Atmospheric delay. X, Y, Z : satellite cartesian coordinates. Z : receiver cartesian coordinates. In the vacuum the signal speed c is constant

Size: px
Start display at page:

Download "Atmospheric delay. X, Y, Z : satellite cartesian coordinates. Z : receiver cartesian coordinates. In the vacuum the signal speed c is constant"

Transcription

1 Atmospheric delay In the vacuum the signal speed c is constant c τ = ρ = ( X X ) + ( Y Y ) + ( Z Z ) S S S 2 S 2 S 2 X, Y, Z : receiver cartesian coordinates S S S X, Y, Z : satellite cartesian coordinates In the atmosphere, the signal propagation velocity varies according to the physical state of the medium. It is the so called atmospheric effect and ranges from 5 m to 200 m.

2 The signal traveling time depends on its propagation velocity v. Outside the atmosphere v is equal to c. In the atmosphere it varies from point to point: τ S = dx S v( x ) ρ ρ is the geometric trajectory of the signal, x is the integration point, v( x ) is the propagation speed.

3 Therefore cdx cτ = = n( x) dx= dx+ ( n( x) 1) dx= ρ +Δ S v( x) S S S S S S ρ ρ ρ ρ n( x ): refraction index in x, n( x) = c/ v( x ), S ρ : distance between satellite and receiver, S S S Δ = cτ ρ = ( n( x ) 1) dx: atmospheric delay, in length units. ρ S

4 Ionospheric delay Due to the free electrons presence between 100 and 1000 km altitude: A NE ( ) 1 ( x n x = ± ) 2 f 3 2 A= 40.3m s f : frequency (Hz), either of L 1 or L 2 N ( ) E x : local electron density (n/m3) Iono delay is positive (1+) for codes, negative (1-) for the carriers.

5 Final delay (order of magnitude) I S f (t) = Iono (n(x) 1)dx = ± A TEC S (t) f 2 Elevation ( ) Low (m) Medium (m) High (m) Low: night time. Medium: day time, common solar activity. High: day-time, intense solar activity.

6 Satellites send predicted models (Klobuchar model) to compute TEC along the signals trajectories. Ionospheric error is not equal on L1/P1 and L2/P2: particularly between I1 and I2 the following holds TEC () t f TEC () t f TEC () t I2 ( t) A A A S 2 S 2 S S 1 1 = = = f2 f1 f2 f2 f1 = f f S I1() t

7 One example of Ionospheric delay From the Astronomisches Institut, Universität Bern (CH)

8 Tropospheric delay Due to air and water vapor content of the atmosphere from 0 to 40 Km of height. The local refraction index is given by: P( x) e( x) n( x) = 1+ k1 + k2 2 T( x) T ( x) P: pressure (mbar) T : temperature ( K) e : water vapor pressure (mbar) k 1, k 2 : constants experimentally determined.

9 The first term is called dry component: about 90% The second integral is called wet component. Elevation Low (m) Medium High (m) ( ) (m) Low: dry, cold climate. Medium: temperate climate. High: hot-humid climate

10 Standard models to estimate the tropospheric delay exist, that are based on some ideal hypothesis on the atmosphere. Saastamoinen model Tropospheric models do never completely represent the real meteorological state at the surveying place, during the survey. Any modeling of T leaves a residual error, whose order of magnitude is about 5% of the total delay.

11 The final code observation equation S S S P () t = cτ () t + c( dt () t dt ()) t S S S S = ρ () t + cdt ( () t dt () t ) + I () t + T () t S S S Satellite position [ X, Y, Z ] (in ρ ): known from the ephemerides receiver position [ X, Y, Z ] (in ρ ): unknown, S satellite clock offset dt, known from the navigation message, receiver clock offset dt unknown, ionospheric and tropospheric delays IT:, computable by standard models. The equation contains 4 receiver related unknowns [,,, ] X Y Z dt. 4 satellites in view guarantee their estimation in single epoch!

12 The final carrier phase observation equation S S S S S S L () t = ρ () t + c( dt () t dt ()) t I () t + T () t + λη () t The observation equation is similar to the code one, but for the ambiguity λη S () t. S Each new satellite adds a new λη term! No estimation is possible in single epoch

13 Configuration: one receiver - satellite couple, two consecutive epochs, t 1 and t 2 L ( t ) = ρ ( t ) + c( dt ( t ) dt ( t )) I ( t ) + T ( t ) + λη ( t ) S S S S S S S S S S S S 2 = ρ λη 2 L ( t ) ( t ) c( dt ( t ) dt ( t )) I ( t ) T ( t ) ( t ) The integer part of the ambiguity at t 2 is given by N ( t ) = N ( t ) + n ( t, t ) S S S S ( 1, 2) n t t : integer number of cycles passed during ( t1, t 2). The observation equation at epoch t 2 is given by S S S S S L ( t ) = ρ ( t ) + c( dt ( t ) dt ( t )) I ( t ) + T ( t ) λ( N ( t ) + n ( t, t )) + λ( φ φ ) S S S

14

15 If no loss of lock happens during ( t1, t 2), the receiver can count and S record n ( t1, t 2) λη ( t ) = N ( t ) + ϕ ϕ = N ( t ) + ϕ ϕ + n ( t, t ) = λη ( t ) + n ( t, t ) S S S S S S S S For a satellite-receiver couple, a unique unknown initial ambiguity η S ( t ) exists, related to the first observation epoch. 1 The initial ambiguity is unknown but constant in time However, what happens in case of a loss of lock between satellite and receiver? Cycle slip

16 Cycle slip Usually a cycle slip (CS in the following) occurs when an obstacle (such as a wall, a building..) blocks the signal going from satellite to receiver, anomalous phenomena happen in the ionosphere, causing the so-called signal scintillations.

17 During a cycle slip the counting is interrupted. When the signal is again tracked, a new unknown ambiguity has to be introduced. Imagine to have a clock with seconds, but not minutes. By looking at the clock, you never know the absolute time, but you have access to the seconds: this information contains an initial ambiguity with respect to the absolute time. If you continuously look at the clock, you can always know the elapsed minutes from the first observation: the only ambiguity is the absolute minute of the first observation. On the contrary, if for a certain time span you do not look at the clock, you are not able to know how many minutes are passed. This new ambiguity is the equivalent of the GPS cycle slip.

18 Observations available at one epoch for each receiver-satellite couple Code observations PY on L 1, PY ( ) on L 2. C/ A and ( ) If military codes can be read, less precise civilian codes are not used. Phase observations All receivers: L 1 and L 2.

GNSS: Global Navigation Satellite Systems

GNSS: Global Navigation Satellite Systems GNSS: Global Navigation Satellite Systems Global: today the American GPS (Global Positioning Service), http://gps.losangeles.af.mil/index.html the Russian GLONASS, http://www.glonass-center.ru/frame_e.html

More information

Satellite Navigation error sources and position estimation

Satellite Navigation error sources and position estimation Satellite Navigation error sources and position estimation Picture: ESA AE4E08 Sandra Verhagen Course 2010 2011, lecture 6 1 Today s topics Recap: GPS measurements and error sources Signal propagation

More information

Climate Monitoring with Radio Occultation Data

Climate Monitoring with Radio Occultation Data Climate Monitoring with Radio Occultation Data Systematic Error Sources C. Rocken, S. Sokolovskiy, B. Schreiner, D. Hunt, B. Ho, B. Kuo, U. Foelsche Radio Occultation Claims Most stable Global Thermometer

More information

EESC Geodesy with the Global Positioning System. Class 4: The pseudorange and phase observables

EESC Geodesy with the Global Positioning System. Class 4: The pseudorange and phase observables EESC 9945 Geodesy with the Global Positioning System Class 4: The pseudorange and phase observables In previous classes we had presented the equation for the pseudorange as the true range biased by the

More information

Use of ground-based GNSS measurements in data assimilation. Reima Eresmaa Finnish Meteorological Institute

Use of ground-based GNSS measurements in data assimilation. Reima Eresmaa Finnish Meteorological Institute Use of ground-based GNSS measurements in data assimilation Reima Eresmaa Finnish Meteorological Institute 16 June 2006 Outline 1) Introduction GNSS * positioning Tropospheric delay 2) GNSS as a meteorological

More information

ESTIMATING THE RESIDUAL TROPOSPHERIC DELAY FOR AIRBORNE DIFFERENTIAL GPS POSITIONING (A SUMMARY)

ESTIMATING THE RESIDUAL TROPOSPHERIC DELAY FOR AIRBORNE DIFFERENTIAL GPS POSITIONING (A SUMMARY) ESTIMATING THE RESIDUAL TROPOSPHERIC DELAY FOR AIRBORNE DIFFERENTIAL GPS POSITIONING (A SUMMARY) J. Paul Collins and Richard B. Langley Geodetic Research Laboratory Department of Geodesy and Geomatics

More information

EESC Geodesy with the Global Positioning System. Class 7: Relative Positioning using Carrier-Beat Phase

EESC Geodesy with the Global Positioning System. Class 7: Relative Positioning using Carrier-Beat Phase EESC 9945 Geodesy with the Global Positioning System Class 7: Relative Positioning using Carrier-Beat Phase GPS Carrier Phase The model for the carrier-beat phase observable for receiver p and satellite

More information

GNSS and the Troposphere

GNSS and the Troposphere GNSS and the Troposphere Jan Johansson jan.johansson@chalmers.se Onsala Space Observatory Chalmers University of Technology Gothenburg, Sweden Department of Space and Earth Sciences 1 Onsala Space Observatory

More information

Impact of Tropospheric Delay Gradients on Total Tropospheric Delay and Precise Point Positioning

Impact of Tropospheric Delay Gradients on Total Tropospheric Delay and Precise Point Positioning International Journal of Geosciences, 016, 7, 645-654 Published Online May 016 in SciRes. http://www.scirp.org/journal/ijg http://dx.doi.org/10.436/ijg.016.75050 Impact of Tropospheric Delay Gradients

More information

Geodetics measurements within the scope of current and future perspectives of GNSS-Reflectometry and GNSS-Radio Occultation

Geodetics measurements within the scope of current and future perspectives of GNSS-Reflectometry and GNSS-Radio Occultation Geodetics measurements within the scope of current and future perspectives of GNSS-Reflectometry and GNSS-Radio Occultation Introduction The aim of this presentation is to provide an overview of the GNSS-R

More information

A. Barbu, J. Laurent-Varin, F. Perosanz, F. Mercier and J. Marty. AVENUE project. June, 20

A. Barbu, J. Laurent-Varin, F. Perosanz, F. Mercier and J. Marty. AVENUE project. June, 20 Efficient QR Sequential Least Square algorithm for high frequency GNSS Precise Point Positioning A. Barbu, J. Laurent-Varin, F. Perosanz, F. Mercier and J. Marty AVENUE project June, 20 A. Barbu, J. Laurent-Varin,

More information

Principles of Global Positioning Systems Spring 2008

Principles of Global Positioning Systems Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.540 Principles of Global Positioning Systems Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 12.540

More information

Tropospheric Effects on GNSS

Tropospheric Effects on GNSS Tropospheric Effects on GNSS The Atmosphere and its Effect on GNSS Systems 14 to 16 April 008 Santiago, Chile Dr. M. Bakry El-Arini Background 1 of The troposphere contains about 80% of the atmosphere

More information

THE EFFECT OF PHYSICAL CORRELATIONS ON THE AMBIGUITY RESOLUTION AND ACCURACY ESTIMATION IN GPS DIFFERENTIAL POSITIONING

THE EFFECT OF PHYSICAL CORRELATIONS ON THE AMBIGUITY RESOLUTION AND ACCURACY ESTIMATION IN GPS DIFFERENTIAL POSITIONING THE EFFECT OF PHYSICAL CORRELATIONS ON THE AMBIGUITY RESOLUTION AND ACCURACY ESTIMATION IN GPS DIFFERENTIAL POSITIONING A. E-S. EL RABBANY May 1994 TECHNICAL REPORT NO. 170 PREFACE In order to make our

More information

Common Elements: Nitrogen, 78%

Common Elements: Nitrogen, 78% Chapter 23 Notes Name: Period: 23.1 CHARACTERISTICS OF THE ATMOSPHERE The atmosphere is a layer of that surrounds the earth and influences all living things. Meteorology is the study of the. WHAT S IN

More information

A GPS-IPW Based Methodology for Forecasting Heavy Rain Events. Srikanth Gorugantula

A GPS-IPW Based Methodology for Forecasting Heavy Rain Events. Srikanth Gorugantula A GPS-IPW Based Methodology for Forecasting Heavy Rain Events Srikanth Gorugantula Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the

More information

Satellite baseline determination with phase cycle slip fixing over long data gaps

Satellite baseline determination with phase cycle slip fixing over long data gaps Satellite baseline determination with phase cycle slip fixing over long data gaps Grzegorz Michalak and Rolf König Overview The cycle slip fixing methode 3 solutions Float ambiguities Ambiguities fixed

More information

Christina Selle, Shailen Desai IGS Workshop 2016, Sydney

Christina Selle, Shailen Desai IGS Workshop 2016, Sydney Optimization of tropospheric delay estimation parameters by comparison of GPS-based precipitable water vapor estimates with microwave radiometer measurements Christina Selle, Shailen Desai IGS Workshop

More information

FEASIBILITY OF DIRECTLY MEASURING SINGLE LINE-OF-SIGHT GPS SIGNAL DELAYS

FEASIBILITY OF DIRECTLY MEASURING SINGLE LINE-OF-SIGHT GPS SIGNAL DELAYS FEASIBILITY OF DIRECTLY MEASURING SINGLE LINE-OF-SIGHT GPS SIGNAL DELAYS Pedro Elosegui and James L. Davis Smithsonian Astrophysical Observatory Cambridge, MA 13, USA January, 3 1 1. Executive Summary

More information

Week 02. Assist. Prof. Dr. Himmet KARAMAN

Week 02. Assist. Prof. Dr. Himmet KARAMAN Week 02 Assist. Prof. Dr. Himmet KARAMAN Contents Satellite Orbits Ephemerides GPS Review Accuracy & Usage Limitation Reference Systems GPS Services GPS Segments Satellite Positioning 2 Satellite Orbits

More information

P. Cipollini, H. Snaith - A short course on Altimetry. Altimetry 2 - Data processing (from satellite height to sea surface height)

P. Cipollini, H. Snaith - A short course on Altimetry. Altimetry 2 - Data processing (from satellite height to sea surface height) P. Cipollini, H. Snaith - A short course on Altimetry Altimetry 2 - Data processing (from satellite height to sea surface height) 1 2 Satellite height to sea surface height The altimeter measures the altitude

More information

TROPOSPHERIC CORRECTIONS TO GPS MEASUREMENTS USING LOCALLY MEASURED METEOROLOGICAL PARAMETERS COMPARED WITH GENERAL TROPOSPHERIC CORRECTIONS

TROPOSPHERIC CORRECTIONS TO GPS MEASUREMENTS USING LOCALLY MEASURED METEOROLOGICAL PARAMETERS COMPARED WITH GENERAL TROPOSPHERIC CORRECTIONS TROPOSPHERIC CORRECTIONS TO GPS MEASUREMENTS USING LOCALLY MEASURED METEOROLOGICAL PARAMETERS COMPARED WITH GENERAL TROPOSPHERIC CORRECTIONS D. Kirchner and C. Lentz Technical University Graz, Austria

More information

Satellite Navigation GPS measurements and error sources

Satellite Navigation GPS measurements and error sources Satellite Navigation GPS measrements and error sorces Pictre: ESA AE4E08 Sandra Verhagen Corse 2010 2011, lectre 4 1 Today s topics Recap: GPS signal components Code Phase measrements psedoranges Carrier

More information

We have processed RO data for climate research and for validation of weather data since 1995 as illustrated in Figure 1.

We have processed RO data for climate research and for validation of weather data since 1995 as illustrated in Figure 1. Real-time Analysis of COSMIC Data Christian Rocken, Doug Hunt, Bill Schreiner University Corporation for Atmospheric Research (UCAR) COSMIC Project Office Boulder, CO Abstract UCAR has analyzed GPS radio

More information

Simulation Results of Alternative Methods for Formation Separation Control

Simulation Results of Alternative Methods for Formation Separation Control Simulation Results of Alternative Methods for Formation Separation Control Thomas Heine, Charles Bussy-Virat, Mark Moldwin, Aaron Ridley Department of Climate and Space Sciences and Engineering University

More information

Influences of different factors on temporal correlations of GNSS observations

Influences of different factors on temporal correlations of GNSS observations 2 T : oscillation period (unknown) C : scaling factor (unknown) ND : determined empirically a priori C,T: least-squares regression on sample ACF ND : first zero point of sample ACF h= ACF h π h ND ND T

More information

UCGE Reports Number 20271

UCGE Reports Number 20271 UCGE Reports Number 20271 Department of Geomatics Engineering Use of the Global Environmental Multiscale Model for Atmospheric Retrieval from Radio Occultation for Canadian Events (URL: http://www.geomatics.ucalgary.ca/research/publications/gradtheses.html)

More information

Diurnal and Seasonal Variation of Surface Refractivity in Minna and Lapai, North Central Nigeria

Diurnal and Seasonal Variation of Surface Refractivity in Minna and Lapai, North Central Nigeria International Journal of Engineering Research and Advanced Technology (IJERAT) DOI: http://doi.org/10.31695/ijerat.2018.3283 E-ISSN : 2454-6135 Volume.4, Issue 7 July -2018 Diurnal and Seasonal Variation

More information

Application of Accelerometer Data in Precise Orbit Determination of GRACE -A and -B

Application of Accelerometer Data in Precise Orbit Determination of GRACE -A and -B Chin. J. Astron. Astrophys. Vol. 8 (28), No., 63 61 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Application of Accelerometer Data in Precise Orbit Determination of GRACE -A and

More information

Earthquake distribution is not random: very narrow deforming zones (= plate boundaries) versus large areas with no earthquakes (= rigid plate

Earthquake distribution is not random: very narrow deforming zones (= plate boundaries) versus large areas with no earthquakes (= rigid plate Earthquake distribution is not random: very narrow deforming zones (= plate boundaries) versus large areas with no earthquakes (= rigid plate interiors) Tectonic plates and their boundaries today -- continents

More information

Orbit Determination Using TDMA Radio Navigation Data with Implicit Measurement Times. Ryan C. Dougherty and Mark L. Psiaki

Orbit Determination Using TDMA Radio Navigation Data with Implicit Measurement Times. Ryan C. Dougherty and Mark L. Psiaki AIAA Paper No. 211-6493 Orbit Determination Using TDMA Radio Navigation Data with Implicit Measurement Times Ryan C. Dougherty and Mark L. Psiaki Cornell University, Ithaca, New York, 14853-751 An orbit

More information

NGA GNSS Division Precise Ephemeris Parameters

NGA GNSS Division Precise Ephemeris Parameters NGA GNSS Division Precise Ephemeris Parameters Precise Ephemeris Units. Earth-centered, Earth-fixed Coordinate system Position Velocity GPS time Trajectory interval Standard Trajectory Optional Trajectory

More information

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 4. Atmospheric transport Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 Forces in the atmosphere: Gravity g Pressure-gradient ap = ( 1/ ρ ) dp / dx for x-direction (also y, z directions)

More information

EESC Geodesy with the Global Positioning System. Class 6: Point Positioning using Pseuduorange

EESC Geodesy with the Global Positioning System. Class 6: Point Positioning using Pseuduorange EESC 9945 Geodesy with the Global Positioning System Class 6: Point Positioning using Pseuduorange GPS Positioning Solutions Point Positioning: Determination of the coordinates of a point with respect

More information

SPACECRAFT NAVIGATION AND MISSION SIMULATION

SPACECRAFT NAVIGATION AND MISSION SIMULATION TianQin Space-borne gravitational wave detector SPACECRAFT NAVIGATION AND MISSION SIMULATION December 9, 2015 - Prepared by Viktor T. Toth A PERSPECTIVE Precision navigation End-to-end mission simulation

More information

Ionosphere Prediction Service for GNSS Users

Ionosphere Prediction Service for GNSS Users Ionosphere Prediction Service for GNSS Users International Technical Symposium on Navigation and Timing Filippo Rodriguez, PhD, Telespazio 15th November 2018 Introduction Monitoring and forecasting of

More information

TOWARDS ROBUST LOCALIZATION OF RTK-GPS TOPOGRAPHIC SURVEYS 23

TOWARDS ROBUST LOCALIZATION OF RTK-GPS TOPOGRAPHIC SURVEYS 23 TOWARDS ROBUST LOCALIZATION OF RTK-GPS TOPOGRAPHIC SURVEYS Jerry W. Nave, North Carolina A&T University; Tarig A. Ali, American University of Sharjah Abstract Localization is performed to fit the observed

More information

Surveying Prof. Bharat Lohani Department of Civil Engineering Indian Institute of Technology, Kanpur

Surveying Prof. Bharat Lohani Department of Civil Engineering Indian Institute of Technology, Kanpur Surveying Prof. Bharat Lohani Department of Civil Engineering Indian Institute of Technology, Kanpur Module - 12 Lecture - 1 Global Positioning System (Refer Slide Time: 00:20) Welcome to this video lecture

More information

INSAR ATMOSPHERIC DELAY MIGITIGATION BY GPS; CASE STUDY IZMIT EARTQUAKE INTERFEROGRAMS

INSAR ATMOSPHERIC DELAY MIGITIGATION BY GPS; CASE STUDY IZMIT EARTQUAKE INTERFEROGRAMS INSAR ATMOSPHERIC DELAY MIGITIGATION BY GPS; CASE STUDY IZMIT EARTQUAKE INTERFEROGRAMS M.U. Altın a, *, E. Tari a, L. Ge b a ITU, Civil Engineering Faculty, 80626 Maslak Istanbul, Turkey (altinm, tari)@itu.edu.tr

More information

THE EARTH S CLIMATE SYSTEM

THE EARTH S CLIMATE SYSTEM THE EARTH S CLIMATE SYSTEM Earth s Climate System is driven by interactions between the parts of our biosphere So.what is the Biosphere? a relatively thin layer of Earth that has conditions suitable for

More information

Cycle Slip Detection and Correction Methods with Time-Differenced Model for Single Frequency GNSS Applications*

Cycle Slip Detection and Correction Methods with Time-Differenced Model for Single Frequency GNSS Applications* Vol 6, No 1, pp 15, 13 Special Issue on the 3rd ISCIE International Symposium on Stochastic Systems Theory and Its Applications III Paper Cycle Slip Detection and Correction Methods with Time-Differenced

More information

Orbit Representation

Orbit Representation 7.1 Fundamentals 223 For this purpose, code-pseudorange and carrier observations are made of all visible satellites at all monitor stations. The data are corrected for ionospheric and tropospheric delays,

More information

REFINED AND SITE-AUGMENTED TROPOSPHERIC DELAY MODELS FOR GNSS

REFINED AND SITE-AUGMENTED TROPOSPHERIC DELAY MODELS FOR GNSS REFINED AND SITE-AUGMENTED TROPOSPHERIC DELAY MODELS FOR GNSS Daniel Landskron, Gregor Möller, Armin Hofmeister, Johannes Böhm, and Robert Weber Technische Universität Wien, Austria Gußhausstraße 27-29,

More information

Ground-based GPS networks for remote sensing of the atmospheric water vapour content: a review

Ground-based GPS networks for remote sensing of the atmospheric water vapour content: a review Ground-based GPS networks for remote sensing of the atmospheric water vapour content: a review Gunnar Elgered Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992

More information

DATA AND PRODUCT EXCHANGE ISSUES Formats and standards: FY-3C GNOS Data Formats. (Submitted by Xiaoxin Zhang) Summary and Purpose of Document

DATA AND PRODUCT EXCHANGE ISSUES Formats and standards: FY-3C GNOS Data Formats. (Submitted by Xiaoxin Zhang) Summary and Purpose of Document WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS COMMISSION FOR AERONAUTICAL METEOROLOGY INTER-PROGRAMME COORDINATION TEAM ON SPACE WEATHER ICTSW-4/Doc. 8.2(4) (25.XI. 2013) ITEM: 8.2 FOURTH

More information

Time in Distributed Systems: Clocks and Ordering of Events

Time in Distributed Systems: Clocks and Ordering of Events Time in Distributed Systems: Clocks and Ordering of Events Clocks in Distributed Systems Needed to Order two or more events happening at same or different nodes (Ex: Consistent ordering of updates at different

More information

Comparison of DMI Retrieval of CHAMP Occultation Data with ECMWF

Comparison of DMI Retrieval of CHAMP Occultation Data with ECMWF Comparison of DMI Retrieval of CHAMP Occultation Data with ECMWF Jakob Grove-Rasmussen Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen, Denmark jgr@dmi.dk Summary. At DMI a processing

More information

Geophysical Correction Application in Level 2 CryoSat Data Products

Geophysical Correction Application in Level 2 CryoSat Data Products ESRIN-EOP-GQ / IDEAS IDEAS-VEG-IPF-MEM-1288 Version 2.0 29 July 2014 Geophysical Correction Application in Level 2 CryoSat Data Products TABLE OF CONTENTS 1 INTRODUCTION... 3 1.1 Purpose and Scope... 3

More information

Operational Impacts of Space Weather

Operational Impacts of Space Weather Operational Impacts of Space Weather R. Lambour, A. J. Coster, R. Clouser, L. E. Thornton, J. Sharma, and A. Cott 2001 Space Control Conference 3 April 2001 2001 Space Control Conf. -1 Outline Introduction

More information

Satellite Geodesy and Navigation Present and Future

Satellite Geodesy and Navigation Present and Future Satellite Geodesy and Navigation Present and Future Drazen Svehla Institute of Astronomical and Physical Geodesy Technical University of Munich, Germany Content Clocks for navigation Relativistic geodesy

More information

DGPS Kinematic Carrier Phase Signal Simulation Analysis for Precise Aircraft Velocity Determination

DGPS Kinematic Carrier Phase Signal Simulation Analysis for Precise Aircraft Velocity Determination DGPS Kinematic Carrier Phase Signal Simulation Analysis for Precise Aircraft Velocity Determination Capt. J. Hebert and J. Keith 76th Test Squadron (CIGTF) Holloman AFB, NM S. Ryan, M. Szarmes, G. Lachapelle

More information

Constructing high-resolution, absolute maps of atmospheric water vapor by combining InSAR and GNSS observations

Constructing high-resolution, absolute maps of atmospheric water vapor by combining InSAR and GNSS observations Constructing high-resolution, absolute maps of atmospheric water vapor by combining InSAR and GNSS observations Fadwa Alshawaf, Stefan Hinz, Michael Mayer, Franz J. Meyer fadwa.alshawaf@kit.edu INSTITUTE

More information

- an Operational Radio Occultation System

- an Operational Radio Occultation System - an Operational Radio Occultation System Frans Rubek, Georg Bergeton Larsen, Hans-Henrik Benzon, Kent Bækgaard Lauritsen, Martin Bjært Sørensen Danmarks Meteorologiske Institut (Denmark) Josep M. Aparicio,

More information

Climate & Earth System Science. Introduction to Meteorology & Climate CHAPTER 1 LECTURE 1. Question: Introduction to the Atmosphere

Climate & Earth System Science. Introduction to Meteorology & Climate CHAPTER 1 LECTURE 1. Question: Introduction to the Atmosphere Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Orekit in NEOSAT FDS. Alexandre Janer& Pol Sola Romeu(TAS) Maxime Journot(CS) Orekit Day 2017 PROPRIETARY INFORMATION 27/11/2017

Orekit in NEOSAT FDS. Alexandre Janer& Pol Sola Romeu(TAS) Maxime Journot(CS) Orekit Day 2017 PROPRIETARY INFORMATION 27/11/2017 Orekit in NEOSAT FDS Alexandre Janer& Pol Sola Romeu(TAS) Maxime Journot(CS) Orekit Day 2017 1 Modèle 83230347-DOC-TAS-FR-004 Contents TAS &the NEOSAT program NEOSAT FDS -Generalities Orekit in NEOSAT

More information

Ionosphere influence on success rate of GPS ambiguity resolution in a satellite formation flying

Ionosphere influence on success rate of GPS ambiguity resolution in a satellite formation flying Journal of Physics: Conference Series PAPER OPEN ACCESS Ionosphere influence on success rate of GPS ambiguity resolution in a satellite formation flying To cite this article: Leandro Baroni 2015 J. Phys.:

More information

GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences

GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences 1 GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences Hyung Keun Lee, Jang-Gyu Lee, and Gyu-In Jee Hyung Keun Lee is with Seoul National University-Korea University Joint Research

More information

A simulated Radio Occultation Data Set for Processor and Instrument Testing

A simulated Radio Occultation Data Set for Processor and Instrument Testing A simulated Radio Occultation Data Set for Processor and Instrument Testing A. von Engeln (1), R. Notarpietro (1), Y. Andres (1), C. Marquardt (1), M. Hernandez-Pajares (2), M. Garcia-Fernandez (2), A.

More information

Péter Braunmüller: The evaluation of troposphere models applied in the Hungarian Active GNSS Network

Péter Braunmüller: The evaluation of troposphere models applied in the Hungarian Active GNSS Network Péter Braunmüller: The evaluation of troposphere models applied in the Hungarian Active GNSS Network Abridged version of my MSc degree thesis at the Budapest University of Technology and Economics written

More information

Estimating Atmospheric Water Vapor with Groundbased. Lecture 12

Estimating Atmospheric Water Vapor with Groundbased. Lecture 12 Estimating Atmospheric Water Vapor with Groundbased GPS Lecture 12 Overview This lecture covers metrological applica4ons of GPS Some of the material has already been presented and is shown here for completeness.

More information

Unit 3: 4/14/2015. Meteorology. Meteorologist. Research. The Earth s Atmosphere How do we collect information on the atmosphere?

Unit 3: 4/14/2015. Meteorology. Meteorologist. Research. The Earth s Atmosphere How do we collect information on the atmosphere? Unit 3: Meteorology The word meteorology is from Greek, metéōros, meaning "lofty; high (in the sky)" Where are they? Why is there no weather? Meteorology Meteorology is the study of the atmosphere, atmospheric

More information

Nutation determination by means of GNSS

Nutation determination by means of GNSS Nutation determination by means of GNSS - Comparison with VLBI Nicole Capitaine, Kunliang Yao SYRTE - Observatoire de Paris, CNRS/UPMC, France Introduction Space geodetic techniques cannot be used for

More information

This is an author-deposited version published in: Eprints ID: 16117

This is an author-deposited version published in:  Eprints ID: 16117 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Global Navigation Satellite Systems

Global Navigation Satellite Systems Global Navigation Satellite Systems GPS GLONASS Galileo BeiDou I I (COMPASS)? How Does a GNSS Work? Based on principle of triangulation Also called satellite ranging Signal travels at constant speed (3.0x10

More information

MATRAG Measurement of Alpine Tropospheric Delay by Radiometer and GPS

MATRAG Measurement of Alpine Tropospheric Delay by Radiometer and GPS MATRAG Measurement of Alpine Tropospheric Delay by Radiometer and GPS Petra Häfele 1, Matthias Becker, Elmar Brockmann, Lorenz Martin, Michael Kirchner 1 University of the Bundeswehr Munich, 85577 Neubiberg,

More information

New Radiosonde Temperature Bias Adjustments for Potential NWP Applications Based on GPS RO Data

New Radiosonde Temperature Bias Adjustments for Potential NWP Applications Based on GPS RO Data Eighth FORMOSAT-3/COSMIC Data Users Workshop 30 September 2 October 2014 Boulder, Colorado, USA New Radiosonde Temperature Bias Adjustments for Potential NWP Applications Based on GPS RO Data Bomin Sun

More information

Usage of a Correction Model to Enhance the Evaluation of the Zenith Tropospheric Delay

Usage of a Correction Model to Enhance the Evaluation of the Zenith Tropospheric Delay International Journal of Applied Engineering Research ISSN 097-562 Volume 11, Number 6 (2016) pp 68-65 Usage of a Correction Model to Enhance the Evaluation of the Zenith Tropospheric Delay Meriem Jgouta,

More information

4-1 The Role of Climate

4-1 The Role of Climate 4-1 The Role of Climate 1 of 26 What Is Climate? What Is Climate? Weather is the day-to-day condition of Earth's atmosphere at a particular time and place. Climate refers to the average year-after-year

More information

Daniel J. Jacob, Models of Atmospheric Transport and Chemistry, 2007.

Daniel J. Jacob, Models of Atmospheric Transport and Chemistry, 2007. 1 0. CHEMICAL TRACER MODELS: AN INTRODUCTION Concentrations of chemicals in the atmosphere are affected by four general types of processes: transport, chemistry, emissions, and deposition. 3-D numerical

More information

Time frames, leap seconds and GPS

Time frames, leap seconds and GPS Time frames, leap seconds and GPS Andy Shearer Centre for Astronomy NUI, Galway How important is absolute timing accuracy... I How important is absolute timing accuracy... II important enough for particle

More information

Numerical Experiment on Atmospheric Delay in Very Long Baseline Interferometric Observation*

Numerical Experiment on Atmospheric Delay in Very Long Baseline Interferometric Observation* Journal of the Geodetic Society of Japan Vol. 29, No. 4, (1983), pp. 262-272 Numerical Experiment on Atmospheric Delay in Very Long Baseline Interferometric Observation* Masaru KAIDZU Geographical Survey

More information

GPS cycle slips detection and repair through various signal combinations

GPS cycle slips detection and repair through various signal combinations International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) GPS cycle slips detection and repair through various signal combinations M. E. El-Tokhey 1, T. F. Sorour 2, A. E. Ragheb 3, M. O.

More information

Analysis of the Accuracy of GMF, NMF, and VMF1 Mapping Functions with GPT 50 a Priori Zenith Constraint in Tropospheric Delay Modelling

Analysis of the Accuracy of GMF, NMF, and VMF1 Mapping Functions with GPT 50 a Priori Zenith Constraint in Tropospheric Delay Modelling Analysis of the Accuracy of GMF, NMF, and VMF1 Mapping Functions with GPT 50 a Priori Zenith Constraint in Tropospheric Delay Modelling Brian Makabayi 1 Addisu Hunegnaw 2 1 Assistant Lecturer, Department

More information

Satellite Navigation PVT estimation and integrity

Satellite Navigation PVT estimation and integrity Satellite Navigation PVT estimation and integrity Picture: ESA AE4E8 Sandra Verhagen Course 1 11, lecture 7 1 Satellite Navigation (AE4E8 Lecture 7 Today s topics Position, Velocity and Time estimation

More information

USE OF GALILEO NEQUICK IONOSPHERIC ESTIMATION FOR SATELLITE OPERATIONAL ORBIT DETERMINATION

USE OF GALILEO NEQUICK IONOSPHERIC ESTIMATION FOR SATELLITE OPERATIONAL ORBIT DETERMINATION USE OF GALILEO NEQUICK IONOSPHERIC ESTIMATION FOR SATELLITE OPERATIONAL ORBIT DETERMINATION Daniel Navarro Reyes (1), Rubén Castro Gálvez (2), Andrés Ayala Novoa (3), Roberto Prieto-Cerdeira (4) and Raúl

More information

p = ρrt p = ρr d = T( q v ) dp dz = ρg

p = ρrt p = ρr d = T( q v ) dp dz = ρg Chapter 1: Properties of the Atmosphere What are the major chemical components of the atmosphere? Atmospheric Layers and their major characteristics: Troposphere, Stratosphere Mesosphere, Thermosphere

More information

Study the Effect of New Egypt Wet Mapping Function on Space Geodetic Measurements

Study the Effect of New Egypt Wet Mapping Function on Space Geodetic Measurements American Journal of Remote Sensing 2018; 6(1): 29-38 http://www.sciencepublishinggroup.com/j/ajrs doi: 10.11648/j.ajrs.20180601.16 ISSN: 2328-5788 (Print); ISSN: 2328-580X (Online) Study the Effect of

More information

Unit 5 Lesson 3 How is Weather Predicted? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 5 Lesson 3 How is Weather Predicted? Copyright Houghton Mifflin Harcourt Publishing Company Tracking the Weather Warm up 1 Why is it important to watch the weather forecast before traveling to another country? Tracking the Weather A meteorologist is a scientist who studies weather. Meteorologists

More information

Using Signals Emitted by Global Navigation Satellite Systems

Using Signals Emitted by Global Navigation Satellite Systems Using Signals Emitted by Global Navigation Satellite Systems Eric Pottiaux PhD. Thesis submitted for the Degree of Doctor in Sciences Co-Promotors: Carine Bruyninx and Pascale Defraigne Université Catholique

More information

The PaTrop Experiment

The PaTrop Experiment Improved estimation of the tropospheric delay component in GNSS and InSAR measurements in the Western Corinth Gulf (Greece), by the use of a highresolution meteorological model: The PaTrop Experiment N.

More information

Modern Navigation

Modern Navigation 12.215 Modern Navigation Thomas Herring (tah@mit.edu), MW 10:30-12:00 Room 54-322 http://geoweb.mit.edu/~tah/12.215 Course Overview The development of the Global Positioning System (GPS) started in the

More information

Zenith delay [mm] Time [min]

Zenith delay [mm] Time [min] GPS Nieuwsbrief, (1), 2., Nov. 2. Cross-Validation of tropospheric delay variability observed by GPS and SAR interferometry Andre van der Hoeven, Ramon Hanssen, Boudewijn Ambrosius Delft Institute for

More information

ERAD Water vapor observations with SAR, microwave radiometer and GPS: comparison of scaling characteristics

ERAD Water vapor observations with SAR, microwave radiometer and GPS: comparison of scaling characteristics Proceedings of ERAD (2002): 190 194 c Copernicus GmbH 2002 ERAD 2002 Water vapor observations with SAR, microwave radiometer and GPS: comparison of scaling characteristics D. N. Moisseev 1, R. F. Hanssen

More information

ESA ITT AO/1-5209/07/NL/HE Contract No /07/NL/HE. NOVEL TIME SYNCHRONISATION TECHNIQUES FOR DEEP SPACE PROBES Executive Summary

ESA ITT AO/1-5209/07/NL/HE Contract No /07/NL/HE. NOVEL TIME SYNCHRONISATION TECHNIQUES FOR DEEP SPACE PROBES Executive Summary Page: 1 ESA ITT AO/1-5209/07/NL/HE Contract No. 21063/07/NL/HE NOVEL TIME SYNCHRONISATION TECHNIQUES FOR DEEP SPACE PROBES Executive Summary Responsibility: Name: Date: Approval: Prepared by: E. Rossini

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 & Clocks, Clocks, and the Ordering of Events in a Distributed System. L. Lamport, Communications of the ACM, 1978 Notes 15: & Clocks CS 347 Notes

More information

Lecture 4: Radiation Transfer

Lecture 4: Radiation Transfer Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

More information

Edwin Soeryadjaya Problem Theoretical 3: Mirage

Edwin Soeryadjaya Problem Theoretical 3: Mirage The refractive index of the air varies with temperature. Cold air is denser than warm air and has therefore a greater refractive index. Thus a temperature gradient in the atmosphere is always associated

More information

Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50)

Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50) mi (km) above sea level Atmospheric Layers Exosphere 250 (400) Thermosphere Ionosphere 50 (80) Mesosphere Ozone Layer 30 (50) 7 (12) Stratosphere Troposphere Atmospheric Layers Earth s atmosphere is held

More information

WHITEPAPER: ACHIEVING THE CRAMER-RAO LOWER BOUND IN GPS TIME-OF-ARRIVAL ESTIMATION, A FREQUENCY DOMAIN WEIGHTED LEAST-SQUARES ESTIMATOR APPROACH

WHITEPAPER: ACHIEVING THE CRAMER-RAO LOWER BOUND IN GPS TIME-OF-ARRIVAL ESTIMATION, A FREQUENCY DOMAIN WEIGHTED LEAST-SQUARES ESTIMATOR APPROACH WHITEPAPER: ACHIEVING THE CRAMER-RAO LOWER BOUND IN GPS TIME-OF-ARRIVAL ESTIMATION, A FREQUENCY DOMAIN WEIGHTED LEAST-SQUARES ESTIMATOR APPROACH KENNETH M PESYNA, JR AND TODD E HUMPHREYS THE UNIVERSITY

More information

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate between weather and climate Global Climate Focus Question

More information

Active microwave systems (2) Satellite Altimetry * the movie * applications

Active microwave systems (2) Satellite Altimetry * the movie * applications Remote Sensing: John Wilkin wilkin@marine.rutgers.edu IMCS Building Room 211C 732-932-6555 ext 251 Active microwave systems (2) Satellite Altimetry * the movie * applications Altimeters (nadir pointing

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 17:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

Kinematic Monitoring for Baselines Ranging from 3m to 30km

Kinematic Monitoring for Baselines Ranging from 3m to 30km Kinematic Monitoring for Baselines Ranging from 3m to 3km By: Colin Huber Waypoint Consulting Inc. November 23 1. INTRODUCTION This report investigates the accuracy and reliability for the continuous trajectory

More information

Lecture 2 Measurement Systems. GEOS 655 Tectonic Geodesy

Lecture 2 Measurement Systems. GEOS 655 Tectonic Geodesy Lecture 2 Measurement Systems GEOS 655 Tectonic Geodesy VLBI and SLR VLBI Very Long Baseline Interferometry SLR Satellite Laser Ranging Very Long Baseline Interferometry VLBI Geometric Delay δg S Baseline

More information

The Measurement of Precipitable Water Vapor Over Texas. Using the Global Positioning System. David Owen Whitlock. March 2000

The Measurement of Precipitable Water Vapor Over Texas. Using the Global Positioning System. David Owen Whitlock. March 2000 The Measurement of Precipitable Water Vapor Over Texas Using the Global Positioning System by David Owen Whitlock March 2000 Center for Space Research The University of Texas at Austin CSR-TM-00-03 This

More information

Algorithms for inverting radio occultation signals in the ionosphere

Algorithms for inverting radio occultation signals in the ionosphere Algorithms for inverting radio occultation signals in the ionosphere This document describes the algorithms for inverting ionospheric radio occultation data using the Fortran 77 code gmrion.f and related

More information

Ten years analysis of Tropospheric refractivity variations

Ten years analysis of Tropospheric refractivity variations ANNALS OF GEOPHYSICS, VOL. 47, N. 4, August 2004 Ten years analysis of Tropospheric refractivity variations Stergios A. Isaakidis and Thomas D. Xenos Department of Electrical and Computer Engineering,

More information

Near Real Time atmosphere model based on GNSS and meteorological data from ASG-EUPOS reference stations

Near Real Time atmosphere model based on GNSS and meteorological data from ASG-EUPOS reference stations 10th Czech-Polish Workshop: Szklarska Porba / Poland - November 5-7, 2009 1/20 Near Real Time atmosphere model based on GNSS and meteorological data from ASG-EUPOS reference stations Bosy J. (1), Rohm

More information

Variability of the Boundary Layer Depth over Certain Regions of the Subtropical Ocean from 3 Years of COSMIC Data

Variability of the Boundary Layer Depth over Certain Regions of the Subtropical Ocean from 3 Years of COSMIC Data Variability of the Boundary Layer Depth over Certain Regions of the Subtropical Ocean from 3 Years of COSMIC Data S. Sokolovskiy, D. Lenschow, C. Rocken, W. Schreiner, D. Hunt, Y.-H. Kuo and R. Anthes

More information

The Effect of Tropospheric Propagation Delay Errors in Airborne GPS Precision Positioning 1

The Effect of Tropospheric Propagation Delay Errors in Airborne GPS Precision Positioning 1 The Effect of Tropospheric Propagation Delay Errors in Airborne GPS Precision Positioning 1 V.B. Mendes, J.P. Collins, and R.B. Langley Geodetic Research Laboratory, Department of Geodesy and Geomatics

More information