show that a catenoid and helicoid are locally isometric.

DIFFERENTIAL GEOMETRY HW 4. Show that a catenoid and helicoid are locally isometric. DIFFERENTIAL GEOMETRY HW 4 CLAY SHONKWILER Show that a catenoid and helicoid are locally isometric. 3 Proof. Let X(u, v) = (a cosh v cos u, a cosh v sin u, av) be the parametrization of the catenoid and

More information

Surfaces of Arbitrary Constant Negative Gaussian Curvature and Related Sine-Gordon Equations

Surfaces of Arbitrary Constant Negative Gaussian Curvature and Related Sine-Gordon Equations Mathematica Aeterna, Vol.1, 011, no. 01, 1-11 Surfaces of Arbitrary Constant Negative Gaussian Curvature and Related Sine-Gordon Equations Paul Bracken Department of Mathematics, University of Texas, Edinburg,

More information

Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algo

Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algo Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algorithm development Shape control and interrogation Curves

More information

Chapter 14. Basics of The Differential Geometry of Surfaces. Introduction. Parameterized Surfaces. The First... Home Page. Title Page.

Chapter 14. Basics of The Differential Geometry of Surfaces. Introduction. Parameterized Surfaces. The First... Home Page. Title Page. Chapter 14 Basics of The Differential Geometry of Surfaces Page 649 of 681 14.1. Almost all of the material presented in this chapter is based on lectures given by Eugenio Calabi in an upper undergraduate

More information

Modeling Soliton Solutions to the Sine-Gordon Equation

Modeling Soliton Solutions to the Sine-Gordon Equation Dynamics at the Horsetooth Volume, 010. Modeling Soliton Solutions to the Sine-Gordon Equation Jeff Lyons, Heith Kippenhan, Erik Wildforster Department of Physics Colorado State University Report submitted

More information

MATH DIFFERENTIAL GEOMETRY. Contents

MATH DIFFERENTIAL GEOMETRY. Contents MATH 3968 - DIFFERENTIAL GEOMETRY ANDREW TULLOCH Contents 1. Curves in R N 2 2. General Analysis 2 3. Surfaces in R 3 3 3.1. The Gauss Bonnet Theorem 8 4. Abstract Manifolds 9 1 MATH 3968 - DIFFERENTIAL

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

Lectures 18: Gauss's Remarkable Theorem II. Table of contents

Lectures 18: Gauss's Remarkable Theorem II. Table of contents Math 348 Fall 27 Lectures 8: Gauss's Remarkable Theorem II Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams.

More information

Gaussian and Mean Curvatures

Gaussian and Mean Curvatures Gaussian and Mean Curvatures (Com S 477/577 Notes) Yan-Bin Jia Oct 31, 2017 We have learned that the two principal curvatures (and vectors) determine the local shape of a point on a surface. One characterizes

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 15.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

More information

Math 5378, Differential Geometry Solutions to practice questions for Test 2

Math 5378, Differential Geometry Solutions to practice questions for Test 2 Math 5378, Differential Geometry Solutions to practice questions for Test 2. Find all possible trajectories of the vector field w(x, y) = ( y, x) on 2. Solution: A trajectory would be a curve (x(t), y(t))

More information

Geodesics. (Com S 477/577 Notes) Yan-Bin Jia. Nov 2, 2017

Geodesics. (Com S 477/577 Notes) Yan-Bin Jia. Nov 2, 2017 Geodesics (om S 477/577 Notes Yan-Bin Jia Nov 2, 2017 Geodesics are the curves in a surface that make turns just to stay on the surface and never move sideways. A bug living in the surface and following

More information

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt ( ds dt )2 Surface x(u, v)

More information

The geometry of a class of partial differential equations and surfaces in Lie algebras

The geometry of a class of partial differential equations and surfaces in Lie algebras Dynamics at the Horsetooth Volume, 29. The geometry of a class of partial differential equations and surfaces in Lie algebras Department of Mathematics Colorado State University Report submitted to Prof.

More information

THE COMPOUND ANGLE IDENTITIES

THE COMPOUND ANGLE IDENTITIES TRIGONOMETRY THE COMPOUND ANGLE IDENTITIES Question 1 Prove the validity of each of the following trigonometric identities. a) sin x + cos x 4 4 b) cos x + + 3 sin x + 2cos x 3 3 c) cos 2x + + cos 2x cos

More information

BÄCKLUND TRANSFORMATIONS ACCORDING TO BISHOP FRAME IN EUCLIDEAN 3-SPACE

BÄCKLUND TRANSFORMATIONS ACCORDING TO BISHOP FRAME IN EUCLIDEAN 3-SPACE iauliai Math. Semin., 7 15), 2012, 4149 BÄCKLUND TRANSFORMATIONS ACCORDING TO BISHOP FRAME IN EUCLIDEAN 3-SPACE Murat Kemal KARACAN, Yilmaz TUNÇER Department of Mathematics, Usak University, 64200 Usak,

More information

Tutorial General Relativity

Tutorial General Relativity Tutorial General Relativity Winter term 016/017 Sheet No. 3 Solutions will be discussed on Nov/9/16 Lecturer: Prof. Dr. C. Greiner Tutor: Hendrik van Hees 1. Tensor gymnastics (a) Let Q ab = Q ba be a

More information

Chapter 4. The First Fundamental Form (Induced Metric)

Chapter 4. The First Fundamental Form (Induced Metric) Chapter 4. The First Fundamental Form (Induced Metric) We begin with some definitions from linear algebra. Def. Let V be a vector space (over IR). A bilinear form on V is a map of the form B : V V IR which

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

INTRODUCTION TO GEOMETRY

INTRODUCTION TO GEOMETRY INTRODUCTION TO GEOMETRY ERIKA DUNN-WEISS Abstract. This paper is an introduction to Riemannian and semi-riemannian manifolds of constant sectional curvature. We will introduce the concepts of moving frames,

More information

Conformally flat hypersurfaces with cyclic Guichard net

Conformally flat hypersurfaces with cyclic Guichard net Conformally flat hypersurfaces with cyclic Guichard net (Udo Hertrich-Jeromin, 12 August 2006) Joint work with Y. Suyama A geometrical Problem Classify conformally flat hypersurfaces f : M n 1 S n. Def.

More information

Part IB GEOMETRY (Lent 2016): Example Sheet 1

Part IB GEOMETRY (Lent 2016): Example Sheet 1 Part IB GEOMETRY (Lent 2016): Example Sheet 1 (a.g.kovalev@dpmms.cam.ac.uk) 1. Suppose that H is a hyperplane in Euclidean n-space R n defined by u x = c for some unit vector u and constant c. The reflection

More information

GEOMETRY HW Consider the parametrized surface (Enneper s surface)

GEOMETRY HW Consider the parametrized surface (Enneper s surface) GEOMETRY HW 4 CLAY SHONKWILER 3.3.5 Consider the parametrized surface (Enneper s surface φ(u, v (x u3 3 + uv2, v v3 3 + vu2, u 2 v 2 show that (a The coefficients of the first fundamental form are E G

More information

Christoffel Symbols. 1 In General Topologies. Joshua Albert. September 28, W. First we say W : λ n = x µ (λ) so that the world

Christoffel Symbols. 1 In General Topologies. Joshua Albert. September 28, W. First we say W : λ n = x µ (λ) so that the world Christoffel Symbols Joshua Albert September 28, 22 In General Topoloies We have a metric tensor nm defined by, Note by some handy theorem that for almost any continuous function F (L), equation 2 still

More information

On the Blaschke trihedrons of a line congruence

On the Blaschke trihedrons of a line congruence NTMSCI 4, No. 1, 130-141 (2016) 130 New Trends in Mathematical Sciences http://dx.doi.org/10.20852/ntmsci.2016115659 On the Blaschke trihedrons of a line congruence Sadullah Celik Emin Ozyilmaz Department

More information

Tensor Analysis in Euclidean Space

Tensor Analysis in Euclidean Space Tensor Analysis in Euclidean Space James Emery Edited: 8/5/2016 Contents 1 Classical Tensor Notation 2 2 Multilinear Functionals 4 3 Operations With Tensors 5 4 The Directional Derivative 5 5 Curvilinear

More information

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Boian Lazov and Stoytcho Yazadjiev Varna, 2017 Outline 1 Motivation 2 Preliminaries

More information

Trig Identities. or (x + y)2 = x2 + 2xy + y 2. Dr. Ken W. Smith Other examples of identities are: (x + 3)2 = x2 + 6x + 9 and

Trig Identities. or (x + y)2 = x2 + 2xy + y 2. Dr. Ken W. Smith Other examples of identities are: (x + 3)2 = x2 + 6x + 9 and Trig Identities An identity is an equation that is true for all values of the variables. Examples of identities might be obvious results like Part 4, Trigonometry Lecture 4.8a, Trig Identities and Equations

More information

CS Tutorial 5 - Differential Geometry I - Surfaces

CS Tutorial 5 - Differential Geometry I - Surfaces 236861 Numerical Geometry of Images Tutorial 5 Differential Geometry II Surfaces c 2009 Parameterized surfaces A parameterized surface X : U R 2 R 3 a differentiable map 1 X from an open set U R 2 to R

More information

The interrelationship of integrable equations, differential geometry and the geometry of their associated surfaces

The interrelationship of integrable equations, differential geometry and the geometry of their associated surfaces arxiv:0903.119v [math-ph] 18 May 009 The interrelationship of integrable equations, differential geometry and the geometry of their associated surfaces Paul Bracken Department of Mathematics University

More information

Normal Curvature, Geodesic Curvature and Gauss Formulas

Normal Curvature, Geodesic Curvature and Gauss Formulas Title Normal Curvature, Geodesic Curvature and Gauss Formulas MATH 2040 December 20, 2016 MATH 2040 Normal and Geodesic Curvature December 20, 2016 1 / 12 Readings Readings Readings: 4.4 MATH 2040 Normal

More information

Index. Bertrand mate, 89 bijection, 48 bitangent, 69 Bolyai, 339 Bonnet s Formula, 283 bounded, 48

Index. Bertrand mate, 89 bijection, 48 bitangent, 69 Bolyai, 339 Bonnet s Formula, 283 bounded, 48 Index acceleration, 14, 76, 355 centripetal, 27 tangential, 27 algebraic geometry, vii analytic, 44 angle at a corner, 21 on a regular surface, 170 angle excess, 337 angle of parallelism, 344 angular velocity,

More information

Lecture 13 The Fundamental Forms of a Surface

Lecture 13 The Fundamental Forms of a Surface Lecture 13 The Fundamental Forms of a Surface In the following we denote by F : O R 3 a parametric surface in R 3, F(u, v) = (x(u, v), y(u, v), z(u, v)). We denote partial derivatives with respect to the

More information

Molding surfaces and Liouville s equation

Molding surfaces and Liouville s equation Molding surfaces and Liouville s equation Naoya Ando Abstract According to [9], a molding surface has a property that a family of lines of curvature consists of geodesics. In the present paper, we will

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

Constant Angle Surfaces in the Heisenberg Group

Constant Angle Surfaces in the Heisenberg Group Acta Mathematica Sinica, English Series Apr., 2011, Vol. 27, No. 4, pp. 747 756 Published online: March 15, 2011 DOI: 10.1007/s10114-011-8428-0 Http://www.ActaMath.com Acta Mathematica Sinica, English

More information

Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane

Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 9 NO. 2 PAGE 87 93 (216) Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane Shangrong Deng (Communicated by Young-Ho Kim) ABSTRACT We completely

More information

THE INVERSE TRIGONOMETRIC FUNCTIONS

THE INVERSE TRIGONOMETRIC FUNCTIONS THE INVERSE TRIGONOMETRIC FUNCTIONS Question 1 (**+) Solve the following trigonometric equation ( x ) π + 3arccos + 1 = 0. 1 x = Question (***) It is given that arcsin x = arccos y. Show, by a clear method,

More information

1 Curvature of submanifolds of Euclidean space

1 Curvature of submanifolds of Euclidean space Curvature of submanifolds of Euclidean space by Min Ru, University of Houston 1 Curvature of submanifolds of Euclidean space Submanifold in R N : A C k submanifold M of dimension n in R N means that for

More information

5.3 Surface Theory with Differential Forms

5.3 Surface Theory with Differential Forms 5.3 Surface Theory with Differential Forms 1 Differential forms on R n, Click here to see more details Differential forms provide an approach to multivariable calculus (Click here to see more detailes)

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico 1. Starting from R αβµν Z ν = 2 [α β] Z µ, deduce the components of the Riemann curvature tensor in terms of the Christoffel symbols.

More information

Motion in Three Dimensions

Motion in Three Dimensions Motion in Three Dimensions We ve learned about the relationship between position, velocity and acceleration in one dimension Now we need to extend those ideas to the three-dimensional world In the 1-D

More information

Curvilinear Coordinates

Curvilinear Coordinates University of Alabama Department of Physics and Astronomy PH 106-4 / LeClair Fall 2008 Curvilinear Coordinates Note that we use the convention that the cartesian unit vectors are ˆx, ŷ, and ẑ, rather than

More information

SELECTED SAMPLE FINAL EXAM SOLUTIONS - MATH 5378, SPRING 2013

SELECTED SAMPLE FINAL EXAM SOLUTIONS - MATH 5378, SPRING 2013 SELECTED SAMPLE FINAL EXAM SOLUTIONS - MATH 5378, SPRING 03 Problem (). This problem is perhaps too hard for an actual exam, but very instructional, and simpler problems using these ideas will be on the

More information

Map Projections. Jim Emery. Revision 7/21/ The Earth Ellipsoid 2. 2 The Fundamental Quadratic Forms of a Surface 6

Map Projections. Jim Emery. Revision 7/21/ The Earth Ellipsoid 2. 2 The Fundamental Quadratic Forms of a Surface 6 Map Projections Jim Emery Revision 7/21/2004 Contents 1 The Earth Ellipsoid 2 2 The Fundamental Quadratic Forms of a Surface 6 3 Principal Directions On A Surface 9 4 Principal Normal Curvatures on the

More information

= w. These evolve with time yielding the

= w. These evolve with time yielding the 1 Analytical prediction and representation of chaos. Michail Zak a Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA 91109, USA Abstract. 1. Introduction The concept of randomness

More information

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, 205 Elementary tensor calculus We will study in this section some basic multilinear algebra and operations on tensors. Let

More information

The First Fundamental Form

The First Fundamental Form The First Fundamental Form Outline 1. Bilinear Forms Let V be a vector space. A bilinear form on V is a function V V R that is linear in each variable separately. That is,, is bilinear if αu + β v, w αu,

More information

Inner Product Spaces 6.1 Length and Dot Product in R n

Inner Product Spaces 6.1 Length and Dot Product in R n Inner Product Spaces 6.1 Length and Dot Product in R n Summer 2017 Goals We imitate the concept of length and angle between two vectors in R 2, R 3 to define the same in the n space R n. Main topics are:

More information

Introduction to Differential Geometry

Introduction to Differential Geometry More about Introduction to Differential Geometry Lecture 7 of 10: Dominic Joyce, Oxford University October 2018 EPSRC CDT in Partial Differential Equations foundation module. These slides available at

More information

Some Results about the Classification of Totally Real Minimal Surfaces in S 5

Some Results about the Classification of Totally Real Minimal Surfaces in S 5 Int. J. Contemp. Math. Sciences, Vol. 2, 2007, no. 24, 1175-1181 Some Results about the Classification of Totally Real Minimal Surfaces in S 5 Rodrigo Ristow Montes Departamento de Matemática Universidade

More information

Fronts of Whitney umbrella a differential geometric approach via blowing up

Fronts of Whitney umbrella a differential geometric approach via blowing up Journal of Singularities Volume 4 (202), 35-67 received 3 October 20 in revised form 9 January 202 DOI: 0.5427/jsing.202.4c Fronts of Whitney umbrella a differential geometric approach via blowing up Toshizumi

More information

9.1 Mean and Gaussian Curvatures of Surfaces

9.1 Mean and Gaussian Curvatures of Surfaces Chapter 9 Gauss Map II 9.1 Mean and Gaussian Curvatures of Surfaces in R 3 We ll assume that the curves are in R 3 unless otherwise noted. We start off by quoting the following useful theorem about self

More information

Final Exam Topic Outline

Final Exam Topic Outline Math 442 - Differential Geometry of Curves and Surfaces Final Exam Topic Outline 30th November 2010 David Dumas Note: There is no guarantee that this outline is exhaustive, though I have tried to include

More information

Isometric immersions, geometric incompatibility and strain induced shape formation

Isometric immersions, geometric incompatibility and strain induced shape formation IMA Hot topics workshop May 20, 2011 Isometric immersions, geometric incompatibility and strain induced shape formation John Gemmer Eran Sharon Shankar Venkataramani Dislocation Crumpled Paper Elastic

More information

FP3 mark schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

FP3 mark schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002) FP mark schemes from old P, P5, P6 and FP, FP, FP papers (back to June ) Please note that the following pages contain mark schemes for questions from past papers. Where a question reference is marked with

More information

CHAPTER 3. Gauss map. In this chapter we will study the Gauss map of surfaces in R 3.

CHAPTER 3. Gauss map. In this chapter we will study the Gauss map of surfaces in R 3. CHAPTER 3 Gauss map In this chapter we will study the Gauss map of surfaces in R 3. 3.1. Surfaces in R 3 Let S R 3 be a submanifold of dimension 2. Let {U i, ϕ i } be a DS on S. For any p U i we have a

More information

Derivatives in General Relativity

Derivatives in General Relativity Derivatives in General Relativity One of the problems with curved space is in dealing with vectors how do you add a vector at one point in the surface of a sphere to a vector at a different point, and

More information

Timelike Surfaces in the Lorentz-Minkowski Space with Prescribed Gaussian Curvature and Gauss Map

Timelike Surfaces in the Lorentz-Minkowski Space with Prescribed Gaussian Curvature and Gauss Map Timelike Surfaces in the Lorentz-Minkowski Space with Prescribed Gaussian Curvature and Gauss Map Juan A. Aledo a1, José M. Espinar b and José A. Gálvez c a Departamento de Matemáticas, Universidad de

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 11: CFT continued;

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

Mechanical Theorem Proving of the Local Theory of Surfaces

Mechanical Theorem Proving of the Local Theory of Surfaces Mechanical Theorem Proving of the Local Theory of Surfaces ZIMING LI Research Institute for Symbolic Computation Johannes Kepler University, A-4040 Linz, Austria e-mail: zmli@risc.uni-linz.ac.at August

More information

Homework for Math , Spring 2012

Homework for Math , Spring 2012 Homework for Math 6170 1, Spring 2012 Andres Treibergs, Instructor April 24, 2012 Our main text this semester is Isaac Chavel, Riemannian Geometry: A Modern Introduction, 2nd. ed., Cambridge, 2006. Please

More information

Supersymmetric quantum mechanics of the 2D Kepler problem

Supersymmetric quantum mechanics of the 2D Kepler problem quantum spectrum of the 2D Supersymmetric of the 2D Juan Mateos Guilarte 1,2 1 Departamento de Física Fundamental Universidad de Salamanca 2 IUFFyM Universidad de Salamanca Summer Lecture Notes, Spain,

More information

d F = (df E 3 ) E 3. (4.1)

d F = (df E 3 ) E 3. (4.1) 4. The Second Fundamental Form In the last section we developed the theory of intrinsic geometry of surfaces by considering the covariant differential d F, that is, the tangential component of df for a

More information

Gauß Curvature in Terms of the First Fundamental Form

Gauß Curvature in Terms of the First Fundamental Form Math 4530 Supplement March 6, 004 Gauß Curvature in Terms of the First Fundamental Form Andrejs Treibergs Abstract In these notes, we develop acceleration formulae for a general frame for a surface in

More information

Part IB. Geometry. Year

Part IB. Geometry. Year Part IB Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2017 17 Paper 1, Section I 3G Give the definition for the area of a hyperbolic triangle with interior angles

More information

Classical and Quantum Bianchi type I cosmology in K-essence theory

Classical and Quantum Bianchi type I cosmology in K-essence theory Classical and Quantum Bianchi type I cosmology in K-essence theory Luis O. Pimentel 1, J. Socorro 1,2, Abraham Espinoza-García 2 1 Departamento de Fisica de la Universidad Autonoma Metropolitana Iztapalapa,

More information

arxiv: v3 [hep-th] 1 Mar 2017

arxiv: v3 [hep-th] 1 Mar 2017 From Scalar Field Theories to Supersymmetric Quantum Mechanics D. Bazeia 1 and F.S. Bemfica 1 Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB, Brazil and Escola de Ciências

More information

ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES

ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES CLAUS GERHARDT Abstract. We prove that the mean curvature τ of the slices given by a constant mean curvature foliation can be used

More information

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

More information

Tangent and Normal Vectors

Tangent and Normal Vectors Tangent and Normal Vectors MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Navigation When an observer is traveling along with a moving point, for example the passengers in

More information

Riemannian Curvature Functionals: Lecture I

Riemannian Curvature Functionals: Lecture I Riemannian Curvature Functionals: Lecture I Jeff Viaclovsky Park City athematics Institute July 16, 2013 Overview of lectures The goal of these lectures is to gain an understanding of critical points of

More information

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant NOTES 8: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 8.1 TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sinθ 1 cscθ cosθ 1 secθ tanθ 1

More information

Lecture 3: Short Summary

Lecture 3: Short Summary Lecture 3: Short Summary u t t u x x + s in u = 0 sine-gordon equation: Kink solution: Á = 4 arctan exp (x x0 ) Q= Topological charge: Light-cone coordinates: ¼ R dx @@Áx x = (x t) @ @+ Á = sin Á Bäcklund

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

Brownian Motion and lorentzian manifolds

Brownian Motion and lorentzian manifolds The case of Jürgen Angst Institut de Recherche Mathématique Avancée Université Louis Pasteur, Strasbourg École d été de Probabilités de Saint-Flour juillet 2008, Saint-Flour 1 Construction of the diffusion,

More information

(Differential Geometry) Lecture Notes

(Differential Geometry) Lecture Notes Evan Chen Fall 2015 This is MIT s undergraduate 18.950, instructed by Xin Zhou. The formal name for this class is Differential Geometry. The permanent URL for this document is http://web.evanchen.cc/ coursework.html,

More information

Totally quasi-umbilic timelike surfaces in R 1,2

Totally quasi-umbilic timelike surfaces in R 1,2 Totally quasi-umbilic timelike surfaces in R 1,2 Jeanne N. Clelland, University of Colorado AMS Central Section Meeting Macalester College April 11, 2010 Definition: Three-dimensional Minkowski space R

More information

Modern Geometric Structures and Fields

Modern Geometric Structures and Fields Modern Geometric Structures and Fields S. P. Novikov I.A.TaJmanov Translated by Dmitry Chibisov Graduate Studies in Mathematics Volume 71 American Mathematical Society Providence, Rhode Island Preface

More information

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY SAM KAUFMAN Abstract. The (Cauchy) initial value formulation of General Relativity is developed, and the maximal vacuum Cauchy development theorem is

More information

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics LECTURE OUTLINE CHAPTER 3 Vectors in Physics 3-1 Scalars Versus Vectors Scalar a numerical value (number with units). May be positive or negative. Examples: temperature, speed, height, and mass. Vector

More information

1 The Differential Geometry of Surfaces

1 The Differential Geometry of Surfaces 1 The Differential Geometry of Surfaces Three-dimensional objects are bounded by surfaces. This section reviews some of the basic definitions and concepts relating to the geometry of smooth surfaces. 1.1

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

Classical differential geometry of two-dimensional surfaces

Classical differential geometry of two-dimensional surfaces Classical differential geometry of two-dimensional surfaces 1 Basic definitions This section gives an overview of the basic notions of differential geometry for twodimensional surfaces. It follows mainly

More information

A PROOF OF THE GAUSS-BONNET THEOREM. Contents. 1. Introduction. 2. Regular Surfaces

A PROOF OF THE GAUSS-BONNET THEOREM. Contents. 1. Introduction. 2. Regular Surfaces A PROOF OF THE GAUSS-BONNET THEOREM AARON HALPER Abstract. In this paper I will provide a proof of the Gauss-Bonnet Theorem. I will start by briefly explaining regular surfaces and move on to the first

More information

Math 433 Outline for Final Examination

Math 433 Outline for Final Examination Math 433 Outline for Final Examination Richard Koch May 3, 5 Curves From the chapter on curves, you should know. the formula for arc length of a curve;. the definition of T (s), N(s), B(s), and κ(s) for

More information

Chapter 5. The Second Fundamental Form

Chapter 5. The Second Fundamental Form Chapter 5. The Second Fundamental Form Directional Derivatives in IR 3. Let f : U IR 3 IR be a smooth function defined on an open subset of IR 3. Fix p U and X T p IR 3. The directional derivative of f

More information

_ 3 jveg-f* fl2ul_-pj>" -D' Zu\ E 1 2 j / J EG F*'

_ 3 jveg-f* fl2ul_-pj> -D' Zu\ E 1 2 j / J EG F*' 1901.] A CLASS OF SURFACES. 417 (1) SURFACES WHOSE FIRST AND SECOND FUN DAMENTAL FORMS ARE THE SECOND AND FIRST RESPECTIVELY OF ANOTHER SURFACE. BY DE. "L. P. EISENHABT. ( Eead bef ore the American Mathematical

More information

5. Suggestions for the Formula Sheets

5. Suggestions for the Formula Sheets 5. uggestions for the Formula heets Below are some suggestions for many more formulae than can be placed easily on both sides of the two standard 8½" " sheets of paper for the final examination. It is

More information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information Revision Checklist Unit FP3: Further Pure Mathematics 3 Unit description Further matrix algebra; vectors, hyperbolic functions; differentiation; integration, further coordinate systems Assessment information

More information

The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds. Sao Paulo, 2013

The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds. Sao Paulo, 2013 The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds Zdeněk Dušek Sao Paulo, 2013 Motivation In a previous project, it was proved that any homogeneous affine manifold (and

More information

THE DIFFERENTIAL GEOMETRY OF PARAMETRIC PRIMITIVES

THE DIFFERENTIAL GEOMETRY OF PARAMETRIC PRIMITIVES THE DIFFERENTIAL GEOMETRY OF PARAMETRIC PRIMITIVES Ken Turkowski Media Technologies: Graphics Software Advanced Technology Group Apple Computer, Inc. (Draft Friday, May 18, 1990) Abstract: We derive the

More information

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit Unit FP3 Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A optional unit FP3.1 Unit description Further matrix algebra; vectors, hyperbolic

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information