Xiaoming Mao Physics, University of Michigan, Ann Arbor. IGERT Summer Institute 2017 Brandeis

Size: px
Start display at page:

Download "Xiaoming Mao Physics, University of Michigan, Ann Arbor. IGERT Summer Institute 2017 Brandeis"

Transcription

1 Xiaoming Mao Physics, University of Michigan, Ann Arbor IGERT Summer Institute 2017 Brandeis

2 Elastic Networks A family of discrete model networks involving masses connected by springs 1 2 kk( ll)2 Disordered Interactions Central force springs Angle bending stiffness 1 2 κκ( θθ)2 Ordered Simple, good for: Analytic calculations Numerical simulations In any dimension

3 Why Elastic Networks Why we want to use elastic networks models ( as opposed to continuum elasticity?) Because many soft matter systems are marginal solids (both solid and liquid characteristics). Elastic networks help understand the microscopic origin of different classes of marginal solids Elastic networks also provide ideas of making new metamaterials with novel properties Topological Mechanics

4 Experimental Systems as Elastic Networks Elastic networks capture the essential physics of many interesting systems Glasses (silica, TEM image, Huang et al, Science 2013) Granular matter Colloids and Emulsion (E. Weeks group, Emory) Biopolymer networks (collagen, Ovaska et al, 2017)

5 Experimental Systems as Elastic Networks Elastic networks capture the essential physics of many interesting systems Protein rigidity/function (Chubynsky et al, 2008) Mechanical metamaterials design (J. Greer s group, Caltech) Structural phase transitions in crystals (α-β transition of cristobalites)

6 Why Elastic Network Models Are Useful? With generalization, elastic networks can also be used to study: Foams (D. Durian s group, Penn) Biological tissues (Bi et al, Nat. Phys. 2015) Origami & Kirigami (Evans et al, PRE 2015) and many more!

7 How to Understand Elastic Networks? First Step: Mechanical Stability Floppy mode Vs. Floppy How to find out? Mechanically Stable

8 Maxwell s Counting # of zero modes (normal modes cost 0 elastic energy) NN 0 = NN dd.oo.ff NN CC Degrees of freedom Constraints Central force bonds between point-like particles NN dd NN bb # of particles * spatial dimension Bonds # of floppy modes (excluding trivial modes) NN mm = NN 0 dd(dd+1) 2 Trivial translations and rotations of the whole system NN 0 = = 4 NN 0 = = 3 NN mm = 4 3 = 1 Floppy mode Vs. NN mm = 3 3 = 0 Floppy Mechanically Stable J. C. Maxwell, Phil. Mag. 27, 598 (1864).

9 Maxwell s Counting on Infinitely Large Systems # of zero modes (normal modes cost 0 elastic energy) NN 0 = NN dd.oo.ff NN CC Degrees of freedom Constraints Central force bonds between point-like particles NN dd NN bb # of particles * spatial dimension Bonds # of floppy modes (excluding trivial modes) NN mm = NN 0 dd(dd+1) 2 of O(1) and can be dropped for large system Trivial translations and rotations of the whole system NN mm = NN dd NN bb = NN dd NN zz /2 In order to have mechanical stability zz : average coordination number e.g. zz = 5 particle zz 2222 for stability J. C. Maxwell, Phil. Mag. 27, 598 (1864).

10 Periodic Lattices Critical condition for mechanical stability: zz = 2222 (assuming only NN central force interactions) z = 3 < 2d z = 2d z = 6 > 2d Floppy Extensive # of floppy modes Maxwell Lattices How many floppy modes? Over-constrained No floppy modes

11 Mechanical Critical Systems With zz = 2dd Critical condition for mechanical stability: zz = 2222 Example 1: Rigidity percolation on a central-force lattice Randomly take off bonds zz = 6pp When does it lose rigidity? pp < 1 pp = 1 pp cc /3 pp Numerical value Using (meanfield) counting rule zz = 2222 Feng and Sen, PRL 52, 216 (1984). Feng and Thorpe, PRB 31, 276 (1985). Feng, Sen, Halperin, and Lobb, PRB 30, 5386 (1984).

12 Mechanical Critical Systems With zz = 2dd Critical condition for mechanical stability: zz = 2222 Example 2: Jamming of frictionless particles (contact repulsive interactions) Non-overlapped liquid Overlapped solid Increasing density J φ C φ Random close packing Isostaticity zz = zz CC = 2222 A. J. Liu and S. R. Nagel, Nature 396 N6706, 21 (1998). C. S. O Hern, et al., Phys. Rev. E 68, (2003).

13 Classification of Systems at zz = 2dd? Both rigidity percolation and jamming: zz = 2222 Different universality classes (correlation length scaling, elastic moduli scaling, etc ) Are there other universality classes of rigidity transitions at zz = 2222? Elastic network models can help us understand this Main Reference of my lectures: Lubensky, T. C., et al. "Phonons and elasticity in critically coordinated lattices." Reports on Progress in Physics 78.7 (2015):

14 Rich Physics of Critical Mechanical Structures Interesting fundamental questions: e.g.: Cut a finite piece of Maxwell lattice (zz = 2222) Deficit of constraints on the boundary # of floppy modes Size of boundary But where are these modes located? Control of floppy modes Program mechanical Response

15 Where Are The Floppy Modes? Case I. Floppy modes localized at where you cut Example: twisted kagome Floppy modes on all edges Described by conformal transformations Periodic BC in x K. Sun, A. Souslov, X. Mao, and T. C. Lubensky, PNAS 109, (2012).

16 Where Are The Floppy Modes? Case II. Floppy modes are plane waves Example: regular kagome regular square Periodic BC in x

17 Where Are The Floppy Modes? Case III. Floppy modes are topologically protected edge modes on one side Example: deformed kagome (arrows show a pair of modes) Soft edge Topological polarization RR TT Hard edge Periodic BC in x C. L. Kane and T. C. Lubensky, Nat. Phys. 10, 39 (2014).

18 Where Are The Floppy Modes? Case IV. Floppy modes are topologically protected Weyl modes in the bulk Example: deformed square (4 site per cell) (arrows show a Weyl mode) Rocklin, Chen, Falk, Vitelli & Lubensky, PRL, 116, (2016)

19 Nonlinear Floppy Modes: Mechanisms What if an elastic network has NN 0 > 0? Finite systems: A more interesting example: Floppy mode Following the floppy mode to nonlinear order: Mechanism Theo Jansen s walking mechanism and Strandbeest (wind powered robot using this mechanism) Critical mechanical structures : structures close to mechanical instability and exhibit a small number of floppy modes

20 Second Lecture Slides

21 Topological 1D Chain 1D Rotor Chain C. L. Kane and T. C. Lubensky, Nat. Phys. 10, 39 (2014). Chen, Upadhyaya and Vitelli, PNAS 111, (2014).

22 Topological 1D Chain: Soliton 1D Rotor Chain: floppy mode beyond linear order topological soliton C. L. Kane and T. C. Lubensky, Nat. Phys. 10, 39 (2014). Chen, Upadhyaya and Vitelli, PNAS 111, (2014).

23 2D Lattices: Topological Kagome Lattice Soft edge Topological polarization RR TT Hard edge Periodic BC in x C. L. Kane and T. C. Lubensky, Nat. Phys. 10, 39 (2014).

24 Reconfigure Topological Kagome Using Soft Strain All Maxwell lattices have at least one macroscopic soft deformation: θθ Does it change the topological structures of the phonons? Non-polarized RR TT RR TT Non-polarized θθ 1 θθ 2 θθ 3 θθ aa 2 aa 1 θθ What happens at the topological transitions θθ 1, θθ 2, θθ 3? Rocklin, Zhou, Sun, and Mao, Nat Comm, 8, (2017)

25 What happens at the transition? Evolution of a pair of floppy edge modes (determined by topological polarization RR TT ) a b Metallic state c Soft edge Insulating states with different topologies θθ < θθ 1 d 1 Hard edge θθ = θθ 1 RR TT Hard edge θθ > θθ 1 Edge Stiffness Soft edge θθ Transformable mechanical metamaterial Rocklin, Zhou, Sun, and Mao, Nat Comm, 8, (2017)

26 Rigid connector Hinge Webpage of video: /research/ttmm/ttmm.html

27 Brandeis Page 1 Tuesday, May 30, :03 AM

28 Brandeis Page 2

29 Brandeis Page 3

30 Brandeis Page 4

31 Brandeis Page 5

32 Brandeis Page 6

33 Brandeis Page 7

Frames near Mechanical Collapse

Frames near Mechanical Collapse Frames near Mechanical Collapse Xiaming Mao (Umich) Kai Sun (Umich) Charlie Kane (Penn) Anton Souslov (Ga Tech) Olaf Stenull (Penn) Zeb Rocklin (Umich) Bryan Chen (Leiden) Vincenzo Vitelli (Leiden) James

More information

Xiaoming Mao. Department of Physics and Astronomy, University of Pennsylvania. Collaborators: Tom Lubensky, Ning Xu, Anton Souslov, Andrea Liu

Xiaoming Mao. Department of Physics and Astronomy, University of Pennsylvania. Collaborators: Tom Lubensky, Ning Xu, Anton Souslov, Andrea Liu Xiaoing Mao Departent of Physics and Astronoy, University of Pennsylvania Collaborators: To Lubensky, Ning Xu, Anton Souslov, Andrea Liu Feb., 009 What is isostaticity? Isostatic systes are at the onset

More information

Jamming and the Anticrystal

Jamming and the Anticrystal Jamming and the Anticrystal Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Carl Goodrich Corey S. O Hern Leo E. Silbert Vincenzo Vitelli Ning Xu Sidney Nagel UPenn Yale SIUC

More information

Workshop on Sphere Packing and Amorphous Materials July 2011

Workshop on Sphere Packing and Amorphous Materials July 2011 2254-16 Workshop on Sphere Packing and Amorphous Materials 25-29 July 2011 Random Spring Networks vs. Soft Sphere Packings: Jamming Meets Percolation Wouter G. ELLENBROEK Eindhoven Technical University,

More information

Topological Phonons, Edge States, and Guest Modes. 5/17/2016 Zanjan School

Topological Phonons, Edge States, and Guest Modes. 5/17/2016 Zanjan School Topological Phonons, Edge States, and Guest Modes Topological Defects Closed path in real space Path in order parameter space: topological invariant Periodic Brillouin Zone Function on torus Torus It no

More information

Inhomogeneous elastic response of amorphous solids

Inhomogeneous elastic response of amorphous solids Inhomogeneous elastic response of amorphous solids Jean-Louis Barrat Université de Lyon Institut Universitaire de France Acknowledgements: Anne Tanguy, Fabien Chay Goldenberg, Léonforte, Michel Tsamados

More information

Relevance of jamming to the mechanical properties of solids Sidney Nagel University of Chicago Capri; September 12, 2014

Relevance of jamming to the mechanical properties of solids Sidney Nagel University of Chicago Capri; September 12, 2014 Relevance of jamming to the mechanical properties of solids Sidney Nagel University of Chicago Capri; September 1, 014 What is role of (dis)order for mechanical behavior? Andrea J. Liu Carl Goodrich Justin

More information

The bulk modulus of covalent random networks

The bulk modulus of covalent random networks J. Phys.: Condens. Matter 9 (1997) 1983 1994. Printed in the UK PII: S0953-8984(97)77754-3 The bulk modulus of covalent random networks B R Djordjević and M F Thorpe Department of Physics and Astronomy

More information

Phonons and elasticity in critically coordinated lattices

Phonons and elasticity in critically coordinated lattices REVIEW ARTICLE Phonons and elasticity in critically coordinated lattices Contents T C Lubensky 1, C L Kane 1, Xiaoming Mao 2, A Souslov 3 and Kai Sun 2 1 Department of Physics and Astronomy, University

More information

Review of Last Class 1

Review of Last Class 1 Review of Last Class 1 X-Ray diffraction of crystals: the Bragg formulation Condition of diffraction peak: 2dd sin θθ = nnλλ Review of Last Class 2 X-Ray diffraction of crystals: the Von Laue formulation

More information

arxiv: v1 [cond-mat.soft] 8 Feb 2018

arxiv: v1 [cond-mat.soft] 8 Feb 2018 Folding mechanisms at finite temperature arxiv:180.0704v1 [cond-mat.soft] 8 Feb 018 D. Zeb Rocklin, 1,, 3 Vincenzo Vitelli, 4, 5, 6 and Xiaoming Mao 1 1 Department of Physics, University of Michigan, 450

More information

Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids Atsushi Ikeda Fukui Institute for Fundamental Chemistry, Kyoto University Atsushi Ikeda & Ludovic Berthier Phys. Rev. E 92,

More information

Active Stresses and Self-organization in Cytoskeletal Networks

Active Stresses and Self-organization in Cytoskeletal Networks Active Stresses and Self-organization in Cytoskeletal Networks Cytoskeleton: rich mechanics, dynamics and activity Mechanics: nonlinear elasticity, stiffening, anomalous stresses Active stresses and non-equilibrium

More information

Mechanics of Granular Matter

Mechanics of Granular Matter Mechanics of Granular Matter Mechanics of Granular Matter Qicheng Sun & Guangqian Wang Tsinghua University, Beijing, China Qicheng Sun & Guangqian Wang Tsinghua University, Beijing, China Published by

More information

arxiv: v2 [cond-mat.soft] 13 Feb 2015

arxiv: v2 [cond-mat.soft] 13 Feb 2015 Tuning by pruning: exploiting disorder for global response and the principle of bond-level independence Carl P. Goodrich and Andrea J. Liu Department of Physics, University of Pennsylvania, Philadelphia,

More information

This false color image is taken from Dan Howell's experiments. This is a 2D experiment in which a collection of disks undergoes steady shearing.

This false color image is taken from Dan Howell's experiments. This is a 2D experiment in which a collection of disks undergoes steady shearing. This false color image is taken from Dan Howell's experiments. This is a 2D experiment in which a collection of disks undergoes steady shearing. The red regions mean large local force, and the blue regions

More information

Structural Signatures of Mobility in Jammed and Glassy Systems

Structural Signatures of Mobility in Jammed and Glassy Systems Lisa Manning Sam Schoenholz Ekin Dogus Cubuk Brad Malone Tim Kaxiras Joerg Rottler Rob Riggleman Jennifer Rieser Doug Durian Daniel Sussman Carl Goodrich Sid Nagel Structural Signatures of Mobility in

More information

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition Heat, Work, and the First Law of Thermodynamics Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Different ways to increase the internal energy of system: 2 Joule s apparatus

More information

arxiv: v1 [cond-mat.soft] 7 Nov 2016

arxiv: v1 [cond-mat.soft] 7 Nov 2016 Criticality and mechanical enhancement in composite fibre networks Jan Maarten van Doorn, Luuk Lageschaar, Joris Sprakel, and Jasper van der Gucht arxiv:1611.01991v1 [cond-mat.soft] 7 Nov 2016 Physical

More information

JMBC Workshop Statics and dynamics of soft and granular materials

JMBC Workshop Statics and dynamics of soft and granular materials JMBC Workshop Statics and dynamics of soft and granular materials Drienerburght, University of Twente, February 25 - March 1, 2013 Speakers: Dirk van der Ende - Nico Gray - Detlef Lohse - Stefan Luding

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 29: Electron-phonon Scattering Outline Bloch Electron Scattering Deformation Potential Scattering LCAO Estimation of Deformation Potential Matrix Element

More information

arxiv: v2 [cond-mat.soft] 27 Jan 2011

arxiv: v2 [cond-mat.soft] 27 Jan 2011 arxiv:1006.2365v2 [cond-mat.soft] 27 Jan 2011 The jamming scenario an introduction and outlook Andrea J. Liu Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

More information

arxiv: v2 [cond-mat.mes-hall] 12 Nov 2013

arxiv: v2 [cond-mat.mes-hall] 12 Nov 2013 Topological Boundary Modes in Isostatic Lattices C. L. Kane and T. C. Lubensky Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 1914 arxiv:138.554v2 [cond-mat.mes-hall] 12 Nov

More information

Modeling athermal sub-isostatic fiber networks

Modeling athermal sub-isostatic fiber networks Chapter 2 Modeling athermal sub-isostatic fiber networks A.J. Licup, A. Sharma, and F.C. MacKintosh. Elastic regimes of sub-isostatic athermal fiber networks. Physical Review E 93(1):012407, 2016. 15 Chapter

More information

collisions inelastic, energy is dissipated and not conserved

collisions inelastic, energy is dissipated and not conserved LECTURE 1 - Introduction to Granular Materials Jamming, Random Close Packing, The Isostatic State Granular materials particles only interact when they touch hard cores: rigid, incompressible, particles

More information

Symmetry Protected Topological Insulators and Semimetals

Symmetry Protected Topological Insulators and Semimetals Symmetry Protected Topological Insulators and Semimetals I. Introduction : Many examples of topological band phenomena II. Recent developments : - Line node semimetal Kim, Wieder, Kane, Rappe, PRL 115,

More information

Linearized Theory: Sound Waves

Linearized Theory: Sound Waves Linearized Theory: Sound Waves In the linearized limit, Λ iα becomes δ iα, and the distinction between the reference and target spaces effectively vanishes. K ij (q): Rigidity matrix Note c L = c T in

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

arxiv: v2 [cond-mat.soft] 5 Aug 2015

arxiv: v2 [cond-mat.soft] 5 Aug 2015 Selective buckling via states of self-stress in topological metamaterials Jayson Paulose, Anne S. Meeussen, and Vincenzo Vitelli Instituut-Lorentz, Universiteit Leiden, 2300 RA Leiden, The Netherlands

More information

Breakdown of Elasticity Theory for Jammed Hard-Particle Packings: Conical Nonlinear Constitutive Theory

Breakdown of Elasticity Theory for Jammed Hard-Particle Packings: Conical Nonlinear Constitutive Theory Breakdown of Elasticity Theory for Jammed Hard-Particle Packings: Conical Nonlinear Constitutive Theory S. Torquato, 1,2 A. Donev 2,3, and F. H. Stillinger 1 Department of Chemistry, 1 Princeton Materials

More information

arxiv: v2 [cond-mat.soft] 11 Jul 2014

arxiv: v2 [cond-mat.soft] 11 Jul 2014 Topological mechanisms as classical spinor fields Vincenzo Vitelli, Nitin Upadhyaya, and Bryan Gin-ge Chen Instituut-Lorentz, Universiteit Leiden, 2300 RA Leiden, The Netherlands A mechanism is a zero-energy

More information

Local Anisotropy In Globally Isotropic Granular Packings. Kamran Karimi Craig E Maloney

Local Anisotropy In Globally Isotropic Granular Packings. Kamran Karimi Craig E Maloney Local Anisotropy In Globally Isotropic Granular Packings Kamran Karimi Craig E Maloney Granular Materials 2 A Granular Material Is A Conglomeration Of Discrete Solid, Natural Macroscopic Particles Characterized

More information

Module 6 (Lecture 22) LATERAL EARTH PRESSURE

Module 6 (Lecture 22) LATERAL EARTH PRESSURE Module 6 (Lecture ) LATERAL EARTH PRESSURE 1.1 LATERAL EARTH PRESSURE DUE TO SURCHARGE 1. ACTIVE PRESSURE FOR WALL ROTATION ABOUT TOP- BRACED CUT 1.3 ACTIVE EARTH PRESSURE FOR TRANSLATION OF RETAINING

More information

Physical Pendulum, Torsion Pendulum

Physical Pendulum, Torsion Pendulum [International Campus Lab] Physical Pendulum, Torsion Pendulum Objective Investigate the motions of physical pendulums and torsion pendulums. Theory ----------------------------- Reference --------------------------

More information

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator Lecture No. 1 Introduction to Method of Weighted Residuals Solve the differential equation L (u) = p(x) in V where L is a differential operator with boundary conditions S(u) = g(x) on Γ where S is a differential

More information

REVIEW : INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL & RUBBER ELASTICITY I DERIVATION OF STRESS VERSUS STRAIN LAWS FOR RUBBER ELASTICITY

REVIEW : INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL & RUBBER ELASTICITY I DERIVATION OF STRESS VERSUS STRAIN LAWS FOR RUBBER ELASTICITY LECTURE #3 : 3.11 MECHANICS O MATERIALS 03 INSTRUCTOR : Professor Christine Ortiz OICE : 13-40 PHONE : 45-3084 WWW : http://web.mit.edu/cortiz/www REVIEW : INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL

More information

4/14/11. Chapter 12 Static equilibrium and Elasticity Lecture 2. Condition for static equilibrium. Stability An object is in equilibrium:

4/14/11. Chapter 12 Static equilibrium and Elasticity Lecture 2. Condition for static equilibrium. Stability An object is in equilibrium: About Midterm Exam 3 When and where Thurs April 21 th, 5:45-7:00 pm Rooms: Same as Exam I and II, See course webpage. Your TA will give a brief review during the discussion session. Coverage: Chapts 9

More information

On the Collapse of Locally Isostatic Networks

On the Collapse of Locally Isostatic Networks On the Collapse of Locally Isostatic Networks By Vitaliy Kapko 1, M.M.J. Treacy 1, M.F. Thorpe 1, S.D. Guest 2 1 Arizona State University, Department of Physics and Astronomy, P.O. Box 871504, Tempe, AZ,

More information

Vibrational properties and phonon transport of amorphous solids

Vibrational properties and phonon transport of amorphous solids June 29th (Fri.), 2018 Yukawa Institute for Theoretical Physics, Kyoto University, Japan Rheology of disordered particles suspensions, glassy and granular materials 10:15-11:05, 40mins. talk and 10mins.

More information

Two-dimensional Phosphorus Carbide as Promising Anode Materials for Lithium-ion Batteries

Two-dimensional Phosphorus Carbide as Promising Anode Materials for Lithium-ion Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supplementary Material for Two-dimensional Phosphorus Carbide as Promising

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

Elasticity of biological gels

Elasticity of biological gels Seminar II Elasticity of biological gels Author: Gašper Gregorič Mentor: assoc. prof. Primož Ziherl Ljubljana, February 2014 Abstract In the seminar we discuss the elastic behavior of biological gels,

More information

Effective Temperatures in Driven Systems near Jamming

Effective Temperatures in Driven Systems near Jamming Effective Temperatures in Driven Systems near Jamming Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Tom Haxton Yair Shokef Tal Danino Ian Ono Corey S. O Hern Douglas Durian

More information

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations The Hilltop Review Volume 7 Issue 1 Winter 2014 Article 10 December 2014 Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations Tai-Hsien Wu Western Michigan University

More information

Indiana University, January T. Witten, University of Chicago

Indiana University, January T. Witten, University of Chicago Indiana University, January 2007 T. Witten, University of Chicago Force propagation in a simple solid: two pictures Add circular beads to a container one by one How does an added force reach the ground?

More information

Structure 1. Glass formation in chalcogenide system Structure models

Structure 1. Glass formation in chalcogenide system Structure models Structure 1 Glass formation in chalcogenide system Structure models 1 Explaining glass formation? As for glass formation in the chalcogenide system, there are theories, concepts, criteria, semi-empirical

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

Mechanical behavior of Tendon and Skin 1. The nonlinear mechanical behavior of tendon. 2. The extensibility of skin.

Mechanical behavior of Tendon and Skin 1. The nonlinear mechanical behavior of tendon. 2. The extensibility of skin. Harvard-MIT Division of Health Sciences and Technology HST.523J: Cell-Matrix Mechanics Prof. Ioannis Yannas Mechanical behavior of Tendon and Skin 1. The nonlinear mechanical behavior of tendon. 2. The

More information

Emergent Frontiers in Quantum Materials:

Emergent Frontiers in Quantum Materials: Emergent Frontiers in Quantum Materials: High Temperature superconductivity and Topological Phases Jiun-Haw Chu University of Washington The nature of the problem in Condensed Matter Physics Consider a

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

20.GEM GEM4 Summer School: Cell and Molecular Biomechanics in Medicine: Cancer Summer 2007

20.GEM GEM4 Summer School: Cell and Molecular Biomechanics in Medicine: Cancer Summer 2007 MIT OpenCourseWare http://ocw.mit.edu 20.GEM GEM4 Summer School: Cell and Molecular Biomechanics in Medicine: Cancer Summer 2007 For information about citing these materials or our Terms of Use, visit:

More information

Quantitative Mappings from Symmetry to Topology

Quantitative Mappings from Symmetry to Topology Z. Song, Z. Fang and CF, PRL 119, 246402 (2017) CF and L. Fu, arxiv:1709.01929 Z. Song, T. Zhang, Z. Fang and CF arxiv:1711.11049 Z. Song, T. Zhang and CF arxiv:1711.11050 Quantitative Mappings from Symmetry

More information

Structure and Topology of Band Structures in the 1651 Magnetic Space Groups

Structure and Topology of Band Structures in the 1651 Magnetic Space Groups Structure and Topology of Band Structures in the 1651 Magnetic Space Groups Haruki Watanabe University of Tokyo [Noninteracting] Sci Adv (2016) PRL (2016) Nat Commun (2017) (New) arxiv:1707.01903 [Interacting]

More information

Lecture 3 Transport in Semiconductors

Lecture 3 Transport in Semiconductors EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 3 Transport in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken,

More information

arxiv: v1 [cond-mat.mes-hall] 16 Oct 2015

arxiv: v1 [cond-mat.mes-hall] 16 Oct 2015 Mechanical Weyl Modes in Topological Maxwell Lattices arxiv:151.497v1 [cond-mat.mes-hall] 16 Oct 215 D. Zeb Rocklin, 1 Bryan Gin ge Chen, 2, Martin Falk, 3 Vincenzo Vitelli, 2 and T. C. Lubensky 4 1 Department

More information

The yielding transition in periodically sheared binary glasses at finite temperature. Nikolai V. Priezjev

The yielding transition in periodically sheared binary glasses at finite temperature. Nikolai V. Priezjev The yielding transition in periodically sheared binary glasses at finite temperature Nikolai V. Priezjev 5 March, 2018 Department of Mechanical and Materials Engineering Wright State University Movies,

More information

From Atoms to Materials: Predictive Theory and Simulations

From Atoms to Materials: Predictive Theory and Simulations From Atoms to Materials: Predictive Theory and Simulations Week 3 Lecture 4 Potentials for metals and semiconductors Ale Strachan strachan@purdue.edu School of Materials Engineering & Birck anotechnology

More information

Manipulator Dynamics (1) Read Chapter 6

Manipulator Dynamics (1) Read Chapter 6 Manipulator Dynamics (1) Read Capter 6 Wat is dynamics? Study te force (torque) required to cause te motion of robots just like engine power required to drive a automobile Most familiar formula: f = ma

More information

Measurements of the yield stress in frictionless granular systems

Measurements of the yield stress in frictionless granular systems Measurements of the yield stress in frictionless granular systems Ning Xu 1 and Corey S. O Hern 1,2 1 Department of Mechanical Engineering, Yale University, New Haven, Connecticut 06520-8284, USA 2 Department

More information

Sculptural Form finding with bending action

Sculptural Form finding with bending action Sculptural Form finding with bending action Jens Olsson 1, Mats Ander 2, Al Fisher 3, Chris J K Williams 4 1 Chalmers University of Technology, Dept. of Architecture, 412 96 Göteborg, jens.gustav.olsson@gmail.com

More information

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition Work, Energy, and Power Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 With the knowledge we got so far, we can handle the situation on the left but not the one on the right.

More information

Statistical Mechanics of Jamming

Statistical Mechanics of Jamming Statistical Mechanics of Jamming Lecture 1: Timescales and Lengthscales, jamming vs thermal critical points Lecture 2: Statistical ensembles: inherent structures and blocked states Lecture 3: Example of

More information

Structure 1. Glass formation in chalcogenide system Structural models

Structure 1. Glass formation in chalcogenide system Structural models Structure 1 Glass formation in chalcogenide system Structural models 1 Explaining glass formation? As for glass formation in the chalcogenide system, there are theories, concepts, criteria, semi-empirical

More information

Lecture 6. Notes on Linear Algebra. Perceptron

Lecture 6. Notes on Linear Algebra. Perceptron Lecture 6. Notes on Linear Algebra. Perceptron COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture Notes on linear algebra Vectors

More information

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 K. Kremer Max Planck Institute for Polymer Research, Mainz Overview Simulations, general considerations

More information

Modelling and numerical simulation of the wrinkling evolution for thermo-mechanical loading cases

Modelling and numerical simulation of the wrinkling evolution for thermo-mechanical loading cases Modelling and numerical simulation of the wrinkling evolution for thermo-mechanical loading cases Georg Haasemann Conrad Kloß 1 AIMCAL Conference 2016 MOTIVATION Wrinkles in web handling system Loss of

More information

Frictional Jamming & MRJ/RLP crossover

Frictional Jamming & MRJ/RLP crossover Frictional Jamming & MRJ/RLP crossover Stefanos Papanikolaou (Yale University) Ref: SP, C. S. O Hern, M. D. Shattuck, arxiv:1207.6010 (2012) Outline Isostaticity in Jamming, Friction and the failure of

More information

Defect-Driven Structures for Self-Assembly

Defect-Driven Structures for Self-Assembly Defect-Driven Structures for Self-Assembly ICTP, Trieste May 13, 2011 Mark Bowick Syracuse University MJB and L. Giomi, Adv. Phys. 58, 449-563 (2009) (arxiv:0812.3064) Introduction Among soft and biological

More information

Lecture 10. Rigid Body Transformation & C-Space Obstacles. CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University

Lecture 10. Rigid Body Transformation & C-Space Obstacles. CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University CS 460/560 Introduction to Computational Robotics Fall 017, Rutgers University Lecture 10 Rigid Body Transformation & C-Space Obstacles Instructor: Jingjin Yu Outline Rigid body, links, and joints Task

More information

Lecture 4: viscoelasticity and cell mechanics

Lecture 4: viscoelasticity and cell mechanics Teaser movie: flexible robots! R. Shepherd, Whitesides group, Harvard 1 Lecture 4: viscoelasticity and cell mechanics S-RSI Physics Lectures: Soft Condensed Matter Physics Jacinta C. Conrad University

More information

Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe lattices

Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe lattices PHYSICAL REVIEW E VOLUME 59, NUMBER 2 FEBRUARY 1999 Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe lattices P. M. Duxbury, D. J. Jacobs, and M. F. Thorpe Department of

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

arxiv: v1 [cond-mat.soft] 5 Dec 2011

arxiv: v1 [cond-mat.soft] 5 Dec 2011 Isostaticity, auxetic response, surface modes, and conformal invariance in twisted kagome lattices Kai Sun, Anton Souslov, Xiaoming Mao, and T.C. Lubensky Condensed Matter Theory Center and Joint Quantum

More information

REVIEW : INTRODUCTION TO THE MOLECULAR ORIGINS OF MECHANICAL PROPERTIES QUANTITATIVE TREATMENT OF INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL

REVIEW : INTRODUCTION TO THE MOLECULAR ORIGINS OF MECHANICAL PROPERTIES QUANTITATIVE TREATMENT OF INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL LECTURE #19 : 3.11 MECANICS OF MATERIALS F3 INSTRUCTOR : Professor Christine Ortiz OFFICE : 13-422 PONE : 452-384 WWW : http://web.mit.edu/cortiz/www REVIEW : INTRODUCTION TO TE MOLECULAR ORIGINS OF MECANICAL

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

Cold atoms in optical lattices

Cold atoms in optical lattices Cold atoms in optical lattices www.lens.unifi.it Tarruel, Nature Esslinger group Optical lattices the big picture We have a textbook model, which is basically exact, describing how a large collection of

More information

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂 Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem Cenke Xu 许岑珂 University of California, Santa Barbara Quantum Phase Transitions between bosonic Symmetry

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain*

Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain* Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain* PHUOC X. TRAN, DONALD W. BRENNER, and C. T. WHITE Naval Research Laboratory, Washington, DC 20375-5000 Abstract The propagation

More information

Structural Analysis of Truss Structures using Stiffness Matrix. Dr. Nasrellah Hassan Ahmed

Structural Analysis of Truss Structures using Stiffness Matrix. Dr. Nasrellah Hassan Ahmed Structural Analysis of Truss Structures using Stiffness Matrix Dr. Nasrellah Hassan Ahmed FUNDAMENTAL RELATIONSHIPS FOR STRUCTURAL ANALYSIS In general, there are three types of relationships: Equilibrium

More information

, to obtain a way to calculate stress from the energy function U(r).

, to obtain a way to calculate stress from the energy function U(r). BIOEN 36 014 LECTURE : MOLECULAR BASIS OF ELASTICITY Estimating Young s Modulus from Bond Energies and Structures First we consider solids, which include mostly nonbiological materials, such as metals,

More information

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future?

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future? Modeling Random Wet 2D Foams with Controlled Polydispersity Back to the Future? Andy Kraynik Sandia National Labs (retired) CEAS, University of Manchester University of Erlangen-Nuremberg Simon Cox Aberystwyth

More information

Announcements. Homework 3 (Klaus Schulten s Lecture): Due Wednesday at noon. Next homework assigned. Due Wednesday March 1.

Announcements. Homework 3 (Klaus Schulten s Lecture): Due Wednesday at noon. Next homework assigned. Due Wednesday March 1. Announcements Homework 3 (Klaus Schulten s Lecture): Due Wednesday at noon. Next homework assigned. Due Wednesday March 1. No lecture next Monday, Feb. 27 th! (Homework is a bit longer.) Marco will have

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Theory of Force Transmission and Rigidity in Granular Aggregates. A Different kind of NonEquilibrium System

Theory of Force Transmission and Rigidity in Granular Aggregates. A Different kind of NonEquilibrium System Theory of Force Transmission and Rigidity in Granular Aggregates A Different kind of NonEquilibrium System Dapeng Bi Sumantra Sarkar Kabir Ramola Jetin Thomas Bob Behringer, Jie Ren Dong Wang Jeff Morris

More information

548 Advances of Computational Mechanics in Australia

548 Advances of Computational Mechanics in Australia Applied Mechanics and Materials Online: 2016-07-25 ISSN: 1662-7482, Vol. 846, pp 547-552 doi:10.4028/www.scientific.net/amm.846.547 2016 Trans Tech Publications, Switzerland Geometric bounds for buckling-induced

More information

The Elasticity of Quantum Spacetime Fabric. Viorel Laurentiu Cartas

The Elasticity of Quantum Spacetime Fabric. Viorel Laurentiu Cartas The Elasticity of Quantum Spacetime Fabric Viorel Laurentiu Cartas The notion of gravitational force is replaced by the curvature of the spacetime fabric. The mass tells to spacetime how to curve and the

More information

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Marino Marsi Laboratoire de Physique des Solides CNRS Univ. Paris-Sud - Université Paris-Saclay IMPACT, Cargèse, August 26

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

T. Egami. Model System of Dense Random Packing (DRP)

T. Egami. Model System of Dense Random Packing (DRP) Introduction to Metallic Glasses: How they are different/similar to other glasses T. Egami Model System of Dense Random Packing (DRP) Hard Sphere vs. Soft Sphere Glass transition Universal behavior History:

More information

DECRIRE LA TRANSITION VITREUSE: Simulations moléculaires et approches topologiques. Matthieu Micoulaut, LPTMC, Paris Sorbonne Universités UPMC

DECRIRE LA TRANSITION VITREUSE: Simulations moléculaires et approches topologiques. Matthieu Micoulaut, LPTMC, Paris Sorbonne Universités UPMC DECRIRE LA TRANSITION VITREUSE: Simulations moléculaires et approches topologiques Matthieu Micoulaut, LPTMC, Paris Sorbonne Universités UPMC C. Yildrim, O. Laurent, B. Mantisi, M. Bauchy «Chasseurs d

More information

Multimedia : Fibronectin and Titin unfolding simulation movies.

Multimedia : Fibronectin and Titin unfolding simulation movies. I LECTURE 21: SINGLE CHAIN ELASTICITY OF BIOMACROMOLECULES: THE GIANT PROTEIN TITIN AND DNA Outline : REVIEW LECTURE #2 : EXTENSIBLE FJC AND WLC... 2 STRUCTURE OF MUSCLE AND TITIN... 3 SINGLE MOLECULE

More information

Materials & Advanced Manufacturing (M&AM)

Materials & Advanced Manufacturing (M&AM) Modeling of Shear Thickening Fluids for Analysis of Energy Absorption Under Impulse Loading Alyssa Bennett (University of Michigan) Nick Vlahopoulos, PhD (University of Michigan) Weiran Jiang, PhD (Research

More information

Nonequilibrium transitions in glassy flows II. Peter Schall University of Amsterdam

Nonequilibrium transitions in glassy flows II. Peter Schall University of Amsterdam Nonequilibrium transitions in glassy flows II Peter Schall University of Amsterdam Flow of glasses 1st Lecture Glass Phenomenology Basic concepts: Free volume, Dynamic correlations Apply Shear Glass? Soft

More information

Equilibrium. the linear momentum,, of the center of mass is constant

Equilibrium. the linear momentum,, of the center of mass is constant Equilibrium is the state of an object where: Equilibrium the linear momentum,, of the center of mass is constant Feb. 19, 2018 the angular momentum,, about the its center of mass, or any other point, is

More information

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan Department of Chemical Engineering University of Texas@Austin Origins of Mechanical and Rheological Properties of Polymer Nanocomposites Venkat Ganesan $$$: NSF DMR, Welch Foundation Megha Surve, Victor

More information

Adaptive algorithm for saddle point problem for Phase Field model

Adaptive algorithm for saddle point problem for Phase Field model Adaptive algorithm for saddle point problem for Phase Field model Jian Zhang Supercomputing Center, CNIC,CAS Collaborators: Qiang Du(PSU), Jingyan Zhang(PSU), Xiaoqiang Wang(FSU), Jiangwei Zhao(SCCAS),

More information

Welcome to Physics 460 Introduction to Solid State Physics

Welcome to Physics 460 Introduction to Solid State Physics Welcome to Physics 460 Introduction to Solid State Physics Scanning Tunneling Microscope image of atoms placed on a surface, and confined quantum electron waves D. Eigler IBM Physics 460 F 2006 Lect 1

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information