Christoffel Symbols. 1 In General Topologies. Joshua Albert. September 28, W. First we say W : λ n = x µ (λ) so that the world

Size: px
Start display at page:

Download "Christoffel Symbols. 1 In General Topologies. Joshua Albert. September 28, W. First we say W : λ n = x µ (λ) so that the world"

Transcription

1 Christoffel Symbols Joshua Albert September 28, 22 In General Topoloies We have a metric tensor nm defined by, Note by some handy theorem that for almost any continuous function F (L), equation 2 still holds. Now we work out an explict form of equation 2. d s 2 ab dx a dx b () which tells us how the distance is measured between two points in a manifold M. Note ab is a function of only x a and x b. Say we wish to investiate what an observer will experience as she moves on a world line W in M, then we will take intuition from classical mechanics and extremize the action of the Laranian L alon W. First we say W : λ n x µ (λ) so that the world line is parametrized. Here λ plays a role similar to time in classical mechanics except our time in incorporated into the 4-position x c. Now we define the Laranian as, ds 2 L We need to extremize the followin functional for some affine parameter λ, W L From the familiar Euler-Larane equations we et the result, d L L (2) ẋ c x c ds 2 L ab ẋ a ẋ b Where we note that the metric tensor is independent of λ. Thus, L ẋ ẋ a c ab ẋ ẋ b ẋ b + c ab ẋ ẋ a c 2 ab ẋ a ẋ c ẋ b 2 ab δ a c ẋ b 2 cb ẋ b Where we used the symmetry of nm. Note that indices are arbitrary and that we can swap them at will for each other if it simplifies the procedure. Now we apply the λ derivative. d L dẋ b 2 ẋ c cb cb x d 2 cb ẍ b cb d ẋ d ẋ b dx d ẋ b

2 Now for the riht hand side, L x c ab c ẋ a ẋ b tensorial object then it must invariantly transform via equation 3. And so we bein by expandin the metric tensor and then applyin the partial derivative, like i j k i j A i i A j j i j. Then from equation 2 we have, 2 cb ẍ b cb d ẋ d ẋ b ab c ẋ a ẋ b 2 e c cb ẍ b + e c (2 cb a ab c )ẋ a ẋ b 2δ e b ẍ b + e c ( cb a + c a b ab c )ẋ a ẋ b ẍ e + 2 e c ( b c a + c a b ab c )ẋ a ẋ b a b 2 e c ( Ab b b c + Aa a A c c c a Aa a A b b ab ) x a x b x c We need to deal with these partial derivatives, (5) ẍ e + Γ e ab ẋ a ẋ b Where Γ e ab e c ( 2 b c a + c a b ab c ) are called the Christoffel Symbols of the second kind. 2 Γ e ab is not a tensor A tensor is simply a eometrical object which represents some locally isomorphic operation on a manifold M. This implies that the null space is preserved in all representations of the same tensor. Let s try to take Γ e ab into a different representation via, A i i A j j i j x i x j x i x j i j 2 x i x i + x i x i x j x j i j + x i 2 x j x i x j i j x j x k i j x k x j 2 x i 2 x i i j + A i i A j j A k k i j k Where we used symmetry of i and j to combine terms. Therefore, equation 5 becomes, where, χ e a b A e e Aa a A b b χ e ab (3) A t s x t x s (4) is the jacobian of the new representation, x t, with respect to the old representation, x s. If Γ e ab is indeed a Christoffel Symbols of the first kind are almost never seen or used. a b 2 e c 2 x b (2 x b x a b c + A b b b c a x c x b c a + A c c c a b 2 x a 2 x a x c ab A a a ab c ) Carryin the factors in and seein the Kronecker deltas that appear we et, 2

3 a b 2 (2 2 x b δ e x b x a b + Ab b b c a e c A a x c x b a δ e a + Ac c c a b e c 2 x a 2 A b x a x c b A c b δe a Aa a ab c e c ) Or, 2 (2 2 x e + A b x b x a b b c a e c A e x c x b a + c a b e c 2 2 x e x a x b A a a A b b A c c ab c e c ) x a x b A c c A e c + 2 (Ab b A a a b c a A e e e c + A a a A b b c a b A e e e c A a a A b b ab c A e e e c ) and, t t (9) x ρ cosθ sinφ () y ρ sinθ sinφ () z ρ cosφ (2) t t (3) ρ x 2 + y 2 + z 2 (4) θ tan y x (5) a b x a x b A c c A e c + A a a A b b A e e Γe a b ) (6) φ cos z ρ (6) 3 Christoffel Symbols of Flat Space- Time in Spherical Coordinates Say we have a Minkowski space-time with euclidean coordinates x µ (t,x, y, z ), which has metric, ab (7) ds 2 ab dx a dx b dt 2 dx 2 dy 2 dz 2 (8) Let s now look in spherical coordinates x σ (t,ρ,θ,φ). We have the relations, The jacobian A n m x µ of which is, x σ t x µ A n m ρ x µ (7) θ x µ φ x µ cosθ sinφ sinθ sinφ cosφ ρ sinθ sinφ ρ cosθ sinφ ρ cosθ cosφ ρ sinθ cosφ ρ sinφ (8) Clearly then, in the spherical coordinate system the unit vectors would be just the rows of our above jacobian. That is 3

4 ˆt dx µ d t ˆρ dx µ dρ cosθ sinφ sinθ sinφ cosφ (9) (2) m n A a m Ab n ab (24) 2 cosθ sinφ sinθ sinφ cosφ ρ sinθ sinφ ρ cosθ sinφ ρ cosθ cosφ ρ sinθ cosφ ρ sinφ (25) (26) ˆθ dx µ dθ ρ sinθ sinφ ρ cosθ sinφ (2) Calculation of the square of the jacobian yields the columns, ˆφ dx µ dφ ρ cosθ cosφ ρ sinθ cosφ ρ sinφ (22) (23) A a m Ab Now, usin our rules for the lowerin and raisin of tensor objects, m n x a x b x m x n ab we can convert the flat space-time metric in euclidean coordinates to the spherical coordinate system. Note here that usin the covariant metric, that is with indices on the bottom, then we must have the euclidean coordinates in terms of the spherical coordinates. Applyin m n A a m Ab n ab we et, A a m Ab () (cosθ sin 2 φ ρ sin 2 θ sin 2 φ +ρ cosθ cos 2 φ) ( ρ sinθ cosθ sin 2 φ ρ 2 sinθ cosθ sinφ) (ρ cos 2 θ sinφ cosφ ρ 2 sin 2 θ sinφ cosφ ρ 2 cosθ sinφ cosφ) 4

5 will be zero because the Minkowski metric is diaonal. () (cosθ ρ sin 2 θ ) sin 2 φ + ρ cosθ cos 2 φ) ( ρ sinθ cosθ (sin 2 A a Ab ab φ + ρ sinφ) (((cosθ ρ)ρ cosθ ρ 2 sin 2 θ ) sinφ cosφ) A a Ab ab (((cosθ ρ sin 2 θ ) sin 2 φ + ρ cosθ cos 2 φ) 2 A a m Ab 2 + (ρ sinθ cosθ (sin 2 φ + ρ sinφ)) 2 () + (((cosθ ρ)ρ cosθ ρ 2 sin 2 θ ) sinφ cosφ) 2 ) (sinθ cosθ sin 2 φ + ρ sinθ cosθ sin 2 φ +ρ sinθ cosθ ) ( ρ sin 2 θ sin 2 φ + ρ 2 cos 2 θ sin 2 φ) (ρ sinθ cosθ sinφ cosφ + ρ 2 sinθ cosθ sinφ cosφ ρ 2 sinθ sinφ cosφ) 22 A a 2 Ab 2 ab ((sinθ cosθ (sin 2 φ + ρ sin 2 φ + ρ)) 2 + (ρ( sin 2 θ + ρ cos 2 θ ) sin 2 φ) 2 () (sinθ cosθ (sin 2 φ + ρ sin 2 + (ρ(sinθ cosθ + ρ sinθ cosθ ρ sinθ ) sinφ cosφ) 2 ) φ + ρ)) (ρ( sin 2 θ + ρ cos 2 θ ) sin 2 φ) ρ 2 sin 2 φ (ρ(sinθ cosθ + ρ sinθ cosθ ρ sinθ ) sinφ cosφ) 33 A a 3 Ab 3 ab A a m Ab 3 () (cosθ sinφ cosφ ρ sinφ cosφ) ( ρ sinθ sinφ cosφ) (ρ cosθ cos 2 φ + ρ 2 sin 2 φ) (((cosθ ρ) sinφ cosφ) 2 + ( ρ sinθ sinφ cosφ) 2 + (ρ cosθ cos 2 φ + ρ 2 sin 2 φ) 2 ) ρ 2 () ((cosθ ρ) sinφ cosφ) ( ρ sinθ sinφ cosφ) (ρ cosθ cos 2 φ + ρ 2 sin 2 φ) Now we can calculate the full metric. All off diaonals 5

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6 .(5pts) y = uv. ompute the Jacobian, Multiple hoice (x, y) (u, v), of the coordinate transformation x = u v 4, (a) u + 4v 4 (b) xu yv (c) u + 7v 6 (d) u (e) u v uv 4 Solution. u v 4v u = u + 4v 4..(5pts)

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 15.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

More information

Tensor Analysis in Euclidean Space

Tensor Analysis in Euclidean Space Tensor Analysis in Euclidean Space James Emery Edited: 8/5/2016 Contents 1 Classical Tensor Notation 2 2 Multilinear Functionals 4 3 Operations With Tensors 5 4 The Directional Derivative 5 5 Curvilinear

More information

THEODORE VORONOV DIFFERENTIAL GEOMETRY. Spring 2009

THEODORE VORONOV DIFFERENTIAL GEOMETRY. Spring 2009 [under construction] 8 Parallel transport 8.1 Equation of parallel transport Consider a vector bundle E B. We would like to compare vectors belonging to fibers over different points. Recall that this was

More information

Notes on Minkowski space-time

Notes on Minkowski space-time Notes on Minkowski space-time Following Hermann Minkowski, the arena for special relativity is Minkowski space-time. The squared interval S between points X = (t, x, y, z) and X = (t, x, y, z ) is: S =

More information

Vectors. Three dimensions. (a) Cartesian coordinates ds is the distance from x to x + dx. ds 2 = dx 2 + dy 2 + dz 2 = g ij dx i dx j (1)

Vectors. Three dimensions. (a) Cartesian coordinates ds is the distance from x to x + dx. ds 2 = dx 2 + dy 2 + dz 2 = g ij dx i dx j (1) Vectors (Dated: September017 I. TENSORS Three dimensions (a Cartesian coordinates ds is the distance from x to x + dx ds dx + dy + dz g ij dx i dx j (1 Here dx 1 dx, dx dy, dx 3 dz, and tensor g ij is

More information

Introduction and Vectors Lecture 1

Introduction and Vectors Lecture 1 1 Introduction Introduction and Vectors Lecture 1 This is a course on classical Electromagnetism. It is the foundation for more advanced courses in modern physics. All physics of the modern era, from quantum

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

Physics 236a assignment, Week 2:

Physics 236a assignment, Week 2: Physics 236a assignment, Week 2: (October 8, 2015. Due on October 15, 2015) 1. Equation of motion for a spin in a magnetic field. [10 points] We will obtain the relativistic generalization of the nonrelativistic

More information

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

More information

2.1 The metric and and coordinate transformations

2.1 The metric and and coordinate transformations 2 Cosmology and GR The first step toward a cosmological theory, following what we called the cosmological principle is to implement the assumptions of isotropy and homogeneity withing the context of general

More information

Tensors, and differential forms - Lecture 2

Tensors, and differential forms - Lecture 2 Tensors, and differential forms - Lecture 2 1 Introduction The concept of a tensor is derived from considering the properties of a function under a transformation of the coordinate system. A description

More information

Uniformity of the Universe

Uniformity of the Universe Outline Universe is homogenous and isotropic Spacetime metrics Friedmann-Walker-Robertson metric Number of numbers needed to specify a physical quantity. Energy-momentum tensor Energy-momentum tensor of

More information

Week 6: Differential geometry I

Week 6: Differential geometry I Week 6: Differential geometry I Tensor algebra Covariant and contravariant tensors Consider two n dimensional coordinate systems x and x and assume that we can express the x i as functions of the x i,

More information

Useful Mathematics. 1. Multivariable Calculus. 1.1 Taylor s Theorem. Monday, 13 May 2013

Useful Mathematics. 1. Multivariable Calculus. 1.1 Taylor s Theorem. Monday, 13 May 2013 Useful Mathematics Monday, 13 May 013 Physics 111 In recent years I have observed a reticence among a subpopulation of students to dive into mathematics when the occasion arises in theoretical mechanics

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

Tutorial Exercises: Geometric Connections

Tutorial Exercises: Geometric Connections Tutorial Exercises: Geometric Connections 1. Geodesics in the Isotropic Mercator Projection When the surface of the globe is projected onto a flat map some aspects of the map are inevitably distorted.

More information

Derivatives in General Relativity

Derivatives in General Relativity Derivatives in General Relativity One of the problems with curved space is in dealing with vectors how do you add a vector at one point in the surface of a sphere to a vector at a different point, and

More information

Solutions to Sample Questions for Final Exam

Solutions to Sample Questions for Final Exam olutions to ample Questions for Final Exam Find the points on the surface xy z 3 that are closest to the origin. We use the method of Lagrange Multipliers, with f(x, y, z) x + y + z for the square of the

More information

MULTIVARIABLE INTEGRATION

MULTIVARIABLE INTEGRATION MULTIVARIABLE INTEGRATION (SPHERICAL POLAR COORDINATES) Question 1 a) Determine with the aid of a diagram an expression for the volume element in r, θ, ϕ. spherical polar coordinates, ( ) [You may not

More information

Volume in n Dimensions

Volume in n Dimensions Volume in n Dimensions MA 305 Kurt Bryan Introduction You ve seen that if we have two vectors v and w in two dimensions then the area spanned by these vectors can be computed as v w = v 1 w 2 v 2 w 1 (where

More information

Tensors - Lecture 4. cos(β) sin(β) sin(β) cos(β) 0

Tensors - Lecture 4. cos(β) sin(β) sin(β) cos(β) 0 1 Introduction Tensors - Lecture 4 The concept of a tensor is derived from considering the properties of a function under a transformation of the corrdinate system. As previously discussed, such transformations

More information

THE DIFFERENTIAL GEOMETRY OF PARAMETRIC PRIMITIVES

THE DIFFERENTIAL GEOMETRY OF PARAMETRIC PRIMITIVES THE DIFFERENTIAL GEOMETRY OF PARAMETRIC PRIMITIVES Ken Turkowski Media Technologies: Graphics Software Advanced Technology Group Apple Computer, Inc. (Draft Friday, May 18, 1990) Abstract: We derive the

More information

Problem Set 5 Math 213, Fall 2016

Problem Set 5 Math 213, Fall 2016 Problem Set 5 Math 213, Fall 216 Directions: Name: Show all your work. You are welcome and encouraged to use Mathematica, or similar software, to check your answers and aid in your understanding of the

More information

Appendix to Lecture 2

Appendix to Lecture 2 PHYS 652: Astrophysics 1 Appendix to Lecture 2 An Alternative Lagrangian In class we used an alternative Lagrangian L = g γδ ẋ γ ẋ δ, instead of the traditional L = g γδ ẋ γ ẋ δ. Here is the justification

More information

Electromagnetism HW 1 math review

Electromagnetism HW 1 math review Electromagnetism HW math review Problems -5 due Mon 7th Sep, 6- due Mon 4th Sep Exercise. The Levi-Civita symbol, ɛ ijk, also known as the completely antisymmetric rank-3 tensor, has the following properties:

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

Arc Length and Riemannian Metric Geometry

Arc Length and Riemannian Metric Geometry Arc Length and Riemannian Metric Geometry References: 1 W F Reynolds, Hyperbolic geometry on a hyperboloid, Amer Math Monthly 100 (1993) 442 455 2 Wikipedia page Metric tensor The most pertinent parts

More information

Relativistic Mechanics

Relativistic Mechanics Physics 411 Lecture 9 Relativistic Mechanics Lecture 9 Physics 411 Classical Mechanics II September 17th, 2007 We have developed some tensor language to describe familiar physics we reviewed orbital motion

More information

The Geometry of Relativity

The Geometry of Relativity The Geometry of Relativity Tevian Dray Department of Mathematics Oregon State University http://www.math.oregonstate.edu/~tevian PNWMAA 4/11/15 Tevian Dray The Geometry of Relativity 1/25 Books The Geometry

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

Tutorial General Relativity

Tutorial General Relativity Tutorial General Relativity Winter term 016/017 Sheet No. 3 Solutions will be discussed on Nov/9/16 Lecturer: Prof. Dr. C. Greiner Tutor: Hendrik van Hees 1. Tensor gymnastics (a) Let Q ab = Q ba be a

More information

Chapter 2. Coordinate Systems and Transformations

Chapter 2. Coordinate Systems and Transformations Chapter 2 Coordinate Systems and Transformations A physical system has a symmetry under some operation if the system after the operation is observationally indistinguishable from the system before the

More information

Exercises in field theory

Exercises in field theory Exercises in field theory Wolfgang Kastaun June 12, 2008 Vectors and Tensors Contravariant vector Coordinate independent definition, e.g. as tangent of a curve. A contravariant vector A is expressed with

More information

The Geometry of Relativity

The Geometry of Relativity The Geometry of Relativity Tevian Dray Department of Mathematics Oregon State University http://www.math.oregonstate.edu/~tevian OSU 4/27/15 Tevian Dray The Geometry of Relativity 1/27 Books The Geometry

More information

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know. Disclaimer: This is meant to help you start studying. It is not necessarily a complete list of everything you need to know. The MTH 234 final exam mainly consists of standard response questions where students

More information

Schwarschild Metric From Kepler s Law

Schwarschild Metric From Kepler s Law Schwarschild Metric From Kepler s Law Amit kumar Jha Department of Physics, Jamia Millia Islamia Abstract The simplest non-trivial configuration of spacetime in which gravity plays a role is for the region

More information

Solving the Geodesic Equation

Solving the Geodesic Equation Solving the Geodesic Equation Jeremy Atkins December 12, 2018 Abstract We find the general form of the geodesic equation and discuss the closed form relation to find Christoffel symbols. We then show how

More information

MATHS 267 Answers to Stokes Practice Dr. Jones

MATHS 267 Answers to Stokes Practice Dr. Jones MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

More information

2 General Relativity. 2.1 Curved 2D and 3D space

2 General Relativity. 2.1 Curved 2D and 3D space 22 2 General Relativity The general theory of relativity (Einstein 1915) is the theory of gravity. General relativity ( Einstein s theory ) replaced the previous theory of gravity, Newton s theory. The

More information

Math 221 Examination 2 Several Variable Calculus

Math 221 Examination 2 Several Variable Calculus Math Examination Spring Instructions These problems should be viewed as essa questions. Before making a calculation, ou should explain in words what our strateg is. Please write our solutions on our own

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

(You may need to make a sin / cos-type trigonometric substitution.) Solution.

(You may need to make a sin / cos-type trigonometric substitution.) Solution. MTHE 7 Problem Set Solutions. As a reminder, a torus with radii a and b is the surface of revolution of the circle (x b) + z = a in the xz-plane about the z-axis (a and b are positive real numbers, with

More information

51. General Surface Integrals

51. General Surface Integrals 51. General urface Integrals The area of a surface in defined parametrically by r(u, v) = x(u, v), y(u, v), z(u, v) over a region of integration in the input-variable plane is given by d = r u r v da.

More information

Created by T. Madas SURFACE INTEGRALS. Created by T. Madas

Created by T. Madas SURFACE INTEGRALS. Created by T. Madas SURFACE INTEGRALS Question 1 Find the area of the plane with equation x + 3y + 6z = 60, 0 x 4, 0 y 6. 8 Question A surface has Cartesian equation y z x + + = 1. 4 5 Determine the area of the surface which

More information

Math Exam IV - Fall 2011

Math Exam IV - Fall 2011 Math 233 - Exam IV - Fall 2011 December 15, 2011 - Renato Feres NAME: STUDENT ID NUMBER: General instructions: This exam has 16 questions, each worth the same amount. Check that no pages are missing and

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

3 The Friedmann-Robertson-Walker metric

3 The Friedmann-Robertson-Walker metric 3 The Friedmann-Robertson-Walker metric 3.1 Three dimensions The most general isotropic and homogeneous metric in three dimensions is similar to the two dimensional result of eq. (43): ( ) dr ds 2 = a

More information

Additional Mathematical Tools: Detail

Additional Mathematical Tools: Detail Additional Mathematical Tools: Detail September 9, 25 The material here is not required, but gives more detail on the additional mathmatical tools: coordinate systems, rotations, the Dirac delta function

More information

Lagrangian for Central Potentials

Lagrangian for Central Potentials Physics 411 Lecture 2 Lagrangian for Central Potentials Lecture 2 Physics 411 Classical Mechanics II August 29th 2007 Here we will review the Lagrange formulation in preparation for the study of the central

More information

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico 1. Starting from R αβµν Z ν = 2 [α β] Z µ, deduce the components of the Riemann curvature tensor in terms of the Christoffel symbols.

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

Theorem. In terms of the coordinate frame, the Levi-Civita connection is given by:

Theorem. In terms of the coordinate frame, the Levi-Civita connection is given by: THE LEVI-CIVITA CONNECTION FOR THE POINCARÉ METRIC We denote complex numbers z = x + yi C where x, y R. Let H 2 denote the upper half-plane with the Poincaré metric: {x + iy x, y R, y > 0} g = dz 2 y 2

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

v n ds where v = x z 2, 0,xz+1 and S is the surface that

v n ds where v = x z 2, 0,xz+1 and S is the surface that M D T P. erif the divergence theorem for d where is the surface of the sphere + + = a.. Calculate the surface integral encloses the solid region + +,. (a directl, (b b the divergence theorem. v n d where

More information

7 Curvilinear coordinates

7 Curvilinear coordinates 7 Curvilinear coordinates Read: Boas sec. 5.4, 0.8, 0.9. 7. Review of spherical and cylindrical coords. First I ll review spherical and cylindrical coordinate systems so you can have them in mind when

More information

Answer sheet: Final exam for Math 2339, Dec 10, 2010

Answer sheet: Final exam for Math 2339, Dec 10, 2010 Answer sheet: Final exam for Math 9, ec, Problem. Let the surface be z f(x,y) ln(y + cos(πxy) + e ). (a) Find the gradient vector of f f(x,y) y + cos(πxy) + e πy sin(πxy), y πx sin(πxy) (b) Evaluate f(,

More information

General Relativity and Differential

General Relativity and Differential Lecture Series on... General Relativity and Differential Geometry CHAD A. MIDDLETON Department of Physics Rhodes College November 1, 2005 OUTLINE Distance in 3D Euclidean Space Distance in 4D Minkowski

More information

Without fully opening the exam, check that you have pages 1 through 10.

Without fully opening the exam, check that you have pages 1 through 10. MTH 234 Solutions to Exam 2 April 11th 216 Name: Section: Recitation Instructor: INSTRUTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through

More information

Orbital Motion in Schwarzschild Geometry

Orbital Motion in Schwarzschild Geometry Physics 4 Lecture 29 Orbital Motion in Schwarzschild Geometry Lecture 29 Physics 4 Classical Mechanics II November 9th, 2007 We have seen, through the study of the weak field solutions of Einstein s equation

More information

Motion in Three Dimensions

Motion in Three Dimensions Motion in Three Dimensions We ve learned about the relationship between position, velocity and acceleration in one dimension Now we need to extend those ideas to the three-dimensional world In the 1-D

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georgia Tech PHYS 6124 Mathematical Methods of Physics I Instructor: Predrag Cvitanović Fall semester 2012 Homework Set #6a due Thursday, October 25, 2012 Notes for lectures 14 and 15: Calculus on smooth

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

Integration in General Relativity

Integration in General Relativity arxiv:physics/9802027v1 [math-ph] 14 Feb 1998 Interation in General Relativity Andrew DeBenedictis Dec. 03, 1995 Abstract This paper presents a brief but comprehensive introduction to certain mathematical

More information

Physics 325: General Relativity Spring Final Review Problem Set

Physics 325: General Relativity Spring Final Review Problem Set Physics 325: General Relativity Spring 2012 Final Review Problem Set Date: Friday 4 May 2012 Instructions: This is the third of three review problem sets in Physics 325. It will count for twice as much

More information

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates CBE 6333, R. Levicky 1 Orthogonal Curvilinear Coordinates Introduction. Rectangular Cartesian coordinates are convenient when solving problems in which the geometry of a problem is well described by the

More information

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work. Exam 3 Math 850-007 Fall 04 Odenthal Name: Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.. Evaluate the iterated integral

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions Math 1, Fall 17 Problem 1. Find a parameterization for the given curve, including bounds on the parameter t. Part a) The ellipse in R whose major axis has endpoints, ) and 6, )

More information

Derivatives and Integrals

Derivatives and Integrals Derivatives and Integrals Definition 1: Derivative Formulas d dx (c) = 0 d dx (f ± g) = f ± g d dx (kx) = k d dx (xn ) = nx n 1 (f g) = f g + fg ( ) f = f g fg g g 2 (f(g(x))) = f (g(x)) g (x) d dx (ax

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is there a magnification paradox in gravitational lensing? Olaf Wucknitz wucknitz@astro.uni-bonn.de Astrophysics seminar/colloquium, Potsdam, 26 November 2007 Is there a magnification paradox in gravitational

More information

1 Differential Operators in Curvilinear Coordinates

1 Differential Operators in Curvilinear Coordinates 1 Differential Operators in Curvilinear Coordinates worked out and written by Timo Fleig February/March 2012 Revision 1, Feb. 15, 201 Revision 2, Sep. 1, 2015 Université Paul Sabatier using LaTeX and git

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

From An Apple To Black Holes Gravity in General Relativity

From An Apple To Black Holes Gravity in General Relativity From An Apple To Black Holes Gravity in General Relativity Gravity as Geometry Central Idea of General Relativity Gravitational field vs magnetic field Uniqueness of trajectory in space and time Uniqueness

More information

PHZ 6607 Fall 2004 Homework #4, Due Friday, October 22, 2004

PHZ 6607 Fall 2004 Homework #4, Due Friday, October 22, 2004 Read Chapters 9, 10 and 20. PHZ 6607 Fall 2004 Homework #4, Due Friday, October 22, 2004 1. The usual metric of four-dimensional flat Minkowski-space in spherical-polar coordinates is ds 2 = dt 2 + dr

More information

Figure 25:Differentials of surface.

Figure 25:Differentials of surface. 2.5. Change of variables and Jacobians In the previous example we saw that, once we have identified the type of coordinates which is best to use for solving a particular problem, the next step is to do

More information

Tensor Analysis Author: Harald Höller last modified: Licence: Creative Commons Lizenz by-nc-sa 3.0 at

Tensor Analysis Author: Harald Höller last modified: Licence: Creative Commons Lizenz by-nc-sa 3.0 at Tensor Analysis Author: Harald Höller last modified: 02.12.09 Licence: Creative Commons Lizenz by-nc-sa 3.0 at Levi-Civita Symbol (Ε - Tensor) 2 Tensor_analysis_m6.nb Ε = Ε = Ε = 1 123 231 312 Ε = Ε =

More information

General Relativity ASTR 2110 Sarazin. Einstein s Equation

General Relativity ASTR 2110 Sarazin. Einstein s Equation General Relativity ASTR 2110 Sarazin Einstein s Equation Curvature of Spacetime 1. Principle of Equvalence: gravity acceleration locally 2. Acceleration curved path in spacetime In gravitational field,

More information

Physics 480/581. Homework No. 10 Solutions: due Friday, 19 October, 2018

Physics 480/581. Homework No. 10 Solutions: due Friday, 19 October, 2018 Physics 480/58 Homework No. 0 Solutions: due Friday, 9 October, 208. Using the coordinate bases for -forms, and their reciprocal bases for tangent vectors, and the usual form of the Schwarzschild metric,

More information

Solution. This is a routine application of the chain rule.

Solution. This is a routine application of the chain rule. EXAM 2 SOLUTIONS 1. If z = e r cos θ, r = st, θ = s 2 + t 2, find the partial derivatives dz ds chain rule. Write your answers entirely in terms of s and t. dz and dt using the Solution. This is a routine

More information

Energy-preserving affine connections

Energy-preserving affine connections Enery-preservin affine connections Andrew D. Lewis 1997/07/28 Abstract A Riemannian affine connection on a Riemannian manifold has the property that is preserves the kinetic enery associated with the metric.

More information

Physics 411 Lecture 7. Tensors. Lecture 7. Physics 411 Classical Mechanics II

Physics 411 Lecture 7. Tensors. Lecture 7. Physics 411 Classical Mechanics II Physics 411 Lecture 7 Tensors Lecture 7 Physics 411 Classical Mechanics II September 12th 2007 In Electrodynamics, the implicit law governing the motion of particles is F α = m ẍ α. This is also true,

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 11: CFT continued;

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

NOTES ON DIFFERENTIAL FORMS. PART 1: FORMS ON R n

NOTES ON DIFFERENTIAL FORMS. PART 1: FORMS ON R n NOTES ON DIFFERENTIAL FORMS. PART 1: FORMS ON R n 1. What is a form? Since we re not following the development in Guillemin and Pollack, I d better write up an alternate approach. In this approach, we

More information

CLASS XII CBSE MATHEMATICS INTEGRALS

CLASS XII CBSE MATHEMATICS INTEGRALS Using Partial Fractions LSS XII SE MTHEMTIS INTEGRLS () cos ( sin)(sin ) () ns: log sin sin () () (SE 8) tan (sin ) c Let sin t cos ( t)( t ) t ( )( ) cosθ (sin θ)(5 cos θ) t,,, t (SE 8 OMP) dθ (SE 7)

More information

Parametric Equations

Parametric Equations Parametric Equations Suppose a cricket jumps off of the round with an initial velocity v 0 at an anle θ. If we take his initial position as the oriin, his horizontal and vertical positions follow the equations:

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

Curved spacetime and general covariance

Curved spacetime and general covariance Chapter 7 Curved spacetime and general covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 219 220 CHAPTER 7. CURVED SPACETIME

More information

Physics/Astronomy 226, Problem set 4, Due 2/10 Solutions. Solution: Our vectors consist of components and basis vectors:

Physics/Astronomy 226, Problem set 4, Due 2/10 Solutions. Solution: Our vectors consist of components and basis vectors: Physics/Astronomy 226, Problem set 4, Due 2/10 Solutions Reading: Carroll, Ch. 3 1. Derive the explicit expression for the components of the commutator (a.k.a. Lie bracket): [X, Y ] u = X λ λ Y µ Y λ λ

More information

3/31/ Product of Inertia. Sample Problem Sample Problem 10.6 (continue)

3/31/ Product of Inertia. Sample Problem Sample Problem 10.6 (continue) /1/01 10.6 Product of Inertia Product of Inertia: I xy = xy da When the x axis, the y axis, or both are an axis of symmetry, the product of inertia is zero. Parallel axis theorem for products of inertia:

More information

Geometrical models for spheroidal cosmological voids

Geometrical models for spheroidal cosmological voids Geometrical models for spheroidal cosmological voids talk by: Osvaldo M. Moreschi collaborator: Ezequiel Boero FaMAF, Universidad Nacional de Córdoba, Instituto de Física Enrique Gaviola (IFEG), CONICET,

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

1 Vector fields, flows and Lie derivatives

1 Vector fields, flows and Lie derivatives Working title: Notes on Lie derivatives and Killing vector fields Author: T. Harmark Killingvectors.tex 5//2008, 22:55 Vector fields, flows and Lie derivatives Coordinates Consider an n-dimensional manifold

More information

PHY 475/375. Lecture 5. (April 9, 2012)

PHY 475/375. Lecture 5. (April 9, 2012) PHY 475/375 Lecture 5 (April 9, 2012) Describing Curvature (contd.) So far, we have studied homogenous and isotropic surfaces in 2-dimensions. The results can be extended easily to three dimensions. As

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

General Relativity I

General Relativity I General Relativity I presented by John T. Whelan The University of Texas at Brownsville whelan@phys.utb.edu LIGO Livingston SURF Lecture 2002 July 5 General Relativity Lectures I. Today (JTW): Special

More information