Variational and other methods

Size: px
Start display at page:

Download "Variational and other methods"

Transcription

1 Vritionl nd other methods Mrch 7, Find the function tht provides the extreml vlue for the following functionl I[y] = π/2 (y 2 y 2 + x 2 )dx, y() = y (π/2) = 1; y () = y(π/2) =. 2. Find the function tht provides the extreml vlue for the following functionl I[y(x)] = π/4 (y 2 y 2 +6y sin 2x)dx; y() =, y(π/4) = 1 3. Find the function tht provides the extreml vlue for the following functionl x 1 1+y 2 I[y(x)] = dx; y(x y 2 )=y,y(x 1 )=y 1 x 4. Find the function tht provides the extreml vlue for the following functionl I[y(x)] = (y 2 +2yy 16y 2 )dx; >, y() =, y() = 5. Find the function tht provides the extreml vlue for the following functionl I[y(x)] = (y 2 + y 2 +2y exp 2x)dx; y() = 1/3, y(1) = e 2 /3 1

2 6. Find the function tht provides the extreml vlue for the following functionl I[y(x)] = (y 2 2xy)dx; y() = y () =, y(1) = 1/12, y (1) is rbitrry 7. Find the function tht provides the extreml vlue for the following functionl I[y(x)] = 4 (y 1) 2 (y +1) 2 dx; y() =, y(4) = 2 8. Find the function tht provides the extreml vlue for the following functionl π/4 I[x] = (4x 2 x 2 +8x)dt x() = 1 x(π/4) = 9. Find the function tht provides the extreml vlue for the following functionl I[x] = (x 2 + x 2 +2x exp(2t))dt x() = 1/3 x(1) = e 2 /3 1. Find curve of given length for which the re of curviliner trpezoid ABCD is mximum, A =(x,y ), B =(x 1,y 1 ). 11. Show tht, if y stisfies Euler-Lgrnge equtions ssocited with the integrl x 2 I = (p 2 y 2 + q 2 y 2 )dx x 1 2

3 where p(x) nd q(x) re know function,i hs the vlue I = p 2 y y x 2 x Introduce convenient set of generlized coordintes nd derive the Lgrnge equtions of motion for single prticle of mss m moving in homogenous grvittionl field. The prticle is constrined to move on the surfce of given sphere of rdius R (sphericl pendulum). 13. Find the mximum volume of rectngulr prllelepiped tht is inscribed in n ellipsoid of semixes, b nd c. Find the rtio of the mximum volume of the prllelepiped to the volume of the ellipsoid. 14. In the method of the lest squres of regression theory the curve y = +bx is fit to the dt set (x i,y i ); i =1,..., N by requiring minim of the sum of squred errors N S(, b) = (y i ( + bx i )) 2 i=1 Find the expressions for nd b for given set (x i,y i ). 15. Find n pproximte solution of the problem of finding minimum of the functionl I[y] = (y 2 y 2 2xy)dx y() = y(1) = nd compre this solution with the exct solution Hint: An pproximte solution cn be determimed in the form y n = x(1 x)(α + α 1 x α n x n ) Perform clcultions for n =ndn = Derive the prtil differentil eqution for the rel field φ tht obeys the vritionl principle δ Ldxdt =, where the Lgrngin density is φ L = φ t x 2 µ2 φ λφ4. 3

4 17. Derive the prtil differentil eqution for the rel field φ tht obeys the vritionl principle δ Ld 3 xdt =, where the Lgrngin density is L = 1 2 φ2 φ 2 + m 2 φ Show tht tht the following Lgrngin density leds to the Mxwell equtions in vcuum L = 1 2 ε E 2 1 B 2. 2µ Hint: Use the vector nd sclr potentils to represent electric nd mgnetic field. 19. Show tht the following vritionl problem δ Ldt =, with the Lgrngin L(x, ẋ,t) = 1 2 mv2 qφ(x,t)+qv A(x.t), gives the equtions for prticle motion in the electromgnetic field. 2. Show tht tht the following Lgrngin density leds to the Mxwell equtions in mteril spce L = 1 2 ε E 2 1 B 2 ρφ. 2µ 21. Derive the Ohms lw J =σ(r)e(r) from the condition of the minimum of the totl energy Q dissipted in the conductive resistive medium J 2 (r) Q = σ(r) d3 r, V Hint: Consider the time independent cse so tht the chrge conservtion in the form J = cnbeusedsndditionlcontstrint. 22. Consider the expression J[u] = b b u(t)k(s, t)u(s)dtds + 4 b u 2 (s)ds 2 b f(s)u(s)ds,

5 where K(s, t) is symmetricl continuous function in the domin t b, s b, f(s) is given function of s, ndu(s) issoughtfunction. Find the Euler eqution for the function u(s) which delivers n extreml vlue to J[u]. 23. Electromgnetic oscilltions inside cvity resontor filled with ir re describedbythemxwellequtionintheform H ω 2 ε µ H = Formulte the vritionl form for the eigenvlue ω 2. Suggest simple one prmetric form of tril function nd evlute the lowest eigenvlue for the cylindricl cvity of rdius R. Compre it with the exct solution. Assume tht the mgnetic field is in the poloidl direction, H = H φ. 24. Show tht the Lgrngin (density) function L = y x y t 2y 3 x y 2 xx cn be used to derive the Korteveg-de-Vries eqution in the form where ϕ = y x. 25. Show tht the vritionl problem with the constrint I[φ] = G[φ] = ϕ t +3(ϕ 2 ) x + ϕ xxx = b b b is equivlent to the eigenvlue problem φ(x) =λ dxdtk(x, t)φ(x)φ(t) dxφ(x)φ(x)=constnt b dtk(x, t)φ(t). 26. Show tht the function h(u) tht minimizes the functionl W [h] W [h] = 2 h(u)f(u)du + stisfies the integrl eqution (Wiener-Hopf eqution) f(u) = h(u)g(u v)dv. h(u)h(v)g(u v)dudv Note tht g(u) is n even function. Hint: Consider the vrition of h(u) = h (u)+εq(u). 5

6 27. The stte of some system is described by continious vrible x(t), < t<t. This system is controlled by the externl control signl u(t) so tht the system is described by the eqution dx = x + u(t), dt where isthepositiveconstnt. Findthetrjectoryofthissystemfrom x = x() to x 1 = x(t ) if the control signl u(t) is chosen to minimize the integrl J = T (x(t) 2 + u(t)) 2 dt. Determine lowest eigenvlue λ to O(ε) for u xx +(1+εy)u yy + λu =, ε, <x<,<y<, u(x, ) = u(x, ) =u(, y)=u(, y) = 28. Find the extreml vlue of the functionl I[x] = [x sin(πx) (t + x) 2 ]dt 29. Using the Ryleigh-Ritz method find n pproximte solution of the following differentil eqution y + x 2 y = x, y() = y(1) =. You should construct the vritionl form first nd then minimize it with n pproprite tril function. Try to improve your solution by dding nother vritionl prmeter in your tril function. How does the vritionl form chnge if the boundry conditions re y() =, y(1) + y (1) =?. 3. Fundmentl modes of vibrtion of fixed wedge of constnt thickness cn be found by finding extrem of the functionl I[y] = (x 3 y 2 ωxy 2 )dx y(1) = y (1) = where ω is the vibrtion frequency, is given positive constnt. Use the tril function y =(x 1) 2 (α 1 + α 2 x)tofind two equtions tht define 6

7 the extrem of I[y]. Consider solubility condition for these equtions to determine eqution for ω in terms of. 31. Find n pproximte solution of the problem of extrem of the functionl I[y] = 2 1 (xy 2 x2 1 y 2 2x 2 y)dx x y(1) = y(2) = nd compre this solution with the exct solution. Hint: An pproximte solution cn be determined in the form 32. Consider the problem y = α(x 1)(x 2) 2 u + λu = εf(x, y, z)u, ε with u vnishing on the surfce of cube with side π. Determine the first order pproximtion for the lowest λ if f(,x,y,z)=x 2. Solve this problem lso by using the Ryleigh-Ritz technique with pproprite tril function. 33. Show tht the following eigenvlue problem u + λu =, <x<l u() =, u (l)+hu(l) =,h>, follows from the energy integrl subject of the constrint l I[u] = (u ) 2 dx + hu 2 (l) l u 2 dx = constnt. 7

8 34. Consider the following eigenvlue problem u + λu =, <x<1 u() =, u (1) + u(1) =, () Find the exct solution of this problem (b) Find the pproximte solution using the Ryleigh quotient with the tril function u 1 = x 2x 2 /3 (c) Find the pproximte solution using the Ryleigh-Ritz method with the tril function u 2 =sin(x) (d) Find the pproximte solution using the Ryleigh-Ritz method with the tril function u 3 = x + bx 2 (e) Compre ll three solutions 35. Obtin the pproprite form for the energy integrl for the following eigenvlue problem (pu ) + qu = λρu, <x<l u () h 1 u() =, u (l)+h 2 u(l) =, (h 1,h 2 ) >, 36. Use Ryleigh quotient to pproximte the leding eigenvlue for the following problem 2 u + λu =, x 2 + y 2 < 1 u =, x 2 + y 2 =1 Use the pproximte function φ 1 =cos(πr/2). 37. Use Ryleigh-Ritz method to solve the Dirichlet problem 2 u = u, x 2 + y 2 < 1 u = x 2, x 2 + y 2 =1 Use the pproximte functions φ = x 2 nd φ 1 =cos(πr/2). 38. Use Glerkin method to solve the Dirichlet problem 2 u u x + u y = 1, x 2 + y 2 < 1 u = x 2, x 2 + y 2 =1 Use the pproximte functions φ = x 2 nd φ 1 =cos(πr/2). 8

9 39. Solve the Dirichlet problem u xx + u yy = 1, x 2 + y 2 < 1 u = x 2, x 2 + y 2 =1, using the Ryleigh-Ritz method. Let u = u (x)+c 1 u 1 (x), where u = x 2 nd u 1 =cosπr/2. 4. Use vritionl method to obtin n upper bound on the lowest eigenfrequency of the following oscillting system 2 u x 2 x2 u = 2 u t 2, <x<1, u(,t)=u(1,t)=. 41. Find the pproximte solution to the following problem u xx + u yy = sinπx, <x<1, <y<1 u = on x =,x=1,y =,y =1 Use the following tril function where u = 1 φ 1 (x, y)+ 2 φ 2 (x, y)+ 3 φ 3 (x, y) φ 1 (x, y) = xy(1 x)(1 y) φ 2 (x, y) = x 2 y(1 x)(1 y) φ 3 (x, y) = xy 2 (1 x)(1 y) Use Mple to clculte integrls nd solve the liner system of equtions for i. Compre your solution with the exct solution sin πx u = π 2 (sinh πy + sinh(π(1 y) sinh π) sinh π by plotting u(x, y) s functions of x nd y for fixed vlues of y nd x, respectively. 42. The pproximte solution to the following problem u xx + u yy = 2, 1 <x<1, 1 <y<1 (1) u = on x = 1,x=1,y = 1,y =1 is sought by Kntorovich method with the following tril function u = f(x)(y 2 1). (2) Determine the form of the functionl tht leds to Eq. (1). Substitute (2) into this functionl nd perform integrtion over y. By vrition of the resulting functionl determine the Euler-Lgrnge eqution for f(x) nd solve it with pproprite boundry conditions. 9

10 43. Apply the lest squre 1 method to find the pproximte solution to the following nonliner eqution x + ωx 2 + εx 3 =, x() = A, x () =. Assume solution in the form u(t) =c cos(ωt) withω n unknown frequency. Find the frequency ω by minimizing the integrl R 2 (u)dt. Com- T pre the frequency with the vlue obtined by the method of verging for smll ε. 44. Consider eqution u u = exp(x)(exp( x)u ) = u() = 2 u(4) = 1 + e 4 Solve this eqution by method of finite elements using the vritionl form I = 4 exp(x)(u ) 2 dx. Use three elements, [, 1], [1, 2], nd [2, 4] nd employ qudrtic polynomils f i = α i + β i x + γ i x 2,i=1, 2, 3 Hint: Minimize I with the following constrints: boundry conditions (2 equtions), continuity of element functions nd derivtives t x=1 nd x=2 (4 equtions). Use Mple to determine α i,β i, nd γ i. Compre your solutions with the exct solution u(x) =1+e x. 1 In some textbooks this method is referred s the Ritz method 1

MatFys. Week 2, Nov , 2005, revised Nov. 23

MatFys. Week 2, Nov , 2005, revised Nov. 23 MtFys Week 2, Nov. 21-27, 2005, revised Nov. 23 Lectures This week s lectures will be bsed on Ch.3 of the text book, VIA. Mondy Nov. 21 The fundmentls of the clculus of vritions in Eucliden spce nd its

More information

Problem set 1: Solutions Math 207B, Winter 2016

Problem set 1: Solutions Math 207B, Winter 2016 Problem set 1: Solutions Mth 27B, Winter 216 1. Define f : R 2 R by f(,) = nd f(x,y) = xy3 x 2 +y 6 if (x,y) (,). ()Show tht thedirectionl derivtives of f t (,)exist inevery direction. Wht is its Gâteux

More information

4. Calculus of Variations

4. Calculus of Variations 4. Clculus of Vritions Introduction - Typicl Problems The clculus of vritions generlises the theory of mxim nd minim. Exmple (): Shortest distnce between two points. On given surfce (e.g. plne), nd the

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

Generalizations of the Basic Functional

Generalizations of the Basic Functional 3 Generliztions of the Bsic Functionl 3 1 Chpter 3: GENERALIZATIONS OF THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 3.1 Functionls with Higher Order Derivtives.......... 3 3 3.2 Severl Dependent Vribles...............

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Calculus of Variations

Calculus of Variations Clculus of Vritions Com S 477/577 Notes) Yn-Bin Ji Dec 4, 2017 1 Introduction A functionl ssigns rel number to ech function or curve) in some clss. One might sy tht functionl is function of nother function

More information

Math 115 ( ) Yum-Tong Siu 1. Lagrange Multipliers and Variational Problems with Constraints. F (x,y,y )dx

Math 115 ( ) Yum-Tong Siu 1. Lagrange Multipliers and Variational Problems with Constraints. F (x,y,y )dx Mth 5 2006-2007) Yum-Tong Siu Lgrnge Multipliers nd Vritionl Problems with Constrints Integrl Constrints. Consider the vritionl problem of finding the extremls for the functionl J[y] = F x,y,y )dx with

More information

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4 WiSe 1 8.1.1 Prof. Dr. A.-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Mtthis Sb m Lehrstuhl für Theoretische Physik I Deprtment für Physik Friedrich-Alexnder-Universität Erlngen-Nürnberg Theoretische

More information

1.3 The Lemma of DuBois-Reymond

1.3 The Lemma of DuBois-Reymond 28 CHAPTER 1. INDIRECT METHODS 1.3 The Lemm of DuBois-Reymond We needed extr regulrity to integrte by prts nd obtin the Euler- Lgrnge eqution. The following result shows tht, t lest sometimes, the extr

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Functions of Several Variables

Functions of Several Variables Functions of Severl Vribles Sketching Level Curves Sections Prtil Derivtives on every open set on which f nd the prtils, 2 f y = 2 f y re continuous. Norml Vector x, y, 2 f y, 2 f y n = ± (x 0,y 0) (x

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

Some Methods in the Calculus of Variations

Some Methods in the Calculus of Variations CHAPTER 6 Some Methods in the Clculus of Vritions 6-. If we use the vried function ( α, ) α sin( ) + () Then d α cos ( ) () d Thus, the totl length of the pth is d S + d d α cos ( ) + α cos ( ) d Setting

More information

Introduction to Finite Element Method

Introduction to Finite Element Method Introduction to Finite Element Method Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pn.pl/ tzielins/ Tble of Contents 1 Introduction 1 1.1 Motivtion nd generl concepts.............

More information

Part III. Calculus of variations

Part III. Calculus of variations Prt III. Clculus of vritions Lecture notes for MA342H P. Krgeorgis pete@mths.tcd.ie 1/43 Introduction There re severl pplictions tht involve expressions of the form Jy) = Lx,yx),y x))dx. For instnce, Jy)

More information

Eigen Values and Eigen Vectors of a given matrix

Eigen Values and Eigen Vectors of a given matrix Engineering Mthemtics 0 SUBJECT NAME SUBJECT CODE MATERIAL NAME MATERIAL CODE : Engineering Mthemtics I : 80/MA : Prolem Mteril : JM08AM00 (Scn the ove QR code for the direct downlod of this mteril) Nme

More information

Candidates must show on each answer book the type of calculator used.

Candidates must show on each answer book the type of calculator used. UNIVERSITY OF EAST ANGLIA School of Mthemtics My/June UG Exmintion 2007 2008 ELECTRICITY AND MAGNETISM Time llowed: 3 hours Attempt FIVE questions. Cndidtes must show on ech nswer book the type of clcultor

More information

Chapter 4. Additional Variational Concepts

Chapter 4. Additional Variational Concepts Chpter 4 Additionl Vritionl Concepts 137 In the previous chpter we considered clculus o vrition problems which hd ixed boundry conditions. Tht is, in one dimension the end point conditions were speciied.

More information

Math 100 Review Sheet

Math 100 Review Sheet Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

More information

Calculus of Variations: The Direct Approach

Calculus of Variations: The Direct Approach Clculus of Vritions: The Direct Approch Lecture by Andrejs Treibergs, Notes by Bryn Wilson June 7, 2010 The originl lecture slides re vilble online t: http://www.mth.uth.edu/~treiberg/directmethodslides.pdf

More information

Variational Problems

Variational Problems Vritionl Problems Com S 477/577 Notes Yn-Bin Ji Dec 7, 017 ThevritionlderivtiveoffunctionlJ[y]cnbedefinedsδJ/δy = F y x,y,y d dx F y x,y,y [1, pp. 7 9]. Euler s eqution essentilly sttes tht the vritionl

More information

Phys 6321 Final Exam - Solutions May 3, 2013

Phys 6321 Final Exam - Solutions May 3, 2013 Phys 6321 Finl Exm - Solutions My 3, 2013 You my NOT use ny book or notes other thn tht supplied with this test. You will hve 3 hours to finish. DO YOUR OWN WORK. Express your nswers clerly nd concisely

More information

The Basic Functional 2 1

The Basic Functional 2 1 2 The Bsic Functionl 2 1 Chpter 2: THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 2.1 Introduction..................... 2 3 2.2 The First Vrition.................. 2 3 2.3 The Euler Eqution..................

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS UNIT (ADDITIONAL) Time llowed Three hours (Plus 5 minutes reding time) DIRECTIONS TO CANDIDATES Attempt ALL questions ALL questions re of equl vlue

More information

Partial Differential Equations

Partial Differential Equations Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

Sturm-Liouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1

Sturm-Liouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1 Ch.4. INTEGRAL EQUATIONS AND GREEN S FUNCTIONS Ronld B Guenther nd John W Lee, Prtil Differentil Equtions of Mthemticl Physics nd Integrl Equtions. Hildebrnd, Methods of Applied Mthemtics, second edition

More information

Chapter 2. Constraints, Lagrange s equations

Chapter 2. Constraints, Lagrange s equations Chpter Constrints, Lgrnge s equtions Section Constrints The position of the prticle or system follows certin rules due to constrints: Holonomic constrint: f (r. r,... r n, t) = 0 Constrints tht re not

More information

University of Houston, Department of Mathematics Numerical Analysis II

University of Houston, Department of Mathematics Numerical Analysis II University of Houston, Deprtment of Mtemtics Numericl Anlysis II 6 Glerkin metod, finite differences nd colloction 6.1 Glerkin metod Consider sclr 2nd order ordinry differentil eqution in selfdjoint form

More information

Variational Techniques for Sturm-Liouville Eigenvalue Problems

Variational Techniques for Sturm-Liouville Eigenvalue Problems Vritionl Techniques for Sturm-Liouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment

More information

PHYSICS 116C Homework 4 Solutions

PHYSICS 116C Homework 4 Solutions PHYSICS 116C Homework 4 Solutions 1. ( Simple hrmonic oscilltor. Clerly the eqution is of the Sturm-Liouville (SL form with λ = n 2, A(x = 1, B(x =, w(x = 1. Legendre s eqution. Clerly the eqution is of

More information

(uv) = u v + uv, (1) u vdx + b [uv] b a = u vdx + u v dx. (8) u vds =

(uv) = u v + uv, (1) u vdx + b [uv] b a = u vdx + u v dx. (8) u vds = Integrtion by prts Integrting the both sides of yields (uv) u v + uv, (1) or b (uv) dx b u vdx + b uv dx, (2) or b [uv] b u vdx + Eqution (4) is the 1-D formul for integrtion by prts. Eqution (4) cn be

More information

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016 Physics 7 Electricity nd Mgnetism Solutions to Finl Em, Spring 6 Plese note tht some possibly helpful formuls pper on the second pge The number of points on ech problem nd prt is mrked in squre brckets

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 213 1: (Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

PHYS 601 HW3 Solution

PHYS 601 HW3 Solution 3.1 Norl force using Lgrnge ultiplier Using the center of the hoop s origin, we will describe the position of the prticle with conventionl polr coordintes. The Lgrngin is therefore L = 1 2 ṙ2 + 1 2 r2

More information

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials:

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials: Summry of equtions chpters 7. To mke current flow you hve to push on the chrges. For most mterils: J E E [] The resistivity is prmeter tht vries more thn 4 orders of mgnitude between silver (.6E-8 Ohm.m)

More information

Quantum Physics II (8.05) Fall 2013 Assignment 2

Quantum Physics II (8.05) Fall 2013 Assignment 2 Quntum Physics II (8.05) Fll 2013 Assignment 2 Msschusetts Institute of Technology Physics Deprtment Due Fridy September 20, 2013 September 13, 2013 3:00 pm Suggested Reding Continued from lst week: 1.

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011 Clssicl Mechnics From Moleculr to Con/nuum Physics I WS 11/12 Emilino Ippoli/ October, 2011 Wednesdy, October 12, 2011 Review Mthemtics... Physics Bsic thermodynmics Temperture, idel gs, kinetic gs theory,

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 25 1: Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009 Mth 3B Review Steve 18 Mrch 2009 About the finl Fridy Mrch 20, 3pm-6pm, Lkretz 110 No notes, no book, no clcultor Ten questions Five review questions (Chpters 6,7,8) Five new questions (Chpters 9,10) No

More information

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016 Physics 333, Fll 16 Problem Set 7 due Oct 14, 16 Reding: Griffiths 4.1 through 4.4.1 1. Electric dipole An electric dipole with p = p ẑ is locted t the origin nd is sitting in n otherwise uniform electric

More information

21.6 Green Functions for First Order Equations

21.6 Green Functions for First Order Equations 21.6 Green Functions for First Order Equtions Consider the first order inhomogeneous eqution subject to homogeneous initil condition, B[y] y() = 0. The Green function G( ξ) is defined s the solution to

More information

Green function and Eigenfunctions

Green function and Eigenfunctions Green function nd Eigenfunctions Let L e regulr Sturm-Liouville opertor on n intervl (, ) together with regulr oundry conditions. We denote y, φ ( n, x ) the eigenvlues nd corresponding normlized eigenfunctions

More information

This final is a three hour open book, open notes exam. Do all four problems.

This final is a three hour open book, open notes exam. Do all four problems. Physics 55 Fll 27 Finl Exm Solutions This finl is three hour open book, open notes exm. Do ll four problems. [25 pts] 1. A point electric dipole with dipole moment p is locted in vcuum pointing wy from

More information

MAC-solutions of the nonexistent solutions of mathematical physics

MAC-solutions of the nonexistent solutions of mathematical physics Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

B.Sc. in Mathematics (Ordinary)

B.Sc. in Mathematics (Ordinary) R48/0 DUBLIN INSTITUTE OF TECHNOLOGY KEVIN STREET, DUBLIN 8 B.Sc. in Mthemtics (Ordinry) SUPPLEMENTAL EXAMINATIONS 01 Numericl Methods Dr. D. Mckey Dr. C. Hills Dr. E.A. Cox Full mrks for complete nswers

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Deprtment 8.044 Sttisticl Physics I Spring Term 03 Problem : Doping Semiconductor Solutions to Problem Set # ) Mentlly integrte the function p(x) given in

More information

STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH

STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH XIAO-BIAO LIN. Qudrtic functionl nd the Euler-Jcobi Eqution The purpose of this note is to study the Sturm-Liouville problem. We use the vritionl problem s

More information

3 Mathematics of the Poisson Equation

3 Mathematics of the Poisson Equation 3 Mthemtics of the Poisson Eqution 3. Green functions nd the Poisson eqution () The Dirichlet Green function stisfies the Poisson eqution with delt-function chrge 2 G D (r, r o ) = δ 3 (r r o ) (3.) nd

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is Lecture XVII Abstrct We introduce the concepts of vector functions, sclr nd vector fields nd stress their relevnce in pplied sciences. We study curves in three-dimensionl Eucliden spce nd introduce the

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

Unit 5. Integration techniques

Unit 5. Integration techniques 18.01 EXERCISES Unit 5. Integrtion techniques 5A. Inverse trigonometric functions; Hyperbolic functions 5A-1 Evlute ) tn 1 3 b) sin 1 ( 3/) c) If θ = tn 1 5, then evlute sin θ, cos θ, cot θ, csc θ, nd

More information

221B Lecture Notes WKB Method

221B Lecture Notes WKB Method Clssicl Limit B Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using

More information

Kirchhoff and Mindlin Plates

Kirchhoff and Mindlin Plates Kirchhoff nd Mindlin Pltes A plte significntly longer in two directions compred with the third, nd it crries lod perpendiculr to tht plne. The theory for pltes cn be regrded s n extension of bem theory,

More information

Math 6395: Hyperbolic Conservation Laws and Numerical Methods. Hyperbolic Conservation Laws are a type of PDEs arise from physics: fluid/gas dynamics.

Math 6395: Hyperbolic Conservation Laws and Numerical Methods. Hyperbolic Conservation Laws are a type of PDEs arise from physics: fluid/gas dynamics. Mth 6395: Hyperbolic Conservtion Lws nd Numericl Methods Course structure Hyperbolic Conservtion Lws re type of PDEs rise from physics: fluid/gs dynmics. Distintive solution structures Other types of PDEs

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Prof. Anchordoqui. Problems set # 4 Physics 169 March 3, 2015

Prof. Anchordoqui. Problems set # 4 Physics 169 March 3, 2015 Prof. Anchordoui Problems set # 4 Physics 169 Mrch 3, 15 1. (i) Eight eul chrges re locted t corners of cube of side s, s shown in Fig. 1. Find electric potentil t one corner, tking zero potentil to be

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson.7 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: Consider potentil problem in the hlf-spce defined by, with Dirichlet boundry conditions on the plne

More information

MATH 13 FINAL STUDY GUIDE, WINTER 2012

MATH 13 FINAL STUDY GUIDE, WINTER 2012 MATH 13 FINAL TUY GUI, WINTR 2012 This is ment to be quick reference guide for the topics you might wnt to know for the finl. It probbly isn t comprehensive, but should cover most of wht we studied in

More information

Student Handbook for MATH 3300

Student Handbook for MATH 3300 Student Hndbook for MATH 3300 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 0.5 0 0.5 0.5 0 0.5 If people do not believe tht mthemtics is simple, it is only becuse they do not relize how complicted life is. John Louis

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Msschusetts Institute of Technology Deprtment of Physics Physics 8.07 Fll 2005 Problem Set 3 Solutions Problem 1: Cylindricl Cpcitor Griffiths Problems 2.39: Let the totl chrge per unit length on the inner

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Math Fall 2006 Sample problems for the final exam: Solutions

Math Fall 2006 Sample problems for the final exam: Solutions Mth 42-5 Fll 26 Smple problems for the finl exm: Solutions Any problem my be ltered or replced by different one! Some possibly useful informtion Prsevl s equlity for the complex form of the Fourier series

More information

Section 7.1 Integration by Substitution

Section 7.1 Integration by Substitution Section 7. Integrtion by Substitution Evlute ech of the following integrls. Keep in mind tht using substitution my not work on some problems. For one of the definite integrls, it is not possible to find

More information

14.4. Lengths of curves and surfaces of revolution. Introduction. Prerequisites. Learning Outcomes

14.4. Lengths of curves and surfaces of revolution. Introduction. Prerequisites. Learning Outcomes Lengths of curves nd surfces of revolution 4.4 Introduction Integrtion cn be used to find the length of curve nd the re of the surfce generted when curve is rotted round n xis. In this section we stte

More information

Jim Lambers MAT 280 Spring Semester Lecture 26 and 27 Notes

Jim Lambers MAT 280 Spring Semester Lecture 26 and 27 Notes Jim Lmbers MAT 280 pring emester 2009-10 Lecture 26 nd 27 Notes These notes correspond to ection 8.6 in Mrsden nd Tromb. ifferentil Forms To dte, we hve lerned the following theorems concerning the evlution

More information

CHM Physical Chemistry I Chapter 1 - Supplementary Material

CHM Physical Chemistry I Chapter 1 - Supplementary Material CHM 3410 - Physicl Chemistry I Chpter 1 - Supplementry Mteril For review of some bsic concepts in mth, see Atkins "Mthemticl Bckground 1 (pp 59-6), nd "Mthemticl Bckground " (pp 109-111). 1. Derivtion

More information

10 Elliptic equations

10 Elliptic equations 1 Elliptic equtions Sections 7.1, 7.2, 7.3, 7.7.1, An Introduction to Prtil Differentil Equtions, Pinchover nd Ruinstein We consider the two-dimensionl Lplce eqution on the domin D, More generl eqution

More information

Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman

Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman Applied Prtil Differentil Equtions with Fourier Series nd Boundry Vlue Problems 5th Edition Richrd Hbermn Person Eduction Limited Edinburgh Gte Hrlow Essex CM20 2JE Englnd nd Associted Compnies throughout

More information

First variation. (one-variable problem) January 14, 2013

First variation. (one-variable problem) January 14, 2013 First vrition (one-vrible problem) Jnury 14, 2013 Contents 1 Sttionrity of n integrl functionl 2 1.1 Euler eqution (Optimlity conditions)............... 2 1.2 First integrls: Three specil cses.................

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Introduction to the Calculus of Variations

Introduction to the Calculus of Variations Introduction to the Clculus of Vritions Jim Fischer Mrch 20, 1999 Abstrct This is self-contined pper which introduces fundmentl problem in the clculus of vritions, the problem of finding extreme vlues

More information

Review for final

Review for final eview for 263.02 finl 14.1 Functions of severl vribles. Find domin nd rnge. Evlute. ketch grph. rw nd interpret level curves. (Functions of three vribles hve level surfces.) Mtch surfces with level curves.

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Chemistry 36 Dr Jen M Stndrd Problem Set 3 Solutions 1 Verify for the prticle in one-dimensionl box by explicit integrtion tht the wvefunction ψ ( x) π x is normlized To verify tht ψ ( x) is normlized,

More information

Notes on the Calculus of Variations and Optimization. Preliminary Lecture Notes

Notes on the Calculus of Variations and Optimization. Preliminary Lecture Notes Notes on the Clculus of Vritions nd Optimiztion Preliminry Lecture Notes Adolfo J. Rumbos c Drft dte November 14, 17 Contents 1 Prefce 5 Vritionl Problems 7.1 Miniml Surfces...........................

More information

Practice final exam solutions

Practice final exam solutions University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If

More information

STURM-LIOUVILLE PROBLEMS: GENERALIZED FOURIER SERIES

STURM-LIOUVILLE PROBLEMS: GENERALIZED FOURIER SERIES STURM-LIOUVILLE PROBLEMS: GENERALIZED FOURIER SERIES 1. Regulr Sturm-Liouville Problem The method of seprtion of vribles to solve boundry vlue problems leds to ordinry differentil equtions on intervls

More information

Orthogonal functions

Orthogonal functions Orthogonl functions Given rel vrible over the intervl (, b nd set of rel or complex functions U n (ξ, n =, 2,..., which re squre integrble nd orthonorml b U n(ξu m (ξdξ = δ n,m ( if the set of of functions

More information

Test 3 Review. Jiwen He. I will replace your lowest test score with the percentage grade from the final exam (provided it is higher).

Test 3 Review. Jiwen He. I will replace your lowest test score with the percentage grade from the final exam (provided it is higher). Test 3 Review Jiwen He Test 3 Test 3: Dec. 4-6 in CASA Mteril - Through 6.3. No Homework (Thnksgiving) No homework this week! Hve GREAT Thnksgiving! Finl Exm Finl Exm: Dec. 14-17 in CASA You Might Be Interested

More information

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc Physics 170 Summry of Results from Lecture Kinemticl Vribles The position vector ~r(t) cn be resolved into its Crtesin components: ~r(t) =x(t)^i + y(t)^j + z(t)^k. Rtes of Chnge Velocity ~v(t) = d~r(t)=

More information

Big idea in Calculus: approximation

Big idea in Calculus: approximation Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:

More information

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8 Mth 3 Fll 0 The scope of the finl exm will include: Finl Exm Review. Integrls Chpter 5 including sections 5. 5.7, 5.0. Applictions of Integrtion Chpter 6 including sections 6. 6.5 nd section 6.8 3. Infinite

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 7.9, 8. Fll 6 Problem 7.9.33 Show tht for ny constnts M,, nd, the function yt) = )) t ) M + tnh stisfies the logistic eqution: y SOLUTION. Let Then nd Finlly, y = y M

More information

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1)

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1) 3e. Introduction Lecture 3e Rectngulr wveguide So fr in rectngulr coordintes we hve delt with plne wves propgting in simple nd inhomogeneous medi. The power density of plne wve extends over ll spce. Therefore

More information

1 E3102: a study guide and review, Version 1.0

1 E3102: a study guide and review, Version 1.0 1 E3102: study guide nd review, Version 1.0 Here is list of subjects tht I think we ve covered in clss (your milege my vry). If you understnd nd cn do the bsic problems in this guide you should be in very

More information

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1 Tor Kjellsson Stockholm University Chpter 5 5. Strting with the following informtion: R = m r + m r m + m, r = r r we wnt to derive: µ = m m m + m r = R + µ m r, r = R µ m r 3 = µ m R + r, = µ m R r. 4

More information

Orthogonal Polynomials

Orthogonal Polynomials Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

Kinematic Waves. These are waves which result from the conservation equation. t + I = 0. (2)

Kinematic Waves. These are waves which result from the conservation equation. t + I = 0. (2) Introduction Kinemtic Wves These re wves which result from the conservtion eqution E t + I = 0 (1) where E represents sclr density field nd I, its outer flux. The one-dimensionl form of (1) is E t + I

More information

Orthogonal Polynomials and Least-Squares Approximations to Functions

Orthogonal Polynomials and Least-Squares Approximations to Functions Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

More information