A Matrix Representation of Panel Data

Size: px
Start display at page:

Download "A Matrix Representation of Panel Data"

Transcription

1 web Extensin 6 Appendix 6.A A Matrix Representatin f Panel Data Panel data mdels cme in tw brad varieties, distinct intercept DGPs and errr cmpnent DGPs. his appendix presents matrix algebra representatins f thse DGPs and the estimatin methds apprpriate fr them. 6.A. WHA IS HE DGP? Panel Data DGPs We typically represent ne-dimensinal data, such as crsssectinal r time-series data, as Y = XB + E, 6.A. where, fr examples, Y and E are *, X is (k + ) *, and B is (k + ) * if the data are a time series with bservatins, and the explanatrs include an intercept term. his sectin adapts this basic frmulatin t describe several panel data mdels. Plain Panel Data Suppse the data represented by Equatin 6.A. are frm ne time series amng n such time series. Fr example, suppse these data are bservatins n military recruiting utcmes and their determinants fr ne state amng the 50 states f the United States. We can emphasize the multiplicity f states fr which we have data by replacing Equatin 6.A. fr the i-th state with Y i = X i b + e i (i =, Á, n). 6.A.2 EX 6-

2 EX 6-2 Web Extensin 6 We can als cmbine the infrmatin frm the n equatins f Equatin 6.A.2. Define Y Y 2 Y = D, Y n in which Y, Y 2, Á, Y n are each ( * ), X X 2 X = D X, n in which X, X 2, Á, X n are each (k + ) *, and, E E E 2 = D E, n in which E, E 2, Á, E n are each ( * ). In this frmulatin, in Y = XB + E, 6.A.3 Y and E are n *, X is (k + ) * n, and B is (k + ) *. If E fllwed the Gauss Markv Assumptins, OLS wuld be BLUE fr estimating the cefficients f Equatin 6.A.3. We have seen that panel data are ften nt that simple, thugh, and instead require alternative specificatins. Distinct Intercepts and Fixed Effects Estimatin he distinct intercepts mdel includes a separate intercept fr each individual grup f bservatins,, Á, n. We culd include thse intercepts in X in Equatin 6.A.3 and apply OLS t that equatin. his estimatr is called the least squares dummy variable (LSDV) estimatr. If the e satisfy the Gauss Markv Assumptins, OLS wuld be BLUE in this case. Hwever, smetimes n is quite large. Fr example, if each bservatin is n a particular cunty in the United States in a

3 A Matrix Representatin f Panel Data EX 6-3 particular year, there wuld be mre than 3,000 distinct intercepts t estimate. Inverting such a large matrix can be cmputatinally difficult. Als, s many estimated intercepts can make cmputer utput unmanageable. If we are nt particularly interested in the individual intercepts, but nly in the slpes, it is easier t estimate the mdel using an estimatr that btains the OLS estimates fr the slpe cefficients withut prducing the ptentially numerus intercepts. he fixed effects estimatr estimates nly the slpes f 6.A.3. allw estimatin f the slpe cefficients withut estimating the intercepts, first break up X int tw parts:. W, which is X less its clumn f nes fr an intercept, [X 0 X 02, Á, X 0n ] in which X 0i is a ( * ) clumn vectr f nes; and 2. X 0 = D X 0 0 Á 0 0 X 02 Á 0, Á Á X 0n in which W is n * k and X 0 is n * n. We can write the distinct intercepts mdel as Y = X 0 A + WG + E 6.A.4 in which A is (n * ) and cntains the n distinct intercepts, and G is (k * ) and cntains the k slpe cefficients. Refrmulating the Distinct Intercepts Mdel Refrmulating the distinct intercepts mdel f Equatin 6.A.4 int a frm withut intercepts requires sme special matrix manipulatins. he purpse f these manipulatins is t express bservatins in terms f variables deviatins frm the variables grup means. he relevant grup fr an bservatin is the grup t which the bservatin belngs. We first develp the tls fr these manipulatins. Ntice that X 0 X 0 is the n * n diagnal matrix 0 Á 0 0 Á 0 D, 0 0 Á

4 EX 6-4 Web Extensin 6 the inverse f which is the n * n matrix 0 Á 0 (X 0 X 0 ) = D, Á 0 0 Á and that 0 Á 0 X 0 (X 0 X 0 ) - 0 X 0 = D Á 0, Á Á where is a matrix with all elements equal t. X 0 (X 0 X 0 ) - * X 0 is n * n and symmetric. Fr any Y i, Y i = G ay it t = ay it t = ay it t = W, 6.A.5 a * matrix that we call Y i, and Y X 0 (X 0 X 0 ) - X 0 Y = D Y 2, 6.A.6 Y n an n * matrix that we call Y, in which the mean value f Y fr each bservatin s grup represents that bservatin. Similarly, W X 0 (X 0 X 0 ) - X 0 W = D W 2 = W, 6.A.7 W n an n * k matrix that we call W, in which W i is a * k matrix with each clumn the mean f the crrespnding explanatr fr the i-th individual.

5 A Matrix Representatin f Panel Data EX 6-5 Cnsequently, if we define the n * n symmetric matrix D = I n - X 0 (X 0 X 0 ) - X 0, 6.A.8 then DW is an n * k matrix cntaining, fr each bservatin, the deviatins f each explanatr frm the explanatr s mean fr the grup the bservatin belngs t. Similarly, DY is an n * matrix that cntains, fr each bservatin, the deviatin f that bservatin s Y-value frm the mean Y-value fr that bservatin s grup. DX = 0. Ntice that D is symmetric. If we pre-multiply the distinct intercept mdel f Equatin 6.A.4 by D we btain DY = DX 0 A + DWG + DE = 0 + DWG + DE, 6.A.9 in which De cntains, fr each bservatin, the deviatin f its disturbance frm the mean disturbance fr that bservatin s grup. Applying OLS t 6.A.9 yields gn FE = (W D DW) - W D DY. Pre-multiplicatin f D by D yields D, that is, D is what we have previusly called an idemptent matrix. Cnsequently, the OLS frmula reduces t gn FE = (W DW) - W DY. LSDV and Fixed Effects Estimatin he fixed effects estimatr prvides the same estimates f the slpe cefficients as des the LSDV estimatr. Recall that OLS estimatrs are characterized by X e = 0, where e is the clumn vectr f OLS residuals, that is, by the explanatrs being rthgnal t the residuals. In the case in which X is (X 0 W), X e is an (n + k) clumn vectr f zers. he (n + k) rws f X e uniquely characterize the OLS estimatr. Cnsequently, if X is rthgnal t the residuals f the fixed effects estimatr, the slpe estimates frm the fixed effects estimatr are the same as frm the OLS estimatr. demnstrate that the fixed effects and LSDV estimates f the slpes cincide, it suffices t shw that X is rthgnal t the residuals frm the fixed effects estimatr. Recall that we btain the fixed effects estimatr by applying OLS t Equatin 6.A.9, DY = DWG + DE, 6.A.0

6 EX 6-6 Web Extensin 6 s we knw that DW is rthgnal t the residuals frm this regressin, because it is the explanatr and the estimatin prcedure is OLS. Define the residuals, d, frm estimating Equatin 6.A.0 t be d = DY - DWgN FE. 6.A. hese residuals crrespnd t a set f residuals frm estimating Equatin 6.A.4: see that this is true, nte that Equatins 6.A.6 and 6.A.7, cupled with the definitin f D in Equatin 6.A.8, allw us t rewrite Equatin 6.A. as which we can rewrite as Y = X 0 A + WG + E. d = Y - Y - (W - W)gN, d = Y - (Y - WgN ) - WgN. In turn, we can rewrite Y - WgN as Y - W gn Y 2 - W 2 gn G a(y 2t - W 2t gn ) t = W D = X 0 = X0 an FE, Y n - W n gn a(y nt - W nt gn ) in which Y it is the value f Y in the t-th bservatin n the i-th individual, W it is a rw vectr cntaining the k-values f the explanatrs in the t-th bservatin n the i-th individual, and AN FE = G a t = t = a t = a t = a t = (Y t - W t gn ) (Y t - W t gn ) (Y 2t - W 2t gn ) W. (Y nt - W nt gn ) Cnsequently, we can rewrite Equatin 6.A. as d = Y - X 0 an FE - WgN FE,

7 A Matrix Representatin f Panel Data EX 6-7 which shws that d is the vectr f residuals that results frm estimating A and G in Equatin 6.A.4 with and GN FE. AN FE If X = (X 0 W) is rthgnal t these residuals, that is if X d = 0, then the fixed effects estimatr fr the slpes is the OLS estimatr f G. Des X d = 0? answer this questin, let s first rewrite d: d = DY - DWGN FE = DY - DW((W DW) - W DY) = (I n - DW(W DW) - W )DY. hus, X d = (X 0 W) d = (X 0 W) (I n - DW(W DW) - W )DY. 6.A.2 he first n rws f X d are X 0 (I n - DW(W DW) - W )DY r X 0 (I n - X 0 DW(W DW) - W )DY. But D is symmetric, s D = D, s (X 0 I n - X 0 DW(W DW) - W )DY = (X 0 I n - X 0 D W(W DW) - W )D Y. Because X 0 D =(DX) =0, X d = (X 0 I n - X 0 D W(W DW) - W )D Y = (X 0 I n - 0 )D Y which equals (X 0 I n )D Y = X 0 D Y = 0, in this case an n * clumn f zers. Returning t Equatin 6.A.2, the next k rws f X d are W (I n - DW(W DW) - W )DY = (W I n - W DW(W DW) - W )DY = (W -I k W )DY = (W -W )DY = 0. hus, X is rthgnal t d and the fixed effects estimatr f the slpes cincides with the LSDV estimatr f the slpes. Errr Cmpnents and Randm Effects Estimatin Errr cmpnents mdels return us t Equatin 6.A.3, Y = XB + E, 6.A.3

8 EX 6-8 Web Extensin 6 in which X is n * (k + ), with a single intercept. he errr cmpnents mdel cpes with unbserved hetergeneity by assuming that there are individual specific cmpnents f E. he individual specific effects appear in the disturbance n the premise that the individuals that appear in the sample vary randmly acrss samples. In the randm effects mdel, the disturbances d nt fllw the Gauss Markv Assumptins. Instead, the disturbance is assumed t cntain bth an individual-specific cmpnent and an bservatin-specific cmpnent. hus, he tw errr cmpnents DGPs discussed in this chapter share assumptins abut the variances and cvariances f the disturbance cmpnents: hey als share the assumptin that Hwever, the first errr cmpnents DGP assumes that whereas the secnd assumes the cntrary. Define π=d e it = n i + m it. E(m it ) = 0 i =, Á, n; t =, Á, var(m it ) = s 2 m i =, Á, n; t =, Á, E(m it m i t ) = 0 if i Z i r t Z t E(n i ) = 0 i =, Á, n var(n i ) = s 2 n i =, Á, n E(n i n j ) = 0 fr i Z j E(m it n j ) = 0 fr all i, j, and t. E(X jit m it ) = 0 fr all j, i, and t. E(X jit n i ) = 0 fr all j, i, and t, s m + s n s n Á s n s n s m + s n s n, Á Á s n s n. Á s m + s n a * matrix that represents the variances and cvariances amng the disturbances within the bservatins fr a single grup. he assumptins abut disturbances imply that π 0 Á 0 0 π 0 æke(ee ) = D, Á 0 0 Á π

9 A Matrix Representatin f Panel Data EX 6-9 which is an n * n matrix. he GLS estimatr f Equatin 6.A.3 fr this DGP is (X æ X) - X æ Y. ransfrming Variables and the Randm Effects Estimatr We can cnstruct the GLS estimatr by perfrming OLS n suitably transfrmed X and Y. Greene reprts that the * symmetric matrix P fr which PP =P P =π - is P = s m ci - u d, in which is a * matrix with every element equal t and u = - s m. 2s 2 n + s 2 m OLS applied t s m PY = s m PXB + s m PE yields B ~ RE = (s 2 mx P PX) - s 2 mx P PY = (X P PX) - X P PY = (X æ X) - X æ Y, the GLS estimatr fr B. In the first errr cmpnents DGP, in which E(X jit n i ) = 0 fr all j, i, and t, the GLS estimatr is asympttically efficient if the disturbances are jintly nrmally distributed cnditinal n X. In the secnd errr cmpnents DGP, GLS is biased and incnsistent because the explanatrs are cntempraneusly crrelated with the disturbances. he character f the GLS transfrmatin becmes clearer if we lk t Equatin 6.A.5, Y i = G ay it t = ay it t = : ay it t = W = Yi.

10 EX 6-0 Web Extensin 6 his relatinship suggests what transfrming Y, X, and E by s m P des in the GLS prcedure. Our transfrmed Y is uy uy 2 s m PY = Y - D, uy n in which the last matrix is, like Y, n *. Each clumn f X is similarly transfrmed by s m P.. William H. Greene, Ecnmetric Analysis, 5th ed., (Englewd Cliffs, NJ: Prentice Hall, 2003, 295).

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.

More information

IN a recent article, Geary [1972] discussed the merit of taking first differences

IN a recent article, Geary [1972] discussed the merit of taking first differences The Efficiency f Taking First Differences in Regressin Analysis: A Nte J. A. TILLMAN IN a recent article, Geary [1972] discussed the merit f taking first differences t deal with the prblems that trends

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

Inference in the Multiple-Regression

Inference in the Multiple-Regression Sectin 5 Mdel Inference in the Multiple-Regressin Kinds f hypthesis tests in a multiple regressin There are several distinct kinds f hypthesis tests we can run in a multiple regressin. Suppse that amng

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS 1 Influential bservatins are bservatins whse presence in the data can have a distrting effect n the parameter estimates and pssibly the entire analysis,

More information

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems. Building t Transfrmatins n Crdinate Axis Grade 5: Gemetry Graph pints n the crdinate plane t slve real-wrld and mathematical prblems. 5.G.1. Use a pair f perpendicular number lines, called axes, t define

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

Section 11 Simultaneous Equations

Section 11 Simultaneous Equations Sectin 11 Simultaneus Equatins The mst crucial f ur OLS assumptins (which carry er t mst f the ther estimatrs that we hae studied) is that the regressrs be exgenus uncrrelated with the errr term This assumptin

More information

Lecture 10, Principal Component Analysis

Lecture 10, Principal Component Analysis Principal Cmpnent Analysis Lecture 10, Principal Cmpnent Analysis Ha Helen Zhang Fall 2017 Ha Helen Zhang Lecture 10, Principal Cmpnent Analysis 1 / 16 Principal Cmpnent Analysis Lecture 10, Principal

More information

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Emanuela Galass The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Emanuela Galass fr the purpse f this wrkshp When can we use

More information

Comparing Several Means: ANOVA. Group Means and Grand Mean

Comparing Several Means: ANOVA. Group Means and Grand Mean STAT 511 ANOVA and Regressin 1 Cmparing Several Means: ANOVA Slide 1 Blue Lake snap beans were grwn in 12 pen-tp chambers which are subject t 4 treatments 3 each with O 3 and SO 2 present/absent. The ttal

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

Functional Form and Nonlinearities

Functional Form and Nonlinearities Sectin 6 Functinal Frm and Nnlinearities This is a gd place t remind urselves f Assumptin #0: That all bservatins fllw the same mdel. Levels f measurement and kinds f variables There are (at least) three

More information

INSTRUMENTAL VARIABLES

INSTRUMENTAL VARIABLES INSTRUMENTAL VARIABLES Technical Track Sessin IV Sergi Urzua University f Maryland Instrumental Variables and IE Tw main uses f IV in impact evaluatin: 1. Crrect fr difference between assignment f treatment

More information

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Céline Ferré The Wrld Bank When can we use matching? What if the assignment t the treatment is nt dne randmly r based n an eligibility index, but n the basis

More information

Math Foundations 20 Work Plan

Math Foundations 20 Work Plan Math Fundatins 20 Wrk Plan Units / Tpics 20.8 Demnstrate understanding f systems f linear inequalities in tw variables. Time Frame December 1-3 weeks 6-10 Majr Learning Indicatrs Identify situatins relevant

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A.

SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A. SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST Mark C. Ott Statistics Research Divisin, Bureau f the Census Washingtn, D.C. 20233, U.S.A. and Kenneth H. Pllck Department f Statistics, Nrth Carlina State

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Marginal Conceptual Predictive Statistic for Mixed Model Selection

Marginal Conceptual Predictive Statistic for Mixed Model Selection Open Jurnal f Statistics, 06, 6, 39-53 Published Online April 06 in Sci http://wwwscirprg/jurnal/js http://dxdirg/0436/js0660 Marginal Cnceptual Predictive Statistic fr Mixed Mdel Selectin Cheng Wenren,

More information

SAMPLING DYNAMICAL SYSTEMS

SAMPLING DYNAMICAL SYSTEMS SAMPLING DYNAMICAL SYSTEMS Melvin J. Hinich Applied Research Labratries The University f Texas at Austin Austin, TX 78713-8029, USA (512) 835-3278 (Vice) 835-3259 (Fax) hinich@mail.la.utexas.edu ABSTRACT

More information

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture Few asic Facts but Isthermal Mass Transfer in a inary Miture David Keffer Department f Chemical Engineering University f Tennessee first begun: pril 22, 2004 last updated: January 13, 2006 dkeffer@utk.edu

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

A Regression Solution to the Problem of Criterion Score Comparability

A Regression Solution to the Problem of Criterion Score Comparability A Regressin Slutin t the Prblem f Criterin Scre Cmparability William M. Pugh Naval Health Research Center When the criterin measure in a study is the accumulatin f respnses r behavirs fr an individual

More information

Section 11 Simultaneous Equations

Section 11 Simultaneous Equations Sectin 11 Simultaneus Equatins The mst crucial f ur OLS assumptins (which carry er t mst f the ther estimatrs that we hae studied) is that the regressrs be exgenus uncrrelated with the errr term This assumptin

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

Name: Block: Date: Science 10: The Great Geyser Experiment A controlled experiment

Name: Block: Date: Science 10: The Great Geyser Experiment A controlled experiment Science 10: The Great Geyser Experiment A cntrlled experiment Yu will prduce a GEYSER by drpping Ments int a bttle f diet pp Sme questins t think abut are: What are yu ging t test? What are yu ging t measure?

More information

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change? Name Chem 163 Sectin: Team Number: ALE 21. Gibbs Free Energy (Reference: 20.3 Silberberg 5 th editin) At what temperature des the spntaneity f a reactin change? The Mdel: The Definitin f Free Energy S

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR Eurpean Schls Office f the Secretary-General Pedaggical Develpment Unit Ref. : 011-01-D-8-en- Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE

More information

Admissibility Conditions and Asymptotic Behavior of Strongly Regular Graphs

Admissibility Conditions and Asymptotic Behavior of Strongly Regular Graphs Admissibility Cnditins and Asympttic Behavir f Strngly Regular Graphs VASCO MOÇO MANO Department f Mathematics University f Prt Oprt PORTUGAL vascmcman@gmailcm LUÍS ANTÓNIO DE ALMEIDA VIEIRA Department

More information

Lyapunov Stability Stability of Equilibrium Points

Lyapunov Stability Stability of Equilibrium Points Lyapunv Stability Stability f Equilibrium Pints 1. Stability f Equilibrium Pints - Definitins In this sectin we cnsider n-th rder nnlinear time varying cntinuus time (C) systems f the frm x = f ( t, x),

More information

5 th grade Common Core Standards

5 th grade Common Core Standards 5 th grade Cmmn Cre Standards In Grade 5, instructinal time shuld fcus n three critical areas: (1) develping fluency with additin and subtractin f fractins, and develping understanding f the multiplicatin

More information

Section I5: Feedback in Operational Amplifiers

Section I5: Feedback in Operational Amplifiers Sectin I5: eedback in Operatinal mplifiers s discussed earlier, practical p-amps hae a high gain under dc (zer frequency) cnditins and the gain decreases as frequency increases. This frequency dependence

More information

Smoothing, penalized least squares and splines

Smoothing, penalized least squares and splines Smthing, penalized least squares and splines Duglas Nychka, www.image.ucar.edu/~nychka Lcally weighted averages Penalized least squares smthers Prperties f smthers Splines and Reprducing Kernels The interplatin

More information

ENG2410 Digital Design Sequential Circuits: Part B

ENG2410 Digital Design Sequential Circuits: Part B ENG24 Digital Design Sequential Circuits: Part B Fall 27 S. Areibi Schl f Engineering University f Guelph Analysis f Sequential Circuits Earlier we learned hw t analyze cmbinatinal circuits We will extend

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

CHM112 Lab Graphing with Excel Grading Rubric

CHM112 Lab Graphing with Excel Grading Rubric Name CHM112 Lab Graphing with Excel Grading Rubric Criteria Pints pssible Pints earned Graphs crrectly pltted and adhere t all guidelines (including descriptive title, prperly frmatted axes, trendline

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

UG Course Outline EC2203: Quantitative Methods II 2017/18

UG Course Outline EC2203: Quantitative Methods II 2017/18 UG Curse Outline EC2203: Quantitative Methds II 2017/18 Autumn: Instructr: Pierre0-Olivier Frtin Office: Hrtn H214 Phne: +44 (0) 1784 276474 E-mail: pierre-livier.frtin@rhul.ac.uk Office hurs: Tuesdays

More information

NOTE ON THE ANALYSIS OF A RANDOMIZED BLOCK DESIGN. Junjiro Ogawa University of North Carolina

NOTE ON THE ANALYSIS OF A RANDOMIZED BLOCK DESIGN. Junjiro Ogawa University of North Carolina NOTE ON THE ANALYSIS OF A RANDOMIZED BLOCK DESIGN by Junjir Ogawa University f Nrth Carlina This research was supprted by the Office f Naval Research under Cntract N. Nnr-855(06) fr research in prbability

More information

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards:

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards: MODULE FOUR This mdule addresses functins SC Academic Standards: EA-3.1 Classify a relatinship as being either a functin r nt a functin when given data as a table, set f rdered pairs, r graph. EA-3.2 Use

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!** Tpics lists: UV-Vis Absrbance Spectrscpy Lab & ChemActivity 3-6 (nly thrugh 4) I. UV-Vis Absrbance Spectrscpy Lab Beer s law Relates cncentratin f a chemical species in a slutin and the absrbance f that

More information

B. Definition of an exponential

B. Definition of an exponential Expnents and Lgarithms Chapter IV - Expnents and Lgarithms A. Intrductin Starting with additin and defining the ntatins fr subtractin, multiplicatin and divisin, we discvered negative numbers and fractins.

More information

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction T-61.5060 Algrithmic methds fr data mining Slide set 6: dimensinality reductin reading assignment LRU bk: 11.1 11.3 PCA tutrial in mycurses (ptinal) ptinal: An Elementary Prf f a Therem f Jhnsn and Lindenstrauss,

More information

Experiment #3. Graphing with Excel

Experiment #3. Graphing with Excel Experiment #3. Graphing with Excel Study the "Graphing with Excel" instructins that have been prvided. Additinal help with learning t use Excel can be fund n several web sites, including http://www.ncsu.edu/labwrite/res/gt/gt-

More information

Introduction to Quantitative Genetics II: Resemblance Between Relatives

Introduction to Quantitative Genetics II: Resemblance Between Relatives Intrductin t Quantitative Genetics II: Resemblance Between Relatives Bruce Walsh 8 Nvember 006 EEB 600A The heritability f a trait, a central cncept in quantitative genetics, is the prprtin f variatin

More information

A Correlation of. to the. South Carolina Academic Standards for Mathematics Precalculus

A Correlation of. to the. South Carolina Academic Standards for Mathematics Precalculus A Crrelatin f Suth Carlina Academic Standards fr Mathematics Precalculus INTRODUCTION This dcument demnstrates hw Precalculus (Blitzer), 4 th Editin 010, meets the indicatrs f the. Crrelatin page references

More information

Pipetting 101 Developed by BSU CityLab

Pipetting 101 Developed by BSU CityLab Discver the Micrbes Within: The Wlbachia Prject Pipetting 101 Develped by BSU CityLab Clr Cmparisns Pipetting Exercise #1 STUDENT OBJECTIVES Students will be able t: Chse the crrect size micrpipette fr

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date AP Statistics Practice Test Unit Three Explring Relatinships Between Variables Name Perid Date True r False: 1. Crrelatin and regressin require explanatry and respnse variables. 1. 2. Every least squares

More information

7 TH GRADE MATH STANDARDS

7 TH GRADE MATH STANDARDS ALGEBRA STANDARDS Gal 1: Students will use the language f algebra t explre, describe, represent, and analyze number expressins and relatins 7 TH GRADE MATH STANDARDS 7.M.1.1: (Cmprehensin) Select, use,

More information

Math Foundations 10 Work Plan

Math Foundations 10 Work Plan Math Fundatins 10 Wrk Plan Units / Tpics 10.1 Demnstrate understanding f factrs f whle numbers by: Prime factrs Greatest Cmmn Factrs (GCF) Least Cmmn Multiple (LCM) Principal square rt Cube rt Time Frame

More information

Homology groups of disks with holes

Homology groups of disks with holes Hmlgy grups f disks with hles THEOREM. Let p 1,, p k } be a sequence f distinct pints in the interir unit disk D n where n 2, and suppse that fr all j the sets E j Int D n are clsed, pairwise disjint subdisks.

More information

We can see from the graph above that the intersection is, i.e., [ ).

We can see from the graph above that the intersection is, i.e., [ ). MTH 111 Cllege Algebra Lecture Ntes July 2, 2014 Functin Arithmetic: With nt t much difficulty, we ntice that inputs f functins are numbers, and utputs f functins are numbers. S whatever we can d with

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y ) (Abut the final) [COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t m a k e s u r e y u a r e r e a d y ) The department writes the final exam s I dn't really knw what's n it and I can't very well

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

FIELD QUALITY IN ACCELERATOR MAGNETS

FIELD QUALITY IN ACCELERATOR MAGNETS FIELD QUALITY IN ACCELERATOR MAGNETS S. Russenschuck CERN, 1211 Geneva 23, Switzerland Abstract The field quality in the supercnducting magnets is expressed in terms f the cefficients f the Furier series

More information

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM The general linear mdel and Statistical Parametric Mapping I: Intrductin t the GLM Alexa Mrcm and Stefan Kiebel, Rik Hensn, Andrew Hlmes & J-B J Pline Overview Intrductin Essential cncepts Mdelling Design

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp THE POWER AND LIMIT OF NEURAL NETWORKS T. Y. Lin Department f Mathematics and Cmputer Science San Jse State University San Jse, Califrnia 959-003 tylin@cs.ssu.edu and Bereley Initiative in Sft Cmputing*

More information

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling Lecture 13: Markv hain Mnte arl Gibbs sampling Gibbs sampling Markv chains 1 Recall: Apprximate inference using samples Main idea: we generate samples frm ur Bayes net, then cmpute prbabilities using (weighted)

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10]

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10] EECS 270, Winter 2017, Lecture 3 Page 1 f 6 Medium Scale Integrated (MSI) devices [Sectins 2.9 and 2.10] As we ve seen, it s smetimes nt reasnable t d all the design wrk at the gate-level smetimes we just

More information

Introduction to Regression

Introduction to Regression Intrductin t Regressin Administrivia Hmewrk 6 psted later tnight. Due Friday after Break. 2 Statistical Mdeling Thus far we ve talked abut Descriptive Statistics: This is the way my sample is Inferential

More information

Least Squares Optimal Filtering with Multirate Observations

Least Squares Optimal Filtering with Multirate Observations Prc. 36th Asilmar Cnf. n Signals, Systems, and Cmputers, Pacific Grve, CA, Nvember 2002 Least Squares Optimal Filtering with Multirate Observatins Charles W. herrien and Anthny H. Hawes Department f Electrical

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method.

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method. Lessn Plan Reach: Ask the students if they ever ppped a bag f micrwave ppcrn and nticed hw many kernels were unppped at the bttm f the bag which made yu wnder if ther brands pp better than the ne yu are

More information

MACE For Conformation Traits

MACE For Conformation Traits MACE Fr Cnfrmatin raits L. Klei and. J. Lawlr Hlstein Assciatin USA, Inc., Brattlebr, Vermnt, USA Intrductin Multiple acrss cuntry evaluatins (MACE) fr prductin traits are nw rutinely cmputed and used

More information

Kinetic Model Completeness

Kinetic Model Completeness 5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins

More information

Kinematic transformation of mechanical behavior Neville Hogan

Kinematic transformation of mechanical behavior Neville Hogan inematic transfrmatin f mechanical behavir Neville Hgan Generalized crdinates are fundamental If we assume that a linkage may accurately be described as a cllectin f linked rigid bdies, their generalized

More information

Slide04 (supplemental) Haykin Chapter 4 (both 2nd and 3rd ed): Multi-Layer Perceptrons

Slide04 (supplemental) Haykin Chapter 4 (both 2nd and 3rd ed): Multi-Layer Perceptrons Slide04 supplemental) Haykin Chapter 4 bth 2nd and 3rd ed): Multi-Layer Perceptrns CPSC 636-600 Instructr: Ynsuck Che Heuristic fr Making Backprp Perfrm Better 1. Sequential vs. batch update: fr large

More information

Statistical Learning. 2.1 What Is Statistical Learning?

Statistical Learning. 2.1 What Is Statistical Learning? 2 Statistical Learning 2.1 What Is Statistical Learning? In rder t mtivate ur study f statistical learning, we begin with a simple example. Suppse that we are statistical cnsultants hired by a client t

More information

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Sandy D. Balkin Dennis K. J. Lin y Pennsylvania State University, University Park, PA 16802 Sandy Balkin is a graduate student

More information

Principal Components

Principal Components Principal Cmpnents Suppse we have N measurements n each f p variables X j, j = 1,..., p. There are several equivalent appraches t principal cmpnents: Given X = (X 1,... X p ), prduce a derived (and small)

More information

APPLICATION OF THE BRATSETH SCHEME FOR HIGH LATITUDE INTERMITTENT DATA ASSIMILATION USING THE PSU/NCAR MM5 MESOSCALE MODEL

APPLICATION OF THE BRATSETH SCHEME FOR HIGH LATITUDE INTERMITTENT DATA ASSIMILATION USING THE PSU/NCAR MM5 MESOSCALE MODEL JP2.11 APPLICATION OF THE BRATSETH SCHEME FOR HIGH LATITUDE INTERMITTENT DATA ASSIMILATION USING THE PSU/NCAR MM5 MESOSCALE MODEL Xingang Fan * and Jeffrey S. Tilley University f Alaska Fairbanks, Fairbanks,

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

How do scientists measure trees? What is DBH?

How do scientists measure trees? What is DBH? Hw d scientists measure trees? What is DBH? Purpse Students develp an understanding f tree size and hw scientists measure trees. Students bserve and measure tree ckies and explre the relatinship between

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

(2) Even if such a value of k was possible, the neutrons multiply

(2) Even if such a value of k was possible, the neutrons multiply CHANGE OF REACTOR Nuclear Thery - Curse 227 POWER WTH REACTVTY CHANGE n this lessn, we will cnsider hw neutrn density, neutrn flux and reactr pwer change when the multiplicatin factr, k, r the reactivity,

More information

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Lead/Lag Compensator Frequency Domain Properties and Design Methods Lectures 6 and 7 Lead/Lag Cmpensatr Frequency Dmain Prperties and Design Methds Definitin Cnsider the cmpensatr (ie cntrller Fr, it is called a lag cmpensatr s K Fr s, it is called a lead cmpensatr Ntatin

More information

^YawataR&D Laboratory, Nippon Steel Corporation, Tobata, Kitakyushu, Japan

^YawataR&D Laboratory, Nippon Steel Corporation, Tobata, Kitakyushu, Japan Detectin f fatigue crack initiatin frm a ntch under a randm lad C. Makabe," S. Nishida^C. Urashima,' H. Kaneshir* "Department f Mechanical Systems Engineering, University f the Ryukyus, Nishihara, kinawa,

More information

Keysight Technologies Understanding the Kramers-Kronig Relation Using A Pictorial Proof

Keysight Technologies Understanding the Kramers-Kronig Relation Using A Pictorial Proof Keysight Technlgies Understanding the Kramers-Krnig Relatin Using A Pictrial Prf By Clin Warwick, Signal Integrity Prduct Manager, Keysight EEsf EDA White Paper Intrductin In principle, applicatin f the

More information

Group Report Lincoln Laboratory. The Angular Resolution of Multiple Target. J. R. Sklar F. C. Schweppe. January 1964

Group Report Lincoln Laboratory. The Angular Resolution of Multiple Target. J. R. Sklar F. C. Schweppe. January 1964 Grup Reprt 1964-2 The Angular Reslutin f Multiple Target J. R. Sklar F. C. Schweppe January 1964 Prepared. tract AF 19 (628)-500 by Lincln Labratry MASSACHUSETTS INSTITUTE OF TECHNOLOGY Lexingtn, M The

More information

6.3: Volumes by Cylindrical Shells

6.3: Volumes by Cylindrical Shells 6.3: Vlumes by Cylindrical Shells Nt all vlume prblems can be addressed using cylinders. Fr example: Find the vlume f the slid btained by rtating abut the y-axis the regin bunded by y = 2x x B and y =

More information

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers LHS Mathematics Department Hnrs Pre-alculus Final Eam nswers Part Shrt Prblems The table at the right gives the ppulatin f Massachusetts ver the past several decades Using an epnential mdel, predict the

More information

The standards are taught in the following sequence.

The standards are taught in the following sequence. B L U E V A L L E Y D I S T R I C T C U R R I C U L U M MATHEMATICS Third Grade In grade 3, instructinal time shuld fcus n fur critical areas: (1) develping understanding f multiplicatin and divisin and

More information

CONSTRUCTING STATECHART DIAGRAMS

CONSTRUCTING STATECHART DIAGRAMS CONSTRUCTING STATECHART DIAGRAMS The fllwing checklist shws the necessary steps fr cnstructing the statechart diagrams f a class. Subsequently, we will explain the individual steps further. Checklist 4.6

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours STATS216v Intrductin t Statistical Learning Stanfrd University, Summer 2016 Practice Final (Slutins) Duratin: 3 hurs Instructins: (This is a practice final and will nt be graded.) Remember the university

More information