OEB 242: Population Genetics Exam Review, Spring 2015

Size: px
Start display at page:

Download "OEB 242: Population Genetics Exam Review, Spring 2015"

Transcription

1 OEB 242: Ppulatin Genetics Statistics Review HYPOTHESIS TESTING Null hypthesis has tw parts: Substantive (what are values we expect if nthing interesting is happening?) and frmal (hw much deviatin frm expected values d we allw?) Sme exemplars: H 0: Alleles at lcus A and lcus B assrt independently; thus any deviatin frm a 1:1:1:1 gametic rati is n greater than culd be explained by chance alne at the α=.05 level. H 0: The ppulatin is in Hardy-Weinberg equilibrium; thus any deviatin frm a 1:2:1 gentypic rati is n greater than culd be explained by chance alne at the α=.1 level. p-value represents P(bserved data H 0) statistics means never having t say yu re certain -- Must specify significance threshld fail t reject H 0 (why nt accept H 0? ) reject H 0: what can yu therefre cnclude (if anything?) Degrees f freedm are critical fr cnnecting the test statistic t a p-value in e.g. a chi-squared test. Given a cntingency table, the d.f. represents the minimum number f entries necessary t reppulate the entire thing, hlding cnstant what is knwn abut the dataset (the ttal number f datapints and the prprtins f datapints that fall int ne class r anther). Find by taking (ttal number f classes f data) 1 (fr fixing N tt) 1 (fr every independent parameter estimated when furnishing expected values). RANDOM VARIABLES An unspecified value, that takes n actual values accrding t a prbability distributin Mean r expected value is a weighted average f the pssible values an r.v. can take Variance is the expected value f the squared deviatins frm the mean: Var(X) = E[(X-µ) 2 ] We have used a few different kinds f randm variables in this curse: Binmial randm variables represent the number f successes in n independent trials, each f which has prbability f success = p. An example is the Wright-Fisher mdel f drift, where we imagine reprductin as sampling frm an infinite pl f gametes. P X = k X~Bin(n, k)) = p q. Mean = np; var = npq Pissn randm variables are binmial randm variables with large n and small p. They are cmputatinally mre tractable and are useful t describe scenaris where yu have very many chances t d smething rare. Mutatins, fr example, are mdeled as a Pissn prcess. P X = k X~Pis(λ)) = Mean = var = λ Gemetric randm variables represent the number f failures befre getting ne success with prbability p. The Kingman calescent, fr example, imagines nn-calescence as a failure with prbability q = 1-p and calescence as a success where p is equal t the frequency f the allele in questin. P X = k X~Gem(p)) = q p Mean = q/p, var = q/p 2 Expnential randm variables are the cntinuus analgues f gemetric randm variables. The Kingman calescent ften uses this apprximatin, which hlds when the ppulatin is large. P X = k X~Exp(λ)) = λe Mean = λ -1, var = λ -2 There are a few different ways t talk abut the dependencies f randm variables: Cvariance is an analgue f variance fr tw randm variables. It describes the extent t which tw r.v.s track each ther: if I change ne, hw des the ther change? Cvariance is the expected value f the prducts f the deviatins frm the mean: Cv(X,Y) = E[(X-µ x) (Y-µ y)] Crrelatin cefficient is a scaled versin f cvariance that falls between -1 (perfectly anticrrelated) and 1 (perfectly crrelated). Divide the cvariance by the prduct f the standard deviatins (i.e., square rt f the variance) f the tw randm variables t nrmalize. The slpe f the regressin line is slightly different: it measures the directness f the assciatin between tw r.v.s, whereas cvariance and crrelatin measure the precisin r tightness f that assciatin. Recall, fr example, that the slpe f the regressin line between midparent and ffspring gives the narrw sense heritability. Gd luck n the exam, try the review prblems n the website, and dn t frget t send in yur final papers via by 6PM n Weds 5/6 (end f reading perid). 1

2 OEB 242: Ppulatin Genetics Chapter 4: Mutatin and Neutral Thery Infinite alleles mdel Assume each mutatin creates a new allele. Hence, hmzygsity implies identity-bydescent (autzygsity) F = hmzygsity = prbability tw randmly chsen chrmsmes (alleles) are IBD F = 1 μ + 1 μ 1 F Equilibrium value f F (mutatin-drift balance; F t = F t-1 ): H = heterzygsity = 1 F Equilibrium value f H (mutatin-drift balance; H t = H t-1 ): Infinite sites mdel Assume each mutatin affects ne base and that there is n recmbinatin. Used t derive Kingman calescent: T ~ exp ; E T = () Use t predict number f mutatins separating tw sequences (= pairwise diversity r per-site heterzygsity, Π) by multiplying mutatin rate times length f tw branches. à E Π = Θ Use t predict number f segregating sites in a sample f k alleles by multiplying mutatin rate times ttal length f tree. à E S = Θ The neutral thery The infinite sites mdel lets us estimate Θ in several different ways, which frms the basis f Tajima s D and ther neutrality tests. D = "#("#$%&'(%) The denminatr is a nrmalizing factr that is difficult t slve analytically. The numeratr tells us whether using pairwise diversity r the ttal number f segregating sites gives a greater estimate f theta. If D is psitive, this suggests a surplus f intermediate alleles (which inflate pairwise diversity disprprtinately). This is cnsistent with shallw/recent calescent times, and suggests balancing selectin r admixture. If D is negative, this suggests a surplus f rare alleles (which inflate the number f segregating sites disprprtinately). This is cnsistent with deep/ancient calescent times, and suggests directinal selectin r ppulatin grwth. In the neutral thery, the prbability f fixatin f an allele is its frequency. As a crllary, the fixatin rate is therefre the neutral mutatin rate, independent f ppulatin size. The prbability that any ne new allele fixes is (1/2N), and the ppulatin-wide rate f new mutatins is (2Nµ). The prduct f these tw values is simply µ. The average time between fixatin events is therefre (1/µ). The expected time t fixatin f an allele, given that it will eventually fix, is 4N generatins. The expected time t lss f a new neutral allele, cnditinal n its eventual lss, is 2ln(2N). Gd luck n the exam, try the review prblems n the website, and dn t frget t send in yur final papers via by 6PM n Weds 5/6 (end f reading perid). 2

3 OEB 242: Ppulatin Genetics Chapter 7: Mlecular Ppulatin Genetics Here, we are lking at timescales that dn t allw us t invke the infinite sites/alleles mdels. Generally, we need t accunt fr the pssibility f multiple mutatins at the same site. Distinguish d (the number f differences bserved) frm k (the number f substitutins inferred). The prcedure fr inferring substitutins frm differences depends n whether we are talking abut amin acids r abut nucletides, and depending n what assumptins we make abut the prbabilities f varius mutatins. The Jukes-Cantr mdel, fr example, assumes that all mutatins are equally prbable. Frm this assumptin, ne can establish a recurrence equatin fr the prbability f a site taking n a given identity, which then can be translated int a partial differential equatin and slved t find an estimatr fr k based n d. We can test fr selectin in prtein-cding regins by cmparing either the rate f differences (dn/ds) r the rate f substitutins (Ka/Ks) fr nn-synnymus/amin-acidchanging mutatins versus synnymus mutatins, per site. Mutatins that change prtein structure are presumably mre visible t selectin than thse that d nt. In calculating these statistics, ne must accunt fr the number f sites that are ptentially synnymus r nn-synnymus. A twfld degenerate site is ften cunted as 2/3 nn, 1/3 syn. Under neutrality, the rati ~=1. Under purifying (negative) selectin, the rati may be less than 1. (Changes t the prtein are nt tlerated by selectin and are remved) Under psitive selectin, the rati may be greater than 1. (Changes t the prtein are favred and accumulate at an accelerated rate) The mlecular clck assumes that the number f substitutins is directly prprtinal t the amunt f evlutinary time that separates tw sequences. It is critical t realize, hwever, that T MRCA is half f this value (because the tw lineages tgether sum t the ttal amunt f evlutinary time) In general, substitutin rates d vary acrss rganisms, acrss genmic regins, etc., and s the clck is nt always cnstant. But the pint remains that we can quantify these rates and then make assumptins abut them in rder t interpret their significance. The McDnald-Kreitman test assumes that, under neutrality, a mlecular clck type assumptin will preserve the dn/ds rati acrss large evlutinary timescales. The test quantifies this by cmparing the dn/ds fr recent, micrevlutinary events (which give rise t plymrphism within a ppulatin r species) with the dn/ds fr ancient, macrevlutinary events (which give rise t differences between species). The test is mst straightfrwardly implemented as a chi-squared test using a cntingency table f nn-synnymus/synnymus and plymrphic/divergent mutatins. (In this case, there are fur data classes, and three fixed parameters: N tt, % NS vs. S, % P vs. D ), meaning that we have 1 df. If plymrphism is nt prprtinal t divergence, we must interpret: If div > ply: suggests (eg) psitive selectin between species If div < ply: suggests (eg) purifying selectin between species, balancing selectin within ppulatin Gd luck n the exam, try the review prblems n the website, and dn t frget t send in yur final papers via by 6PM n Weds 5/6 (end f reading perid). 3

4 OEB 242: Ppulatin Genetics Chapter 8: Evlutinary Quantitative Genetics The Mendelian paradigm is mngenic, but we want t be able t talk abut plygenic (cmplex, quantitative) traits. We want t be able t ask questins like, hw much d genetics influence the phentype? Unfrtunately, this is an ill-frmed questin, and there s n way t talk abut hw genetic a trait is in the abstract. We have t grund ur discussin in ppulatins. This pens the dr fr the cncept f heritability Technical definitin: prprtin f phentypic variance attributable t genetic variance Interpretatin: extent t which genetic differences amng individuals explain phentypic differences amng individuals Desn t tell us hw many genes are invlved in a trait, e.g., but des help us understand relative cntributin f genetics and envirnment fr a given ppulatin There are tw ways t get a hld n it: by measuring variance r by calculating dminance cefficients. Variance One apprach invlves quantifying heritability by lking at the relatinships amng the variances f varius quantities (e.g. phentype) and hw they are related frm ne individual t its family member Variance decmpsitin: V P = V G + V E + V GE (Variance due t genetics, envirnment, and gene-envirnment interactins tgether explain the ttal phentypic variance) V G = V A + V D + V I (Variance due t genetics, in turn, is explained by the variance due t additive allele effects, dminance effects, and epistatic interactins) Brad sense: H 2 = V G / V P Narrw sense: h 2 = V A / V P h 2 = slpe fr regressin f mean ffspring vs mean parents Visscher, Hill & Wray, 2008 We can use the narrw-sense heritability fr predicting respnse t selectin Breeder s equatin : R=h 2 S, where S = selectin differential = (mean phentypic value fr breeding ppulatin) (mean phentypic value fr entire ppulatin) and R = respnse t selectin = the change in the mean phentypic value f the ppulatin after ne generatin f selectin Dminance Anther apprach t quantitative genetics psits tw values, a and d, which can be used t represent the strength f dminance and the relatinship amng the phentypic values assciated with each gentypic class. We assume the mean phentypes (als called gentypic value ) f AA, AA and A A are a, d, and a, respectively. Then, using HWE prprtins, we calculate the ppulatin mean (which depends critically n gentype frequencies). The mean is p 2 a+2pqd-q 2 a (which can be simplified). We can then describe ur gentypic values as deviatins frm the ppulatin mean. We say: (gentypic value) (smething) = (pp mean); therefre Gd luck n the exam, try the review prblems n the website, and dn t frget t send in yur final papers via by 6PM n Weds 5/6 (end f reading perid). 4

5 OEB 242: Ppulatin Genetics (smething) = (pp mean) (gentypic value). Nw smething is ur gentypic value expressed as a deviatin frm the ppulatin mean (see left side f belw) We can then calculate a new statistic, the breeding values fr each gentype. The breeding value f an allele represents the phentypic cntributin it wuld make if it were strictly additive, and hence the breeding value f a gentype equals the sum f the breeding values f the cnstituent alleles. Thus, if there is n dminance and all effects are purely additive, gentypic values are equal t breeding values. We culd calculate the per-allele effect n phentype t get breeding values, r we culd prject ur gentypic values nt its leastsquares fit regressin line as in the diagram. On the right side f the belw diagram, we express breeding values as deviatins frm the ppulatin mean. As with the gentypic values, this cnventin makes analysis easier. Because f the definitin f breeding values given abve, we can get V A by lking at the variance f the breeding values. We can cmpare the breeding values t the gentypic values t get the dminance deviatins. (As suggested abve, when there is n dminance, breeding values = gentypic values and hence dminance deviatin = 0). In the belw diagram, these values appear in blue, and represent the distance between the gentypic values (black circles) and the breeding values (white circles). We can lk at the variance f the dminance deviatins t calculate V D. Gd luck n the exam, try the review prblems n the website, and dn t frget t send in yur final papers via by 6PM n Weds 5/6 (end f reading perid). 5

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

Introduction to Quantitative Genetics II: Resemblance Between Relatives

Introduction to Quantitative Genetics II: Resemblance Between Relatives Intrductin t Quantitative Genetics II: Resemblance Between Relatives Bruce Walsh 8 Nvember 006 EEB 600A The heritability f a trait, a central cncept in quantitative genetics, is the prprtin f variatin

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Sectin 8.1: The Binmial Distributins Chapter 8: The Binmial and Gemetric Distributins A randm variable X is called a BINOMIAL RANDOM VARIABLE if it meets ALL the fllwing cnditins: 1) 2) 3) 4) The MOST

More information

Phys. 344 Ch 7 Lecture 8 Fri., April. 10 th,

Phys. 344 Ch 7 Lecture 8 Fri., April. 10 th, Phys. 344 Ch 7 Lecture 8 Fri., April. 0 th, 009 Fri. 4/0 8. Ising Mdel f Ferrmagnets HW30 66, 74 Mn. 4/3 Review Sat. 4/8 3pm Exam 3 HW Mnday: Review fr est 3. See n-line practice test lecture-prep is t

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

Accelerated Chemistry POGIL: Half-life

Accelerated Chemistry POGIL: Half-life Name: Date: Perid: Accelerated Chemistry POGIL: Half-life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng as

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 2: Mdeling change. In Petre Department f IT, Åb Akademi http://users.ab.fi/ipetre/cmpmd/ Cntent f the lecture Basic paradigm f mdeling change Examples Linear dynamical

More information

Review Problems 3. Four FIR Filter Types

Review Problems 3. Four FIR Filter Types Review Prblems 3 Fur FIR Filter Types Fur types f FIR linear phase digital filters have cefficients h(n fr 0 n M. They are defined as fllws: Type I: h(n = h(m-n and M even. Type II: h(n = h(m-n and M dd.

More information

Comparing Several Means: ANOVA. Group Means and Grand Mean

Comparing Several Means: ANOVA. Group Means and Grand Mean STAT 511 ANOVA and Regressin 1 Cmparing Several Means: ANOVA Slide 1 Blue Lake snap beans were grwn in 12 pen-tp chambers which are subject t 4 treatments 3 each with O 3 and SO 2 present/absent. The ttal

More information

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA Mdelling f Clck Behaviur Dn Percival Applied Physics Labratry University f Washingtn Seattle, Washingtn, USA verheads and paper fr talk available at http://faculty.washingtn.edu/dbp/talks.html 1 Overview

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

We can see from the graph above that the intersection is, i.e., [ ).

We can see from the graph above that the intersection is, i.e., [ ). MTH 111 Cllege Algebra Lecture Ntes July 2, 2014 Functin Arithmetic: With nt t much difficulty, we ntice that inputs f functins are numbers, and utputs f functins are numbers. S whatever we can d with

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd NAME: DUE DATE: JULY 2 nd AP Chemistry SUMMER REV: Half-Life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

Inference in the Multiple-Regression

Inference in the Multiple-Regression Sectin 5 Mdel Inference in the Multiple-Regressin Kinds f hypthesis tests in a multiple regressin There are several distinct kinds f hypthesis tests we can run in a multiple regressin. Suppse that amng

More information

Statistics, Numerical Models and Ensembles

Statistics, Numerical Models and Ensembles Statistics, Numerical Mdels and Ensembles Duglas Nychka, Reinhard Furrer,, Dan Cley Claudia Tebaldi, Linda Mearns, Jerry Meehl and Richard Smith (UNC). Spatial predictin and data assimilatin Precipitatin

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review)

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review) CHAPTER 18: THERMODYNAMICS AND EQUILIBRIUM Part One: Heat Changes and Thermchemistry This aspect f Thermdynamics was dealt with in Chapter 6. (Review) A. Statement f First Law. (Sectin 18.1) 1. U ttal

More information

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation III-l III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.

More information

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y ) (Abut the final) [COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t m a k e s u r e y u a r e r e a d y ) The department writes the final exam s I dn't really knw what's n it and I can't very well

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCurseWare http://cw.mit.edu 5.60 Thermdynamics & Kinetics Spring 2008 Fr infrmatin abut citing these materials r ur Terms f Use, visit: http://cw.mit.edu/terms. 5.60 Spring 2008 Lecture #17 page

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is Length L>>a,b,c Phys 232 Lab 4 Ch 17 Electric Ptential Difference Materials: whitebards & pens, cmputers with VPythn, pwer supply & cables, multimeter, crkbard, thumbtacks, individual prbes and jined prbes,

More information

BLAST / HIDDEN MARKOV MODELS

BLAST / HIDDEN MARKOV MODELS CS262 (Winter 2015) Lecture 5 (January 20) Scribe: Kat Gregry BLAST / HIDDEN MARKOV MODELS BLAST CONTINUED HEURISTIC LOCAL ALIGNMENT Use Cmmnly used t search vast bilgical databases (n the rder f terabases/tetrabases)

More information

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers LHS Mathematics Department Hnrs Pre-alculus Final Eam nswers Part Shrt Prblems The table at the right gives the ppulatin f Massachusetts ver the past several decades Using an epnential mdel, predict the

More information

A Matrix Representation of Panel Data

A Matrix Representation of Panel Data web Extensin 6 Appendix 6.A A Matrix Representatin f Panel Data Panel data mdels cme in tw brad varieties, distinct intercept DGPs and errr cmpnent DGPs. his appendix presents matrix algebra representatins

More information

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date AP Statistics Practice Test Unit Three Explring Relatinships Between Variables Name Perid Date True r False: 1. Crrelatin and regressin require explanatry and respnse variables. 1. 2. Every least squares

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM The general linear mdel and Statistical Parametric Mapping I: Intrductin t the GLM Alexa Mrcm and Stefan Kiebel, Rik Hensn, Andrew Hlmes & J-B J Pline Overview Intrductin Essential cncepts Mdelling Design

More information

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016 Maximum A Psteriri (MAP) CS 109 Lecture 22 May 16th, 2016 Previusly in CS109 Game f Estimatrs Maximum Likelihd Nn spiler: this didn t happen Side Plt argmax argmax f lg Mther f ptimizatins? Reviving an

More information

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets Department f Ecnmics, University f alifrnia, Davis Ecn 200 Micr Thery Prfessr Giacm Bnann Insurance Markets nsider an individual wh has an initial wealth f. ith sme prbability p he faces a lss f x (0

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning Admin Reinfrcement Learning Cntent adapted frm Berkeley CS188 MDP Search Trees Each MDP state prjects an expectimax-like search tree Optimal Quantities The value (utility) f a state s: V*(s) = expected

More information

IN a recent article, Geary [1972] discussed the merit of taking first differences

IN a recent article, Geary [1972] discussed the merit of taking first differences The Efficiency f Taking First Differences in Regressin Analysis: A Nte J. A. TILLMAN IN a recent article, Geary [1972] discussed the merit f taking first differences t deal with the prblems that trends

More information

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Lead/Lag Compensator Frequency Domain Properties and Design Methods Lectures 6 and 7 Lead/Lag Cmpensatr Frequency Dmain Prperties and Design Methds Definitin Cnsider the cmpensatr (ie cntrller Fr, it is called a lag cmpensatr s K Fr s, it is called a lead cmpensatr Ntatin

More information

READING STATECHART DIAGRAMS

READING STATECHART DIAGRAMS READING STATECHART DIAGRAMS Figure 4.48 A Statechart diagram with events The diagram in Figure 4.48 shws all states that the bject plane can be in during the curse f its life. Furthermre, it shws the pssible

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

You need to be able to define the following terms and answer basic questions about them:

You need to be able to define the following terms and answer basic questions about them: CS440/ECE448 Sectin Q Fall 2017 Midterm Review Yu need t be able t define the fllwing terms and answer basic questins abut them: Intr t AI, agents and envirnments Pssible definitins f AI, prs and cns f

More information

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

Ecology 302 Lecture III. Exponential Growth (Gotelli, Chapter 1; Ricklefs, Chapter 11, pp )

Ecology 302 Lecture III. Exponential Growth (Gotelli, Chapter 1; Ricklefs, Chapter 11, pp ) Eclgy 302 Lecture III. Expnential Grwth (Gtelli, Chapter 1; Ricklefs, Chapter 11, pp. 222-227) Apcalypse nw. The Santa Ana Watershed Prject Authrity pulls n punches in prtraying its missin in apcalyptic

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

Functional Form and Nonlinearities

Functional Form and Nonlinearities Sectin 6 Functinal Frm and Nnlinearities This is a gd place t remind urselves f Assumptin #0: That all bservatins fllw the same mdel. Levels f measurement and kinds f variables There are (at least) three

More information

1 The limitations of Hartree Fock approximation

1 The limitations of Hartree Fock approximation Chapter: Pst-Hartree Fck Methds - I The limitatins f Hartree Fck apprximatin The n electrn single determinant Hartree Fck wave functin is the variatinal best amng all pssible n electrn single determinants

More information

Group Analysis: Hands-On

Group Analysis: Hands-On Grup Analysis: Hands-On Gang Chen SSCC/NIMH/NIH/HHS 3/19/16 1 Make sure yu have the files!! Under directry grup_analysis_hands_n/! Slides: GrupAna_HO.pdf! Data: AFNI_data6/GrupAna_cases/! In case yu dn

More information

CS 109 Lecture 23 May 18th, 2016

CS 109 Lecture 23 May 18th, 2016 CS 109 Lecture 23 May 18th, 2016 New Datasets Heart Ancestry Netflix Our Path Parameter Estimatin Machine Learning: Frmally Many different frms f Machine Learning We fcus n the prblem f predictin Want

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 11: Mdeling with systems f ODEs In Petre Department f IT, Ab Akademi http://www.users.ab.fi/ipetre/cmpmd/ Mdeling with differential equatins Mdeling strategy Fcus

More information

SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A.

SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A. SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST Mark C. Ott Statistics Research Divisin, Bureau f the Census Washingtn, D.C. 20233, U.S.A. and Kenneth H. Pllck Department f Statistics, Nrth Carlina State

More information

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical).

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical). Principles f Organic Chemistry lecture 5, page LCAO APPROIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (catin, anin r radical).. Draw mlecule and set up determinant. 2 3 0 3 C C 2 = 0 C 2 3 0 = -

More information

INSTRUMENTAL VARIABLES

INSTRUMENTAL VARIABLES INSTRUMENTAL VARIABLES Technical Track Sessin IV Sergi Urzua University f Maryland Instrumental Variables and IE Tw main uses f IV in impact evaluatin: 1. Crrect fr difference between assignment f treatment

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes Chemistry 20 Lessn 11 Electrnegativity, Plarity and Shapes In ur previus wrk we learned why atms frm cvalent bnds and hw t draw the resulting rganizatin f atms. In this lessn we will learn (a) hw the cmbinatin

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

Function notation & composite functions Factoring Dividing polynomials Remainder theorem & factor property

Function notation & composite functions Factoring Dividing polynomials Remainder theorem & factor property Functin ntatin & cmpsite functins Factring Dividing plynmials Remainder therem & factr prperty Can d s by gruping r by: Always lk fr a cmmn factr first 2 numbers that ADD t give yu middle term and MULTIPLY

More information

Lecture 23: Lattice Models of Materials; Modeling Polymer Solutions

Lecture 23: Lattice Models of Materials; Modeling Polymer Solutions Lecture 23: 12.05.05 Lattice Mdels f Materials; Mdeling Plymer Slutins Tday: LAST TIME...2 The Bltzmann Factr and Partitin Functin: systems at cnstant temperature...2 A better mdel: The Debye slid...3

More information

Math 10 - Exam 1 Topics

Math 10 - Exam 1 Topics Math 10 - Exam 1 Tpics Types and Levels f data Categrical, Discrete r Cntinuus Nminal, Ordinal, Interval r Rati Descriptive Statistics Stem and Leaf Graph Dt Plt (Interpret) Gruped Data Relative and Cumulative

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

SIMULATION OF GENETIC SYSTEMS BY AUTOMATIC DIGITAL COMPUTERS

SIMULATION OF GENETIC SYSTEMS BY AUTOMATIC DIGITAL COMPUTERS SIMULATION OF GENETIC SYSTEMS BY AUTOMATIC DIGITAL COMPUTERS VI. EPISTASIS By A. S. FRASER* [Manuscript received December 3, 1959] Summary Simulatin, by Mnte Carl methds, f the effect n the gentype f seletin

More information

11. DUAL NATURE OF RADIATION AND MATTER

11. DUAL NATURE OF RADIATION AND MATTER 11. DUAL NATURE OF RADIATION AND MATTER Very shrt answer and shrt answer questins 1. Define wrk functin f a metal? The minimum energy required fr an electrn t escape frm the metal surface is called the

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Math 105: Review for Exam I - Solutions

Math 105: Review for Exam I - Solutions 1. Let f(x) = 3 + x + 5. Math 105: Review fr Exam I - Slutins (a) What is the natural dmain f f? [ 5, ), which means all reals greater than r equal t 5 (b) What is the range f f? [3, ), which means all

More information

NGSS High School Physics Domain Model

NGSS High School Physics Domain Model NGSS High Schl Physics Dmain Mdel Mtin and Stability: Frces and Interactins HS-PS2-1: Students will be able t analyze data t supprt the claim that Newtn s secnd law f mtin describes the mathematical relatinship

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

ELE Final Exam - Dec. 2018

ELE Final Exam - Dec. 2018 ELE 509 Final Exam Dec 2018 1 Cnsider tw Gaussian randm sequences X[n] and Y[n] Assume that they are independent f each ther with means and autcvariances μ ' 3 μ * 4 C ' [m] 1 2 1 3 and C * [m] 3 1 10

More information

Lecture 12: Chemical reaction equilibria

Lecture 12: Chemical reaction equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 12: 10.19.05 Chemical reactin equilibria Tday: LAST TIME...2 EQUATING CHEMICAL POTENTIALS DURING REACTIONS...3 The extent f reactin...3 The simplest

More information

37 Maxwell s Equations

37 Maxwell s Equations 37 Maxwell s quatins In this chapter, the plan is t summarize much f what we knw abut electricity and magnetism in a manner similar t the way in which James Clerk Maxwell summarized what was knwn abut

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

Chapter 8 Predicting Molecular Geometries

Chapter 8 Predicting Molecular Geometries Chapter 8 Predicting Mlecular Gemetries 8-1 Mlecular shape The Lewis diagram we learned t make in the last chapter are a way t find bnds between atms and lne pais f electrns n atms, but are nt intended

More information

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y=

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y= Intrductin t Vectrs I 21 Intrductin t Vectrs I 22 I. Determine the hrizntal and vertical cmpnents f the resultant vectr by cunting n the grid. X= y= J. Draw a mangle with hrizntal and vertical cmpnents

More information

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!** Tpics lists: UV-Vis Absrbance Spectrscpy Lab & ChemActivity 3-6 (nly thrugh 4) I. UV-Vis Absrbance Spectrscpy Lab Beer s law Relates cncentratin f a chemical species in a slutin and the absrbance f that

More information

Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate.

Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate. OEB 242 Exam Practice Problems Answer Key Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate. First, recall

More information

Evolution. Diversity of Life. Lamarck s idea is called the. If a body

Evolution. Diversity of Life. Lamarck s idea is called the. If a body Evlutin Diversity f Life Lamarck s Thery f Evlutin Lamarck s idea is called the. If a bdy part were used, it gt strnger. If bdy part NOT used, it deterirated Lamarck is credited with helping put evlutin

More information

If (IV) is (increased, decreased, changed), then (DV) will (increase, decrease, change) because (reason based on prior research).

If (IV) is (increased, decreased, changed), then (DV) will (increase, decrease, change) because (reason based on prior research). Science Fair Prject Set Up Instructins 1) Hypthesis Statement 2) Materials List 3) Prcedures 4) Safety Instructins 5) Data Table 1) Hw t write a HYPOTHESIS STATEMENT Use the fllwing frmat: If (IV) is (increased,

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR Eurpean Schls Office f the Secretary-General Pedaggical Develpment Unit Ref. : 011-01-D-8-en- Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE

More information

Lecture 4 Resemblance Between Relatives

Lecture 4 Resemblance Between Relatives Lecture 4 Resemblance Between Relatives Bruce Walsh jbwalsh@uariznaedu University f Arizna Ntes frm a shrt curse taught May 0 at University f Liege The heritability f a trait, a central cncept in quantitative

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

( ) + θ θ. ω rotation rate. θ g geographic latitude - - θ geocentric latitude - - Reference Earth Model - WGS84 (Copyright 2002, David T.

( ) + θ θ. ω rotation rate. θ g geographic latitude - - θ geocentric latitude - - Reference Earth Model - WGS84 (Copyright 2002, David T. 1 Reference Earth Mdel - WGS84 (Cpyright, David T. Sandwell) ω spherid c θ θ g a parameter descriptin frmula value/unit GM e (WGS84) 3.9864418 x 1 14 m 3 s M e mass f earth - 5.98 x 1 4 kg G gravitatinal

More information

ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 7 Schelkunoff s Polynomial

ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 7 Schelkunoff s Polynomial ECE 538/635 Antenna Engineering Spring 006 Dr. Stuart Lng Chapter 6 Part 7 Schelkunff s Plynmial 7 Schelkunff s Plynmial Representatin (fr discrete arrays) AF( ψ ) N n 0 A n e jnψ N number f elements in

More information

Competency Statements for Wm. E. Hay Mathematics for grades 7 through 12:

Competency Statements for Wm. E. Hay Mathematics for grades 7 through 12: Cmpetency Statements fr Wm. E. Hay Mathematics fr grades 7 thrugh 12: Upn cmpletin f grade 12 a student will have develped a cmbinatin f sme/all f the fllwing cmpetencies depending upn the stream f math

More information

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving.

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving. Sectin 3.2: Many f yu WILL need t watch the crrespnding vides fr this sectin n MyOpenMath! This sectin is primarily fcused n tls t aid us in finding rts/zers/ -intercepts f plynmials. Essentially, ur fcus

More information

Getting Involved O. Responsibilities of a Member. People Are Depending On You. Participation Is Important. Think It Through

Getting Involved O. Responsibilities of a Member. People Are Depending On You. Participation Is Important. Think It Through f Getting Invlved O Literature Circles can be fun. It is exciting t be part f a grup that shares smething. S get invlved, read, think, and talk abut bks! Respnsibilities f a Member Remember a Literature

More information

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method.

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method. Lessn Plan Reach: Ask the students if they ever ppped a bag f micrwave ppcrn and nticed hw many kernels were unppped at the bttm f the bag which made yu wnder if ther brands pp better than the ne yu are

More information

EASTERN ARIZONA COLLEGE Introduction to Statistics

EASTERN ARIZONA COLLEGE Introduction to Statistics EASTERN ARIZONA COLLEGE Intrductin t Statistics Curse Design 2014-2015 Curse Infrmatin Divisin Scial Sciences Curse Number PSY 220 Title Intrductin t Statistics Credits 3 Develped by Adam Stinchcmbe Lecture/Lab

More information

1b) =.215 1c).080/.215 =.372

1b) =.215 1c).080/.215 =.372 Practice Exam 1 - Answers 1. / \.1/ \.9 (D+) (D-) / \ / \.8 / \.2.15/ \.85 (T+) (T-) (T+) (T-).080.020.135.765 1b).080 +.135 =.215 1c).080/.215 =.372 2. The data shwn in the scatter plt is the distance

More information

(2) Even if such a value of k was possible, the neutrons multiply

(2) Even if such a value of k was possible, the neutrons multiply CHANGE OF REACTOR Nuclear Thery - Curse 227 POWER WTH REACTVTY CHANGE n this lessn, we will cnsider hw neutrn density, neutrn flux and reactr pwer change when the multiplicatin factr, k, r the reactivity,

More information

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law Sectin 5.8 Ntes Page 1 5.8 Expnential Grwth and Decay Mdels; Newtn s Law There are many applicatins t expnential functins that we will fcus n in this sectin. First let s lk at the expnential mdel. Expnential

More information

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Emanuela Galass The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Emanuela Galass fr the purpse f this wrkshp When can we use

More information

Lab #3: Pendulum Period and Proportionalities

Lab #3: Pendulum Period and Proportionalities Physics 144 Chwdary Hw Things Wrk Spring 2006 Name: Partners Name(s): Intrductin Lab #3: Pendulum Perid and Prprtinalities Smetimes, it is useful t knw the dependence f ne quantity n anther, like hw the

More information