LEVEL SET OF INTUITIONTISTIC FUZZY SUBHEMIRINGS OF A HEMIRING

Size: px
Start display at page:

Download "LEVEL SET OF INTUITIONTISTIC FUZZY SUBHEMIRINGS OF A HEMIRING"

Transcription

1 LEVEL SET OF INTUITIONTISTIC FUZZY SUBHEMIRINGS OF HEMIRING N. NITH ssstant Proessor n Mathematcs, Peryar Unversty PG Extn Centre, Dharmapur Emal : anthaarenu@gmal.com BSTRCT: In ths paper, we made an attempt to study the algebrac nature o an ntutonstc uzzy subhemrngs o a hemrng MS Subject classcaton: 03F55, 06D72, KEY WORDS: Fuzzy set, ntutonstc uzzy set, ntutonstc uzzy subhemrng, homomorphsm, anthomomorphsm, level set. INTRODUCTION: There are many concepts o unversal algebras generalzng an assocatve rng R ; + ;. ). Some o them n partcular, nearrngs and several knds o semrngs have been proven very useul. Semrngs are algebras R ; + ;. ) share the same propertes as a rng except that R ; + ) s assumed to be a semgroup rather than a commutatve group. Semrngs appear n a natural manner n some applcatons to the theory o automata and ormal languages. n algebra R ; +,.) s sad to be a semrng R ; +) and R ;.) are semgroups satsyng a. b+c ) = a. b+a. c and b+c).a = b. a+c. a or all a, b and c n R. semrng R s sad to be addtvely commutatve a+b = b+a or all a, b and c n R. semrng R may have an dentty 1, dened by 1. a = a = a. 1 and a zero 0, dened by 0+a = a = a+0 and a.0 = 0 = 0.a or all a n R. semrng R s sad to be a hemrng t s an addtvely commutatve wth zero. ter the ntroducton o uzzy sets by L..Zadeh[13], several researchers explored on the generalzaton o the concept o uzzy sets. The concept o ntutonstc uzzy subsets IFS) was ntroduced by K.T.tanassov[4], as a generalzaton o the noton o uzzy set. The noton o Fuzzy let h-deals n hemrngs wth respect to a s-norm was ntroduced n [2].The noton o homomorphsm and anthomomorphsm o uzzy and ant-uzzy deal o a rng was ntroduced by N.Palanappan & K.rjunan. In ths paper, we ntroduce the some Theorems n ntutonstc uzzy subhemrng o a hemrng. 1.PRELIMINRIES: 1.1Denton: Let X be a non-empty set. uzzy subset o X s a uncton : X [0, 1]. 1.2 Denton: n ntutonstc uzzy subset IFS) n X s dened as an object o the orm = { < x, x), x) > / xx }, where : X [0,1] and : X [0,1] dene the degree o membershp and the degree o nonmembershp o the element xx respectvely and or every xx satsyng 0 x) + x) Denton: Let R be a hemrng. n ntutonstc uzzy subset o R s sad to be an ntutonstc uzzy subhemrngifshr) o R t satses the ollowng condtons: ) x + y) mn{ x), y) }, ) xy) mn{ x), y) }, ) x + y) max{ x), y) }, v) xy) max{ x), y) }, or all x and y n R. 1.4 Denton: I R, +,. ) and R, +,. ) are any two hemrngs, then the uncton : R R s called a homomorphsm x+y) = x)+y) and xy)=x)y), or all x and y n R. 1.5 Denton: I R, +,. ) and R, +,. ) are any two hemrngs, then the uncton : R R s called an ant-homomorphsm x+y) = y)+x) and xy)=y)x), or all x and y n R. 1.6 Denton: Let R and R be any two hemrngs. Let : R R be any uncton and let be an ntutonstc uzzy subhemrng n R, V be an ntutonstc uzzy subhemrng n R ) = R, dened by V y) = sup = n x 1 y) x 1 y) x) and V y) x), or all x n R and y n R. Then s called a premage o V under and s denoted by -1 V). 1.7 Denton: Let be an ntutonstc uzzy subset o a set X. For and n [0,1], the level subset o s the set,, ) ={xx : x) and x) }. Ths s called an ntutonstc uzzy level subset o. 2. LEVEL SET OF INTUITIONISTIC FUZZY SUBHEMIRING OF HEMIRING. 2.1 Theorem: Let be an ntutonstc uzzy subhemrng o a hemrng R. Then or and n [0,1] such that e) and e),, ) s a level subhemrng o R. Proo: For all x and y n, ), we have, x) and x) and y) and y). Now, x + y) 124

2 mn { x), y) } mn {, } =. Whch mples that x + y ). nd, xy) mn{ x), y) } mn{, }=.Whch mples that xy).nd also, x+y) max{ x), y)} max{, }=. Whch mples that x + y). nd, xy) max{ x), y)} max{, }=.Whch mples that xy).thereore, x+y) and x+y) and xy) and xy). nd thereore x + y and xy n, ). Hence, ) s a level subhemrng o a hemrng R. 2.1Denton: Let be an ntutonstc uzzy subhemrng o a hemrng R. The level subhemrng, ), or, [0,1] and e) and e) are called ntutonstc uzzy level subhemrng o. 2.2 Theorem: Let be an ntutonstc uzzy subhemrng o a hemrng R. Then two ntutonstc uzzy level subhemrng 1, 1), 2, 2) and 1, 2, 1, 2 are n [0,1] and 1, 2 e) and 1, 2 e) wth 2 < 1 and 1 < 2 o are equal there s no x n R such that 1 > x) > 2 and 1 < x) < 2. Proo: ssume that 1, 1) = 2, 2). Suppose there exsts x n R such that 1 > x)> 2 and 1 < x) < 2. Then 1, 1) 2, 2) mples x belongs to 2, 2), but not n 1, 1). Ths s contradcton to 1, 1) = 2, 2).Thereore there s no x R such that 1 > x) > 2 and 1 < x) < 2.Conversely there s no x R such that 1 > x) > 2 and 1 < x) < 2.Then 1, 1) = 2, 2). by the denton o level set ). 2.3 Theorem: Let R be a hemrng and be an ntutonstc uzzy subset o R such that, ) be a subhemrng R. I and n [0,1] satsyng e) and e), then s an ntutonstc uzzy subhemrng o R. Proo: Let R be a hemrng and x and y n R. Let x) = 1 and y) = 2, x) = 1 and y) = 2. Case ): I 1 < 2 and 1 > 2, then x, y 1, 1). s 1, 1) s a deal o R, x + y and xy n 1, 1). Now, x+y) 1 = mn{ 1, 2 } = mn{ x), y)} whch mples that x+y) mn{ x), y) }, or all x and y n R. lso, xy) 1 =mn{ 1, 2 }=mn{ x), y)}, whch mples that xy) mn{ x), y) }, or all x and y n R. nd, x+y) 1 = max{ 1, 2 }= max{ x), y)},whch mples that x+y) max{ x), y)}, or all x and y n R. lso xy) 1 = max{ 1, 2 } = max{ x), y)}, whch mples that xy) max{ x), y)}, or all x and y n R. Case ): I 1 < 2 and 1 < 2, then x and y n 1, 2). s 1, 2) s a subhemrng o R, x+y and xy 1, 2). Now, x+y) 1 =mn{ 1, 2 } =mn{ x), y)}whch mples that x+y) mn{ x), y)}, or all x and y n R. lso, xy) 1 = mn{ 1, 2 } = mn { x), y)}mples that xy) mn { x), y) }, or all x and y n R. nd, x+y) 2 = max{ 2, 1 }=max{ y), x)} mples that x+y) max{ x), y)}, or all x and y n R. lso, xy) 2 = max{ 2, 1 }= max{ y), x) } whch mples that xy) max{ x), y)}, or all x and y n R. Case ): I 1 > 2 and 1 > 2, then x and y n 2, 1). s 2, 1) s a subhemrng o R, x + y and xy n 2, 1). Now, x +y) 2 = mn{ 2, 1 } = mn{ y), x)} whch mples that x + y) mn{ x), y)}, or all x and y n R. lso, xy) 2 = mn { 2, 1 }= mn{ y), x)} whch mples that xy) mn{ x), y)}, or all x and y n R. nd, x+y) 1 = max{ 1, 2 } = max{ x), y)} whch mples that x+y) max{ x), y) }, or all x and y n R. lso, xy) 1 = max{ 1, 2 }= max{ x), y)} whch mples that xy) max{ x), y)}, or all x and y n R. Case v): I 1 > 2 and 1 < 2, then x and y n 2, 2). s 2, 2) s a subrng o R, x+y and xy n 2, 2). Now, x+y) 2 = mn{ 2, 1 }= mn{ y), x)} whch mples that x+y) mn{ x), y)}, or all x and y n R. lso, xy) 2 = mn{ 2, 1 }= mn { y), x) }mples that xy) mn{ x), y) }, or all x and y n R. nd, x+ y) 2 = max{ 2, 1 }=max{ y), x) } mples that x+y) max { x), y)}, or all x and y n R. lso, xy) 2 = max{ 2, 1 }= max{ y), x)} mples that xy) max{ x), y)}, or all x and y n R. Case v): I 1 = 2 and 1 = 2. It s trval. In all the cases, s an ntutonstc uzzy subhemrng o a hemrng R. 2.4 Theorem: Let be an ntutonstc uzzy subhemrng o a hemrng R. I any two level subhemrngs o belongs to R, then ther ntersecton s also level subhemrng o n R. Proo : Let 1, 2, 1, 2 [0,1] and 1, 2 e) and 1, 2 e). Case ) I 1 < x) < 2 and 1 > x)> 2, then 2, 2) 1, 1). Thereore, 1, 1) 2, 2) = 2, 2), but 2, 2) s a level subhemrng o. Case ) I 1 > x) > 2 and 1 < x) < 2, then 1, 1) 2, 2). Thereore, 1, 1) 2, 2) = 1, 1), but 1, 1) s a level subhemrng o. Case ) I 1 < x) < 2 and 1 < x)< 2, then 2, 1) 1, 2).Thereore, 2, 1) 1, 2) = 2, 1), but 2, 1) s a level subhemrng o. Case v) I 1 > x)> 2 and 125

3 1 > x)> 2, then 1, 2) 2, 1). Thereore, 1, 2) 2, 1) = 1, 2), but 1, 2) s a level subhemrng o. Case v) I 1 = 2 and 1 = 2, then 1, 1) = 2, 2). In all cases, ntersecton o any two level subhemrngs s a level subhemrng o. 2.5 Theorem: Let be an ntutonstc uzzy subhemrng o a hemrng R. I, j [0,1], e) and j e) and, j),, j I s a collecton o level subhemrngs o, then ther ntersecton s also a level subhemrng o. Proo: It s trval. 2.6 Theorem: Let be an ntutonstc uzzy subhemrng o a hemrng R. I any two level subhemrngs o belongs to R, then ther unon s also a level subhemrng o n R. Proo: Let 1, 2, 1, 2 [0,1] and 1, 2 e) and 1, 2 e). Case ) I 1 < x) < 2 and 1 > x)> 2, then 2, 2) 1, 1). Thereore, 1, 1) 2, 2) = 1, 1), but 1, 1) s a level subhemrng o. Case) I 1 > x) > 2 and 1 < x) < 2, then 1, 1) 2, 2). Thereore, 1, 1) 2, 2) = 2, 2), but 2, 2) s a level subhemrng o. Case) I 1 < x) < 2 and 1 < x) < 2, then 2, 1) 1, 2). Thereore, 2, 1) 1, 2) = 1, 2), but 1, 2) s a level subhemrng o. Casev) I 1 > x) > 2 and 1 > x) > 2, then 1, 2) 2, 1).Thereore, 1, 2) 2, 1) = 2, 1), but 2, 1) s a level subhemrng o. Casev) I 1 = 2 and 1 = 2, then 1,1) = 2, 2). In all cases, unon o any two level subhemrng s also a level subhemrng o. 2.7 Theorem: Let be an ntutonstc uzzy subhemrng o a hemrng R. I, j [0,1], e) and j e) and, j),, ji s a collecton o level subhemrngs o, then ther unon s also a level subhemrng o. Proo: It s trval. 2.8 Theorem: Let be an ntutonstc uzzy subhemrng o a hemrng R. I s an ntutonstc uzzy characterstc subhemrng o R, then each level subhemrng o s a characterstc subhemrng o R. Proo: Let be an ntutonstc uzzy characterstc subhemrng o a hemrng R. Let x and y n R and Im, Im ; utr) and x, ). Now, x)) = x). Thereore, x)). nd, x)) = x). Thereore, x)). Thereore, x), ). Hence,, ) ), ) ). For the reverse ncluson, let x, ) ) and let y n R be such that y) = x. Then, y) = y)) = x). nd, y)= y)) = x).thereore, y) and y). Hence, y, ), whe n x, ) ). Hence, ) ), ) --- 2). From 1) and 2), we get, ) s a characterstc subhemrng o a hemrng R. 2.9 Theorem: ny subhemrng H o a hemrng R can be realzed as a level subhemrng o some ntutonstc uzzy subhemrng o R. Proo: Let be the ntutonstc uzzy subset o a hemrng R dened by x) = x H, 0 < < 1 0 x H and x) = x H, 0 < < 1 0 x H and + 1, where H s subhemrng o a hemrng R. We clam that s an ntutonstc uzzy subhemrng o a hemrng R. Let x and y n R. I x and y n H, then x + y and xy n H. Snce H s a subhemrng o R, x + y) =, x) =, y) =, xy) =. So, x + y) mn { x), y)}.nd, xy) mn { x), y) }. lso, x+y) =, x) =, y) =, xy) =. So, x+y) max{ x), y)}. nd, xy) max{ x), y) }. I xh, yh, then x+y, xy H. Then, x+y) = 0, x) =, y) = 0, xy) = 0. Thereore, x+y) mn{ x), y) } and xy) mn{ x), y)}. nd x+y) = 0, x) =, y) = 0, xy) = 0. Thereore, x+y) max { x), y) } and xy) max { x), y) }. I x, y H, then x - y may or may not belong to H. Clearly x+y) mn{ x), y)} and xy) mn{ x), y)}. lso x+y) max{ x), y)}and xy) max{ x), y)}. In any case, x+y) mn{ x), y) }, xy) mn{ x), y)} and x+y) max{ x), y)}, xy) max{ x), y)}. Thus n all the cases, s an ntutonstc uzzy subhemrng o R Theorem: The homomorphc mage o a level subhemrng o an ntutonstc uzzy subhemrng o a hemrng R s a level subhemrng o an ntutonstc uzzy subhemrng o a hemrng R. Proo: Let R, +,. ) and R, +,. ) be any two hemrngs and : R R be a homomorphsm. That s, x + y) = x) + y) and xy) = x)y), or all x and y n R. 126

4 Let V = ), where s an ntutonstc uzzy subhemrng o a hemrng R. Clearly V s an ntutonstc uzzy subhemrng o a hemrng R. Let x and y n R, mples x) and y) n R. Let, ) s a level subhemrng o. That s, x) and x) ; y) and y) ; x+y), xy) and x+y), xy). We have to prove that, ) ) s a level subhemrng o V. Now, V x) ) x), whch mples that V x) ) ; and V y) ) y), whch mples that V y) ) and V x) + y) ) = V x + y) ), as s a homomorphsm x + y ), whch mples that V x) + y) ). lso, V x) y) ) = V x y) ) xy ), whch mples that V x) y) ). nd, V x)) x), whch mples that V x)) ; V y)) y), whch mples that V y)) and V x)+y) ) = V x + y) ) x + y ), whch mples that V x) + y) ). lso, V x)y) ) = V x y) ), as s a homomorphsm xy), whch mples that V x)y) ). Thereore, V x)+y) ), V x)+y) ), V x) y) ) and V x)y) ). Hence, ) ) s a level subhemrng o an ntutonstc uzzy subhemrng V o a hemrng R Theorem: The homomorphc pre-mage o a level subhemrng o an ntutonstc uzzy subhemrng o a hemrng R s a level subhemrng o an ntutonstc uzzy subhemrng o a hemrng R. Proo: Let R, +,. ) and R, +,. ) be any two hemrngs and : R R be a homomorphsm.that s, x+y) = x)+y) and xy) = x)y) or all x and y n R. Let V = ), where V s an ntutonstc uzzy subhemrng o a hemrng R. Clearly s an ntutonstc uzzy subhemrng o a hemrng R. Let x) and y) n R, mples x and y n R. Let, ) ) s a level subhemrng o V. That s, V x) ) and V x) ) ; V y) ) and V y) ) ; V x)+y)), V x)y)) and V x)+y) ), V x) y) ).We have to prove that, ) s a level subhemrng o. Now, x) = V x) ), mples that x) ; y) = V y) ), mples that y) and x+y ) = V x+y) )= V x)+y) ),whch mples that x+y). lso, xy ) = V xy)) = V x)y) ), whch mples that xy). nd, x)= V x) ), mples that x) ; y) = V y)), mples that y) and x+y ) = V x+y) ) = V x)+y) ), whch mples that x+y). xy ) = V xy) )= V x)y) ),whch mples that xy). Thereore, V x)+y)), V x)+y) ), V x)y) ) and V x)y) ). Hence,, ) s a level subhemrng o an ntutonstc uzzy subhemrng o R Theorem: The ant-homomorphc mage o a level subhemrng o an ntutonstc uzzy subhemrng o a hemrng R s a level subhemrng o an ntutonstc uzzy subhemrng o a hemrng R. Proo: Let R, +,. ) and R, +,. ) be any two hemrngs and : R R be an ant-homomorphsm. That s, x+y) = y)+x) and xy) = y)x), or all x and y n R. Let V = ), where s an ntutonstc uzzy subhemrng o R. Clearly V s an ntutonstc uzzy subhemrng o R. Let x and y n R, mples x) and y) n R. Let, ) s a level subhemrng o. That s, x) and x) ; y) and y). y+x), yx) and y+x), yx). We have to prove that, ) ) s a level subhemrng o V. Now, V x)) x), whch mples that V x) ) ; V y) ) y), whch mples that V y)). Now, V x)+y) ) = V x)+y) )= V y+x) ) y+x ), whch mples that, V x)+y) ). lso, V x)y) ) = V yx)) yx),whch mples that V x)y) ). nd, V x) ) x), whch mples that V x)) and V y)) y), whch mples that V y) ). Now, V x) + y) ) = V x) + y) )= V y+x) ), y + x),whch mples that V x) + y) ). lso, V x)y) ) = V yx )), y x),whch mples that V x) y) ). Thereore, V x)+y) ), V x)+ y) ) and V x)y) ), V x)y) ). Hence, ) ) s a level subhemrng o an ntutonstc uzzy subhemrng V o R Theorem: The ant-homomorphc pre-mage o a level subhemrng o an ntutonstc uzzy subhemrng o a hemrng R s a level subhemrng o an ntutonstc uzzy subhemrng o a hemrng R. Proo: Let R, +,. ) and R, +,. ) be any two hemrngs and : R R be an ant-homomorphsm. That s, x+y) = y) + x) and xy) = y)x), or all x and y n R. Let V = ), where V s an ntutonstc uzzy subhemrng o a hemrng R. Clearly s an ntutonstc uzzy subhemrng o a hemrng R. Let x) and y) n R, mples x and y n R. Let, ) ) s a level subhemrng o V. That s, V x) ) and V x) ) ; V y) ) and V y) ) ; V y) + x) ), V y) x) ) and V y) + x) ), V y) x) ).We have to prove that, ) s a level subhemrng o. Now, x) = V x) ), whch mples that x) ; y) = V y) ), whch mples that y). Now, x+y ) = V x+y) )= V y)+x) ) = V y)+x) ) 127

5 , whch mples that x+y). lso, xy ) = V xy) )= V y)x) ), whch mples that xy). nd, x) = V x) ), whch mples that x) and y) = V y) ), whch mples that y) and x+y ) = V x+y) ) = V y)+x) ), whch mples that x+y). xy ) = V xy) )= V y)x) ), whch mples that xy).thereore, V x)+y) ), V x)+y) ) and V x)y) ), V x)y) ). Hence, ) s a level subhemrng o an ntutonstc uzzy subhemrng o R Theorem: Let be any mappng rom a hemrng R 1 to R 2 and let be an ntutonstc uzzy subhemrng o R 1. Then or, [0,1], we have, ) ) = 10, 2 0 1, 2 Proo: Suppose that and n [0,1] and y = x)r 2. I y, ) ), then )y) = Sup x) and )y) = In 1 x y) x) x 1 y). Thereore, or every real number 1, 2 > 0, there exst x 0-1 y) such that x 0 ) >- 1 and x 0 ) < + 2. So, or every 1, 2 > 0, y = x 0 ) ) and hence 1, 2 ) REFERENCES 1. kram.m and Dar.K.H, On uzzy d-algebras, Punjab unversty journal o mathematcs, ), kram.m and Dar.K.H, Fuzzy let h-deals n hemrngs wth respect to a s-norm, Internatonal Journal o Computatonal and ppled Mathematcs, Volume 2 Number ), pp sok Kumer Ray, On product o uzzy subgroups, uzzy sets and systems, 105, ). 4. tanassov.k., Intutonstc uzzy sets, uzzy sets and systems, 201), ). 5. tanassov.k., Intutonstc uzzy sets theory and applcatons, Physca-Verlag, Sprnger-Verlag company, prl 1999, Bulgara. 6. Davvaz.B and Weslaw..Dudek, Fuzzy n-ary groups as a generalzaton o roseneld uzzy groups, RXIV VIMTH.R) 20 OCT 2007, Dxt.V.N., Rajesh Kumar, Naseem jmal., Level subgroups and unon o uzzy subgroups, Fuzzy sets and systems, 37, ). y 10, 20 10, 2 0 y 1, 2 1, 2 Therore,, ) ).1). Conversely, 10, 20 1, 2 )), then or each 1, 2 >0 we have y ) and there exst x 0, ) 1 2, ) 1 2 such that y=x 0 ). Thereore or each 1, 2 > 0, there exst x 0-1 y) and x 0 ) - 1 and x 0 ) + 2. Hence, )y) = x ) and )y) = Sup Sup 1 1 x y) 0 In 1 x ) In 2 1 x y) 0 2 Thereore, 10, 0 2 1, 2 )). So, y,, ) )..2). From 1) and 2) we get,, ) ) = 10, 2 0 1, 2 8. Palanappan. N & rjunan. K, The homomorphsm, ant homomorphsm o a uzzy and an ant uzzy deals, Varahmhr Journal o Mathematcal Scences, Vo.6 No.1, ). 9. Palanappan. N & rjunan. K, Operaton on uzzy and ant uzzy deals, ntartca J. Math., 41), ). 10. Palanappan. N & rjunan. K, Some propertes o ntutonstc uzzy subgroups, cta Cenca Indca, Vol.XXXIII M. No.2, ). 11. Rajesh Kumar, Fuzzy lgebra, Volume 1, Unversty o Delh Publcaton Dvson, July Svaramakrshna das.p, Fuzzy groups and level subgroups, Journal o mathematcal analyss and applcatons, 84, ). 13. Zadeh.L.., Fuzzy sets, Inormaton and control,vol.8, ) 128

Intuitionistic Fuzzy G δ -e-locally Continuous and Irresolute Functions

Intuitionistic Fuzzy G δ -e-locally Continuous and Irresolute Functions Intern J Fuzzy Mathematcal rchve Vol 14, No 2, 2017, 313-325 ISSN 2320 3242 (P), 2320 3250 (onlne) Publshed on 11 December 2017 wwwresearchmathscorg DOI http//dxdoorg/1022457/jmav14n2a14 Internatonal Journal

More information

Bitopological spaces via Double topological spaces

Bitopological spaces via Double topological spaces topologcal spaces va Double topologcal spaces KNDL O TNTWY SEl-Shekh M WFE Mathematcs Department Faculty o scence Helwan Unversty POox 795 aro Egypt Mathematcs Department Faculty o scence Zagazg Unversty

More information

n-strongly Ding Projective, Injective and Flat Modules

n-strongly Ding Projective, Injective and Flat Modules Internatonal Mathematcal Forum, Vol. 7, 2012, no. 42, 2093-2098 n-strongly Dng Projectve, Injectve and Flat Modules Janmn Xng College o Mathematc and Physcs Qngdao Unversty o Scence and Technology Qngdao

More information

Some Concepts on Constant Interval Valued Intuitionistic Fuzzy Graphs

Some Concepts on Constant Interval Valued Intuitionistic Fuzzy Graphs IOS Journal of Mathematcs (IOS-JM) e-issn: 78-578, p-issn: 39-765X. Volume, Issue 6 Ver. IV (Nov. - Dec. 05), PP 03-07 www.osrournals.org Some Concepts on Constant Interval Valued Intutonstc Fuzzy Graphs

More information

= s j Ui U j. i, j, then s F(U) with s Ui F(U) G(U) F(V ) G(V )

= s j Ui U j. i, j, then s F(U) with s Ui F(U) G(U) F(V ) G(V ) 1 Lecture 2 Recap Last tme we talked about presheaves and sheaves. Preshea: F on a topologcal space X, wth groups (resp. rngs, sets, etc.) F(U) or each open set U X, wth restrcton homs ρ UV : F(U) F(V

More information

Fuzzy Rings and Anti Fuzzy Rings With Operators

Fuzzy Rings and Anti Fuzzy Rings With Operators OSR Journal of Mathemats (OSR-JM) e-ssn: 2278-5728, p-ssn: 2319-765X. Volume 11, ssue 4 Ver. V (Jul - ug. 2015), PP 48-54 www.osrjournals.org Fuzzy Rngs and nt Fuzzy Rngs Wth Operators M.Z.lam Department

More information

Soft Neutrosophic Bi-LA-semigroup and Soft Neutrosophic N-LA-seigroup

Soft Neutrosophic Bi-LA-semigroup and Soft Neutrosophic N-LA-seigroup Neutrosophc Sets and Systems, Vol. 5, 04 45 Soft Neutrosophc B-LA-semgroup and Soft Mumtaz Al, Florentn Smarandache, Muhammad Shabr 3,3 Department of Mathematcs, Quad--Azam Unversty, Islamabad, 44000,Pakstan.

More information

Antipodal Interval-Valued Fuzzy Graphs

Antipodal Interval-Valued Fuzzy Graphs Internatonal Journal of pplcatons of uzzy ets and rtfcal Intellgence IN 4-40), Vol 3 03), 07-30 ntpodal Interval-Valued uzzy Graphs Hossen Rashmanlou and Madhumangal Pal Department of Mathematcs, Islamc

More information

DIFFERENTIAL SCHEMES

DIFFERENTIAL SCHEMES DIFFERENTIAL SCHEMES RAYMOND T. HOOBLER Dedcated to the memory o Jerry Kovacc 1. schemes All rngs contan Q and are commutatve. We x a d erental rng A throughout ths secton. 1.1. The topologcal space. Let

More information

THE RING AND ALGEBRA OF INTUITIONISTIC SETS

THE RING AND ALGEBRA OF INTUITIONISTIC SETS Hacettepe Journal of Mathematcs and Statstcs Volume 401 2011, 21 26 THE RING AND ALGEBRA OF INTUITIONISTIC SETS Alattn Ural Receved 01:08 :2009 : Accepted 19 :03 :2010 Abstract The am of ths study s to

More information

Neutrosophic Bi-LA-Semigroup and Neutrosophic N-LA- Semigroup

Neutrosophic Bi-LA-Semigroup and Neutrosophic N-LA- Semigroup Neutrosophc Sets Systems, Vol. 4, 04 9 Neutrosophc B-LA-Semgroup Neutrosophc N-LA- Semgroup Mumtaz Al *, Florentn Smarache, Muhammad Shabr 3 Munazza Naz 4,3 Department of Mathematcs, Quad--Azam Unversty,

More information

Goal Programming Approach to Solve Multi- Objective Intuitionistic Fuzzy Non- Linear Programming Models

Goal Programming Approach to Solve Multi- Objective Intuitionistic Fuzzy Non- Linear Programming Models Internatonal Journal o Mathematcs rends and echnoloy IJM Volume Number 7 - January 8 Goal Prorammn Approach to Solve Mult- Objectve Intutonstc Fuzzy Non- Lnear Prorammn Models S.Rukman #, R.Sopha Porchelv

More information

Neutrosophic Ideals of Γ-Semirings

Neutrosophic Ideals of Γ-Semirings ISSN: 1304-7981 Number: 6, Year: 014, Pages: 51-61 http://jnrs.gop.edu.tr Receved: 09.06.014 Accepted: 01.07.014 Edtors-n-Chef : Nam Çağman Area Edtor: Oktay Muhtaroglu Neutrosophc Ideals of Γ-Semrngs

More information

INTUITIONISTIC FUZZY GRAPH STRUCTURES

INTUITIONISTIC FUZZY GRAPH STRUCTURES Kragujevac Journal of Mathematcs Volume 41(2) (2017), Pages 219 237. INTUITIONISTIC FUZZY GRAPH STRUCTURES MUHAMMAD AKRAM 1 AND RABIA AKMAL 2 Abstract. In ths paper, we ntroduce the concept of an ntutonstc

More information

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS Journal of Mathematcal Scences: Advances and Applcatons Volume 25, 2014, Pages 1-12 A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS JIA JI, WEN ZHANG and XIAOFEI QI Department of Mathematcs

More information

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product 12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA Here s an outlne of what I dd: (1) categorcal defnton (2) constructon (3) lst of basc propertes (4) dstrbutve property (5) rght exactness (6) localzaton

More information

International Journal of Algebra, Vol. 8, 2014, no. 5, HIKARI Ltd,

International Journal of Algebra, Vol. 8, 2014, no. 5, HIKARI Ltd, Internatonal Journal of Algebra, Vol. 8, 2014, no. 5, 229-238 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.12988/ja.2014.4212 On P-Duo odules Inaam ohammed Al Had Department of athematcs College of Educaton

More information

INTERVAL-VALUED INTUITIONISTIC FUZZY CLOSED IDEALS OF BG-ALGEBRA AND THEIR PRODUCTS

INTERVAL-VALUED INTUITIONISTIC FUZZY CLOSED IDEALS OF BG-ALGEBRA AND THEIR PRODUCTS ITEVL-VLED ITITIOISTIC FZZY CLOSED IDELS OF G-LGE D THEI PODCTS Tapan Senapat #, onoranjan howmk *, adhumangal Pal #3 # Department of ppled athematcs wth Oceanology Computer Programmng, Vdyasagar nversty,

More information

International Journal of Mathematical Archive-4(12), 2013, Available online through ISSN

International Journal of Mathematical Archive-4(12), 2013, Available online through   ISSN Internatonal Journal o Mathematcal Archve-(2, 203, 7-52 Avlable onlne throuh www.jma.no ISSN 2229 506 ON VALUE SHARING OF MEROMORPHIC FUNCTIONS Dbyendu Banerjee* and Bswajt Mandal 2 Department o Mathematcs,

More information

Math 101 Fall 2013 Homework #7 Due Friday, November 15, 2013

Math 101 Fall 2013 Homework #7 Due Friday, November 15, 2013 Math 101 Fall 2013 Homework #7 Due Frday, November 15, 2013 1. Let R be a untal subrng of E. Show that E R R s somorphc to E. ANS: The map (s,r) sr s a R-balanced map of E R to E. Hence there s a group

More information

Semilattices of Rectangular Bands and Groups of Order Two.

Semilattices of Rectangular Bands and Groups of Order Two. 1 Semlattces of Rectangular Bs Groups of Order Two R A R Monzo Abstract We prove that a semgroup S s a semlattce of rectangular bs groups of order two f only f t satsfes the dentty y y, y y, y S 1 Introducton

More information

An application of non-associative Composition-Diamond lemma

An application of non-associative Composition-Diamond lemma An applcaton of non-assocatve Composton-Damond lemma arxv:0804.0915v1 [math.ra] 6 Apr 2008 Yuqun Chen and Yu L School of Mathematcal Scences, South Chna Normal Unversty Guangzhou 510631, P. R. Chna Emal:

More information

Smooth Neutrosophic Topological Spaces

Smooth Neutrosophic Topological Spaces 65 Unversty of New Mexco Smooth Neutrosophc opologcal Spaces M. K. EL Gayyar Physcs and Mathematcal Engneerng Dept., aculty of Engneerng, Port-Sad Unversty, Egypt.- mohamedelgayyar@hotmal.com Abstract.

More information

Matrix-Norm Aggregation Operators

Matrix-Norm Aggregation Operators IOSR Journal of Mathematcs (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. PP 8-34 www.osrournals.org Matrx-Norm Aggregaton Operators Shna Vad, Sunl Jacob John Department of Mathematcs, Natonal Insttute of

More information

On Similarity Measures of Fuzzy Soft Sets

On Similarity Measures of Fuzzy Soft Sets Int J Advance Soft Comput Appl, Vol 3, No, July ISSN 74-853; Copyrght ICSRS Publcaton, www-csrsorg On Smlarty Measures of uzzy Soft Sets PINAKI MAJUMDAR* and SKSAMANTA Department of Mathematcs MUC Women

More information

Smarandache-Zero Divisors in Group Rings

Smarandache-Zero Divisors in Group Rings Smarandache-Zero Dvsors n Group Rngs W.B. Vasantha and Moon K. Chetry Department of Mathematcs I.I.T Madras, Chenna The study of zero-dvsors n group rngs had become nterestng problem snce 1940 wth the

More information

Spectrum of (, q)-fuzzy Prime h-ideals of a Hemiring

Spectrum of (, q)-fuzzy Prime h-ideals of a Hemiring World Appled Scences Journal 17 (12): 1815-1820, 2012 ISSN 1818-4952 IDOSI Publcatons, 2012 Spectrum of (, q)-fuzzy Prme h-deals of a Hemrng 1 M. Shabr and 2 T. Mahmood 1 Department of Mathematcs, Quad--Azam

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

A Simple Research of Divisor Graphs

A Simple Research of Divisor Graphs The 29th Workshop on Combnatoral Mathematcs and Computaton Theory A Smple Research o Dvsor Graphs Yu-png Tsao General Educaton Center Chna Unversty o Technology Tape Tawan yp-tsao@cuteedutw Tape Tawan

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION talan journal of pure appled mathematcs n. 33 2014 (63 70) 63 SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION M.R. Farhangdoost Department of Mathematcs College of Scences Shraz Unversty Shraz, 71457-44776

More information

Ali Omer Alattass Department of Mathematics, Faculty of Science, Hadramout University of science and Technology, P. O. Box 50663, Mukalla, Yemen

Ali Omer Alattass Department of Mathematics, Faculty of Science, Hadramout University of science and Technology, P. O. Box 50663, Mukalla, Yemen Journal of athematcs and Statstcs 7 (): 4448, 0 ISSN 5493644 00 Scence Publcatons odules n σ[] wth Chan Condtons on Small Submodules Al Omer Alattass Department of athematcs, Faculty of Scence, Hadramout

More information

Research Article Relative Smooth Topological Spaces

Research Article Relative Smooth Topological Spaces Advances n Fuzzy Systems Volume 2009, Artcle ID 172917, 5 pages do:10.1155/2009/172917 Research Artcle Relatve Smooth Topologcal Spaces B. Ghazanfar Department of Mathematcs, Faculty of Scence, Lorestan

More information

ON FIBRANT OBJECTS IN MODEL CATEGORIES

ON FIBRANT OBJECTS IN MODEL CATEGORIES Theory and Applcatons o Categores, ol. 33, No. 3, 2018, pp. 43 66. ON FIBRANT OBJECTS IN MODEL CATEGORIES ALERY ISAE Abstract. In ths paper, we study propertes o maps between brant objects n model categores.

More information

SMARANDACHE-GALOIS FIELDS

SMARANDACHE-GALOIS FIELDS SMARANDACHE-GALOIS FIELDS W. B. Vasantha Kandasamy Deartment of Mathematcs Indan Insttute of Technology, Madras Chenna - 600 036, Inda. E-mal: vasantak@md3.vsnl.net.n Abstract: In ths aer we study the

More information

On wgrα-continuous Functions in Topological Spaces

On wgrα-continuous Functions in Topological Spaces Vol.3, Issue.2, March-Aprl. 2013 pp-857-863 ISSN: 2249-6645 On wgrα-contnuous Functons n Topologcal Spaces A.Jayalakshm, 1 C.Janak 2 1 Department of Mathematcs, Sree Narayana Guru College, Combatore, TN,

More information

FUZZY TOPOLOGICAL DIGITAL SPACE OF FLAT ELECTROENCEPHALOGRAPHY DURING EPILEPTIC SEIZURES

FUZZY TOPOLOGICAL DIGITAL SPACE OF FLAT ELECTROENCEPHALOGRAPHY DURING EPILEPTIC SEIZURES Journal of Mathematcs and Statstcs 9 (3): 180-185, 013 ISSN: 1549-3644 013 Scence Publcatons do:10.3844/jmssp.013.180.185 Publshed Onlne 9 (3) 013 (http://www.thescpub.com/jmss.toc) FUY TOPOLOGICAL DIGITAL

More information

The Pseudoblocks of Endomorphism Algebras

The Pseudoblocks of Endomorphism Algebras Internatonal Mathematcal Forum, 4, 009, no. 48, 363-368 The Pseudoblocks of Endomorphsm Algebras Ahmed A. Khammash Department of Mathematcal Scences, Umm Al-Qura Unversty P.O.Box 796, Makkah, Saud Araba

More information

Subset Topological Spaces and Kakutani s Theorem

Subset Topological Spaces and Kakutani s Theorem MOD Natural Neutrosophc Subset Topologcal Spaces and Kakutan s Theorem W. B. Vasantha Kandasamy lanthenral K Florentn Smarandache 1 Copyrght 1 by EuropaNova ASBL and the Authors Ths book can be ordered

More information

NoteonIntuitionisticFuzzyNormalSubgroupsorVagueNormalSubgroups

NoteonIntuitionisticFuzzyNormalSubgroupsorVagueNormalSubgroups Global Journal of Scence Fronter Research: F Mathematcs and Decson Scences Volume 15 Issue 2 Verson 1.0 Year 2015 Type : Double Blnd Peer Revewed Internatonal Research Journal Publsher: Global Journals

More information

Sequences of Intuitionistic Fuzzy Soft G-Modules

Sequences of Intuitionistic Fuzzy Soft G-Modules Interntonl Mthemtcl Forum, Vol 13, 2018, no 12, 537-546 HIKARI Ltd, wwwm-hkrcom https://doorg/1012988/mf201881058 Sequences of Intutonstc Fuzzy Soft G-Modules Velyev Kemle nd Huseynov Afq Bku Stte Unversty,

More information

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 7, July 1997, Pages 2119{2125 S (97) THE STRONG OPEN SET CONDITION

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 7, July 1997, Pages 2119{2125 S (97) THE STRONG OPEN SET CONDITION PROCDINGS OF TH AMRICAN MATHMATICAL SOCITY Volume 125, Number 7, July 1997, Pages 2119{2125 S 0002-9939(97)03816-1 TH STRONG OPN ST CONDITION IN TH RANDOM CAS NORBRT PATZSCHK (Communcated by Palle. T.

More information

The probability that a pair of group elements is autoconjugate

The probability that a pair of group elements is autoconjugate Proc. Indan Acad. Sc. (Math. Sc.) Vol. 126, No. 1, February 2016, pp. 61 68. c Indan Academy of Scences The probablty that a par of group elements s autoconjugate MOHAMMAD REZA R MOGHADDAM 1,2,, ESMAT

More information

2 MADALINA ROXANA BUNECI subset G (2) G G (called the set of composable pars), and two maps: h (x y)! xy : G (2)! G (product map) x! x ;1 [: G! G] (nv

2 MADALINA ROXANA BUNECI subset G (2) G G (called the set of composable pars), and two maps: h (x y)! xy : G (2)! G (product map) x! x ;1 [: G! G] (nv An applcaton of Mackey's selecton lemma Madalna Roxana Bunec Abstract. Let G be a locally compact second countable groupod. Let F be a subset of G (0) meetng each orbt exactly once. Let us denote by df

More information

On Finite Rank Perturbation of Diagonalizable Operators

On Finite Rank Perturbation of Diagonalizable Operators Functonal Analyss, Approxmaton and Computaton 6 (1) (2014), 49 53 Publshed by Faculty of Scences and Mathematcs, Unversty of Nš, Serba Avalable at: http://wwwpmfnacrs/faac On Fnte Rank Perturbaton of Dagonalzable

More information

A Satisfaction Degree of Optimal Value for. Grey Linear Programming*

A Satisfaction Degree of Optimal Value for. Grey Linear Programming* A atsacton Degree o Optmal Value or Grey Lnear Programmng* Yunchol Jong a a Center o Natural cence Unversty o cences Pyongyang DPR Korea Abstract. Ths paper consders the grey lnear programmng and ntroduces

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

Ideal Amenability of Second Duals of Banach Algebras

Ideal Amenability of Second Duals of Banach Algebras Internatonal Mathematcal Forum, 2, 2007, no. 16, 765-770 Ideal Amenablty of Second Duals of Banach Algebras M. Eshagh Gord (1), F. Habban (2) and B. Hayat (3) (1) Department of Mathematcs, Faculty of Scences,

More information

Regular product vague graphs and product vague line graphs

Regular product vague graphs and product vague line graphs APPLIED & INTERDISCIPLINARY MATHEMATICS RESEARCH ARTICLE Regular product vague graphs and product vague lne graphs Ganesh Ghora 1 * and Madhumangal Pal 1 Receved: 26 December 2015 Accepted: 08 July 2016

More information

Erdős-Burgess constant of the multiplicative semigroup of the quotient ring off q [x]

Erdős-Burgess constant of the multiplicative semigroup of the quotient ring off q [x] Erdős-Burgess constant of the multplcatve semgroup of the quotent rng off q [x] arxv:1805.02166v1 [math.co] 6 May 2018 Jun Hao a Haol Wang b Lzhen Zhang a a Department of Mathematcs, Tanjn Polytechnc Unversty,

More information

Lecture 7: Gluing prevarieties; products

Lecture 7: Gluing prevarieties; products Lecture 7: Glung prevaretes; products 1 The category of algebrac prevaretes Proposton 1. Let (f,ϕ) : (X,O X ) (Y,O Y ) be a morphsm of algebrac prevaretes. If U X and V Y are affne open subvaretes wth

More information

Fixed points of IA-endomorphisms of a free metabelian Lie algebra

Fixed points of IA-endomorphisms of a free metabelian Lie algebra Proc. Indan Acad. Sc. (Math. Sc.) Vol. 121, No. 4, November 2011, pp. 405 416. c Indan Academy of Scences Fxed ponts of IA-endomorphsms of a free metabelan Le algebra NAIME EKICI 1 and DEMET PARLAK SÖNMEZ

More information

The Degrees of Nilpotency of Nilpotent Derivations on the Ring of Matrices

The Degrees of Nilpotency of Nilpotent Derivations on the Ring of Matrices Internatonal Mathematcal Forum, Vol. 6, 2011, no. 15, 713-721 The Degrees of Nlpotency of Nlpotent Dervatons on the Rng of Matrces Homera Pajoohesh Department of of Mathematcs Medgar Evers College of CUNY

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

LECTURE V. 1. More on the Chinese Remainder Theorem We begin by recalling this theorem, proven in the preceeding lecture.

LECTURE V. 1. More on the Chinese Remainder Theorem We begin by recalling this theorem, proven in the preceeding lecture. LECTURE V EDWIN SPARK 1. More on the Chnese Remander Theorem We begn by recallng ths theorem, proven n the preceedng lecture. Theorem 1.1 (Chnese Remander Theorem). Let R be a rng wth deals I 1, I 2,...,

More information

ON AUTOMATIC CONTINUITY OF DERIVATIONS FOR BANACH ALGEBRAS WITH INVOLUTION

ON AUTOMATIC CONTINUITY OF DERIVATIONS FOR BANACH ALGEBRAS WITH INVOLUTION European Journa of Mathematcs and Computer Scence Vo. No. 1, 2017 ON AUTOMATC CONTNUTY OF DERVATONS FOR BANACH ALGEBRAS WTH NVOLUTON Mohamed BELAM & Youssef T DL MATC Laboratory Hassan Unversty MORO CCO

More information

On the smoothness and the totally strong properties for nearness frames

On the smoothness and the totally strong properties for nearness frames Int. Sc. Technol. J. Namba Vol 1, Issue 1, 2013 On the smoothness and the totally strong propertes for nearness frames Martn. M. Mugoch Department of Mathematcs, Unversty of Namba 340 Mandume Ndemufayo

More information

International Journal of Multidisciplinary Research and Modern Education (IJMRME) ISSN (Online): (

International Journal of Multidisciplinary Research and Modern Education (IJMRME) ISSN (Online): ( ISSN (Onlne): 454-69 (www.rdmodernresearch.com) Volume II, Issue II, 06 BALANCED HESITANCY FUZZY GRAPHS J. Jon Arockara* & T. Pathnathan** * P.G & Research Department of Mathematcs, St. Joseph s College

More information

Some Star and Bistar Related Divisor Cordial Graphs

Some Star and Bistar Related Divisor Cordial Graphs Annals o Pure and Appled Mathematcs Vol. 3 No. 03 67-77 ISSN: 79-087X (P) 79-0888(onlne) Publshed on 3 May 03 www.researchmathsc.org Annals o Some Star and Bstar Related Dvsor Cordal Graphs S. K. Vadya

More information

P.P. PROPERTIES OF GROUP RINGS. Libo Zan and Jianlong Chen

P.P. PROPERTIES OF GROUP RINGS. Libo Zan and Jianlong Chen Internatonal Electronc Journal of Algebra Volume 3 2008 7-24 P.P. PROPERTIES OF GROUP RINGS Lbo Zan and Janlong Chen Receved: May 2007; Revsed: 24 October 2007 Communcated by John Clark Abstract. A rng

More information

INTERVAL SEMIGROUPS. W. B. Vasantha Kandasamy Florentin Smarandache

INTERVAL SEMIGROUPS. W. B. Vasantha Kandasamy Florentin Smarandache Interval Semgroups - Cover.pdf:Layout 1 1/20/2011 10:04 AM Page 1 INTERVAL SEMIGROUPS W. B. Vasantha Kandasamy Florentn Smarandache KAPPA & OMEGA Glendale 2011 Ths book can be ordered n a paper bound reprnt

More information

Double Layered Fuzzy Planar Graph

Double Layered Fuzzy Planar Graph Global Journal of Pure and Appled Mathematcs. ISSN 0973-768 Volume 3, Number 0 07), pp. 7365-7376 Research Inda Publcatons http://www.rpublcaton.com Double Layered Fuzzy Planar Graph J. Jon Arockaraj Assstant

More information

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2].

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2]. Bulletn of Mathematcal Scences and Applcatons Submtted: 016-04-07 ISSN: 78-9634, Vol. 18, pp 1-10 Revsed: 016-09-08 do:10.1805/www.scpress.com/bmsa.18.1 Accepted: 016-10-13 017 ScPress Ltd., Swtzerland

More information

A Note on \Modules, Comodules, and Cotensor Products over Frobenius Algebras"

A Note on \Modules, Comodules, and Cotensor Products over Frobenius Algebras Chn. Ann. Math. 27B(4), 2006, 419{424 DOI: 10.1007/s11401-005-0025-z Chnese Annals of Mathematcs, Seres B c The Edtoral Oce of CAM and Sprnger-Verlag Berln Hedelberg 2006 A Note on \Modules, Comodules,

More information

2 S. S. DRAGOMIR, N. S. BARNETT, AND I. S. GOMM Theorem. Let V :(d d)! R be a twce derentable varogram havng the second dervatve V :(d d)! R whch s bo

2 S. S. DRAGOMIR, N. S. BARNETT, AND I. S. GOMM Theorem. Let V :(d d)! R be a twce derentable varogram havng the second dervatve V :(d d)! R whch s bo J. KSIAM Vol.4, No., -7, 2 FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM S. S. DRAGOMIR, N. S. BARNETT, AND I. S. GOMM Abstract. In ths paper we establsh

More information

K-Total Product Cordial Labelling of Graphs

K-Total Product Cordial Labelling of Graphs Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 7, Issue (December ), pp. 78-76 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) K-Total Product Cordal Labellng o Graphs

More information

Solutions of exercise sheet 3

Solutions of exercise sheet 3 Topology D-MATH, FS 2013 Damen Calaque Solutons o exercse sheet 3 1. (a) Let U Ă Y be open. Snce s contnuous, 1 puq s open n X. Then p A q 1 puq 1 puq X A s open n the subspace topology on A. (b) I s contnuous,

More information

3 Holonomic D-Modules

3 Holonomic D-Modules 3 Holonomc D-Modules In ths chapter we study unctoral behavors o holonomc systems and show that any smple obect n the abelan category o holonomc D X -modules s a mnmal extenson o an ntegrable connecton

More information

Christian Aebi Collège Calvin, Geneva, Switzerland

Christian Aebi Collège Calvin, Geneva, Switzerland #A7 INTEGERS 12 (2012) A PROPERTY OF TWIN PRIMES Chrstan Aeb Collège Calvn, Geneva, Swtzerland chrstan.aeb@edu.ge.ch Grant Carns Department of Mathematcs, La Trobe Unversty, Melbourne, Australa G.Carns@latrobe.edu.au

More information

Categorical lattice-valued topology Lecture 2: lattice-valued topological systems

Categorical lattice-valued topology Lecture 2: lattice-valued topological systems Categorcal lattce-valued topology Lecture 2: lattce-valued topologcal systems Sergejs Solovjovs Department o Mathematcs and Statstcs, Faculty o Scence, Masaryk Unversty Kotlarska 2, 611 37 Brno, Czech

More information

ϕ -MEANS OF SOME BANACH SUBSPACES ON A BANACH ALGEBRA

ϕ -MEANS OF SOME BANACH SUBSPACES ON A BANACH ALGEBRA THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Seres A, OF THE ROMANIAN ACADEMY Volue 3, Nuber 4/202, pp 302 309 ϕ -MEANS OF SOME BANACH SUBSPACES ON A BANACH ALGEBRA Al GHAFFARI, Saaneh JAVADI

More information

A CLASS OF RECURSIVE SETS. Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA

A CLASS OF RECURSIVE SETS. Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA A CLASS OF RECURSIVE SETS Florentn Smarandache Unversty of New Mexco 200 College Road Gallup, NM 87301, USA E-mal: smarand@unmedu In ths artcle one bulds a class of recursve sets, one establshes propertes

More information

Model categories. Daniel Robert-Nicoud

Model categories. Daniel Robert-Nicoud Model categores Danel Robert-Ncoud Localzaton Motvatons or model categores arse rom varous elds o study, e.g. rng theory and homotoy theory, as we wll see. More recsely, what we want to do s to reverse

More information

Complement of an Extended Fuzzy Set

Complement of an Extended Fuzzy Set Internatonal Journal of Computer pplatons (0975 8887) Complement of an Extended Fuzzy Set Trdv Jyot Neog Researh Sholar epartment of Mathemats CMJ Unversty, Shllong, Meghalaya usmanta Kumar Sut ssstant

More information

INVARIANT STABLY COMPLEX STRUCTURES ON TOPOLOGICAL TORIC MANIFOLDS

INVARIANT STABLY COMPLEX STRUCTURES ON TOPOLOGICAL TORIC MANIFOLDS INVARIANT STABLY COMPLEX STRUCTURES ON TOPOLOGICAL TORIC MANIFOLDS HIROAKI ISHIDA Abstract We show that any (C ) n -nvarant stably complex structure on a topologcal torc manfold of dmenson 2n s ntegrable

More information

Analysis of Parallel Manufacturing Processes with Resource Sharing

Analysis of Parallel Manufacturing Processes with Resource Sharing Internatonal Journal o Computer Theory and Engneerng Vol 2 No 2 Aprl 21 1793-821 Analyss o Parallel Manuacturng Processes wth Resource Sharng Farooq Ahmad Heao Huang and Xao-long Wang Abstract Multple

More information

Complement of Type-2 Fuzzy Shortest Path Using Possibility Measure

Complement of Type-2 Fuzzy Shortest Path Using Possibility Measure Intern. J. Fuzzy Mathematcal rchve Vol. 5, No., 04, 9-7 ISSN: 30 34 (P, 30 350 (onlne Publshed on 5 November 04 www.researchmathsc.org Internatonal Journal of Complement of Type- Fuzzy Shortest Path Usng

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen omplex Varables hapter 8 Integraton n the omplex Plane March, Lecturer: Shh-Yuan hen Except where otherwse noted, content s lcensed under a BY-N-SA. TW Lcense. ontents ontour ntegrals auchy-goursat theorem

More information

Deriving the X-Z Identity from Auxiliary Space Method

Deriving the X-Z Identity from Auxiliary Space Method Dervng the X-Z Identty from Auxlary Space Method Long Chen Department of Mathematcs, Unversty of Calforna at Irvne, Irvne, CA 92697 chenlong@math.uc.edu 1 Iteratve Methods In ths paper we dscuss teratve

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

Restricted Lie Algebras. Jared Warner

Restricted Lie Algebras. Jared Warner Restrcted Le Algebras Jared Warner 1. Defntons and Examples Defnton 1.1. Let k be a feld of characterstc p. A restrcted Le algebra (g, ( ) [p] ) s a Le algebra g over k and a map ( ) [p] : g g called

More information

Weakly continuous functions on mixed fuzzy topological spaces

Weakly continuous functions on mixed fuzzy topological spaces cta Scentarum http://wwwuembr/acta ISSN prnted: 806-563 ISSN on-lne: 807-8664 Do: 0405/actasctechnolv3664 Weakly contnuous functons on mxed fuzzy topologcal spaces Bnod Chandra Trpathy and Gautam Chandra

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Fuzzy Boundaries of Sample Selection Model

Fuzzy Boundaries of Sample Selection Model Proceedngs of the 9th WSES Internatonal Conference on ppled Mathematcs, Istanbul, Turkey, May 7-9, 006 (pp309-34) Fuzzy Boundares of Sample Selecton Model L. MUHMD SFIIH, NTON BDULBSH KMIL, M. T. BU OSMN

More information

Irene Hepzibah.R 1 and Vidhya.R 2

Irene Hepzibah.R 1 and Vidhya.R 2 Internatonal Journal of Scentfc & Engneerng Research, Volume 5, Issue 3, March-204 374 ISSN 2229-558 INTUITIONISTIC FUZZY MULTI-OBJECTIVE LINEAR PROGRAMMING PROBLEM (IFMOLPP) USING TAYLOR SERIES APPROACH

More information

Voting Games with Positive Weights and. Dummy Players: Facts and Theory

Voting Games with Positive Weights and. Dummy Players: Facts and Theory Appled Mathematcal Scences, Vol 10, 2016, no 53, 2637-2646 HIKARI Ltd, wwwm-hkarcom http://dxdoorg/1012988/ams201667209 Votng Games wth Postve Weghts and Dummy Players: Facts and Theory Zdravko Dmtrov

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering Statstcs and Probablty Theory n Cvl, Surveyng and Envronmental Engneerng Pro. Dr. Mchael Havbro Faber ETH Zurch, Swtzerland Contents o Todays Lecture Overvew o Uncertanty Modelng Random Varables - propertes

More information

Topics in Geometry: Mirror Symmetry

Topics in Geometry: Mirror Symmetry MIT OpenCourseWare http://ocw.mt.edu 18.969 Topcs n Geometry: Mrror Symmetry Sprng 2009 For normaton about ctng these materals or our Terms o Use, vst: http://ocw.mt.edu/terms. MIRROR SYMMETRY: LECTURE

More information

arxiv: v4 [math.ac] 20 Sep 2013

arxiv: v4 [math.ac] 20 Sep 2013 arxv:1207.2850v4 [math.ac] 20 Sep 2013 A SURVEY OF SOME RESULTS FOR MIXED MULTIPLICITIES Le Van Dnh and Nguyen Ten Manh Truong Th Hong Thanh Department of Mathematcs, Hano Natonal Unversty of Educaton

More information

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION CAPTER- INFORMATION MEASURE OF FUZZY MATRI AN FUZZY BINARY RELATION Introducton The basc concept of the fuzz matr theor s ver smple and can be appled to socal and natural stuatons A branch of fuzz matr

More information

( 1) i [ d i ]. The claim is that this defines a chain complex. The signs have been inserted into the definition to make this work out.

( 1) i [ d i ]. The claim is that this defines a chain complex. The signs have been inserted into the definition to make this work out. Mon, Apr. 2 We wsh to specfy a homomorphsm @ n : C n ()! C n (). Snce C n () s a free abelan group, the homomorphsm @ n s completely specfed by ts value on each generator, namely each n-smplex. There are

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

EXTENSIONS OF STRONGLY Π-REGULAR RINGS

EXTENSIONS OF STRONGLY Π-REGULAR RINGS EXTENSIONS OF STRONGLY Π-REGULAR RINGS H. Chen, K. Kose and Y. Kurtulmaz ABSTRACT An deal I of a rng R s strongly π-regular f for any x I there exst n N and y I such that x n = x n+1 y. We prove that every

More information

Correspondences and groupoids

Correspondences and groupoids Proceedngs of the IX Fall Workshop on Geometry and Physcs, Vlanova la Geltrú, 2000 Publcacones de la RSME, vol. X, pp. 1 6. Correspondences and groupods 1 Marta Macho-Stadler and 2 Moto O uch 1 Departamento

More information

A Brown representability theorem via coherent functors

A Brown representability theorem via coherent functors Topology 41 (2002) 853 861 www.elsever.com/locate/top A Brown representablty theorem va coherent functors Hennng Krause Fakultat fur Mathematk, Unverstat Belefeld, Postfach 100131, 33501 Belefeld, Germany

More information