Electrons in a periodic potential: Free electron approximation

Size: px
Start display at page:

Download "Electrons in a periodic potential: Free electron approximation"

Transcription

1 Dr. A. Sapelin, Jan 01 Electrons in a periodic potential: ree electron approximation ree electron ermi gas - gas of non-interacting electrons subject to Pauli principle Wealy bound electrons move freely through metal Assume valence electrons conduction electrons Neglect electron ion core interaction Valence electron= immobile electron involved in the bonding Conduction electron= mobile electron able to move within the solid Good model for metals; can explain: () K Electrical conductivity Optical properties Thermal conductivity C v Specific heat capacity Quite a few of the properties of interest (e.g. C V ) are defined by or dependent on the total energy of the system, so we need a way of calculation the total energy based on a microscopic consideration. One way of doing it is to obtain information about the energy of each particle in the system and then add up all the energies. We now from QM that one has to solve the Schrödinger for a quantum mechanical system in order to obtain all available energy states. The general form of the equation is: where in general ( r, t). However, for the majority of problems in solid state physics we can safely assume (r). In our case the system is a periodic lattice and the energy term would in general include the inetic and the potential parts: Solving such an equation for a simple system is a reasonably involved tas and even more so for a large system of atoms and electrons. So, as a first approximation we assume a free electron approximation.

2 Dr. A. Sapelin, Jan 01 We can then consider D Schrödinger equation for a free electron, ( r ) ( r ) m x y z Consider metal cube of side L=V 1/ Periodic boundary conditions for box dimensions L ( x, y, z L) ( x, y, z) ( x, y L, z) ( x, y, z) ( x L, y, z) ( x, y, z) Solution: r 1 i.r ( ) e - a plane wave with energy V ( ) m (we have used the normalisation condition dr ( r) 1) ( ) m x i L y izl Boundary conditions permit only discrete values of since: e x e e 1 i L x n x, L y n y, L z n z, n x, n y, L n z integers y In -space (D representation) In d dimensions, the volume per point is (π/l) d x /L

3 Dr. A. Sapelin, Jan 01 V - allowed values of ( / L) 8 In practice: L is very large allowed -space points form continuum m x y z x Now, counting all the electron energies in the system one by one is a bit of a tedious tas, especially for a large system hence it would be good to find an alternative. or a sufficiently large system we can consider -space continuum rather than discreet states. Under these conditions we hope to move from finding a sum of a sequence to integration. The ground state of N free electrons described by -space sphere of a radius (ermi wavevector), energy at the surface (ermi energy): m z x y Total number of allowed values within sphere is 4 V 8 V 6 Each -value leads to two one-electron levels (one for each spin value Pauli Exclusion Principle) N = V 6 Electronic density, n

4 Dr. A. Sapelin, Jan 01 Pauli Exclusion Principle: no two electrons can have all quantum numbers identical Density of states (in energy); Number of states < ɛ, N V m Now we are almost ready to calculate total electron energy of a system. Classically: resulting in But we now from experiments that this is not correct. So, where is the problem? The problem is in that we have to factor in the Pauli Exclusion Principle and the ermi-dirac distribution f(ɛ). With these in mind Where is the small energy range around and is the density of states dn 1 m D ( ) d 1 THERMAL PROPERTIES O THE REE ELECTRON ERMI GAS: THE ERMI-DIRAC DISTRIBUTION N wealy interacting ermions in thermal equilibrium at temperature T have occupancy probability f(ɛ) given by the ermi-dirac distribution 1 f ( ) ( ) / e T B 1 Where: ɛ is the ermi energy and B is the Boltzman constant

5 Dr. A. Sapelin, Jan 01 f( B T f( 1 T=0 K T T T > T 1

6 Dr. A. Sapelin, Jan 01 At all temperatures f(ɛ) =1/ when ɛ=ɛ Some textboos will use the chemical potential μ instead of ɛ in the ermi Dirac equation. This strictly correct but we will use ɛ because ɛ =μ to good approximation for most purposes Df inite T D( T=0 K Actual occupation 1 1/ f( N D( ) f (, T) d 0 = shaded area or real metals, V N is very high so that ɛ >> B T at RT and below (typically ɛ 5 ev, while B T =1/40 RT)

7 Dr. A. Sapelin, Jan 01 HEAT CAPACITY O A REE ELECTRON GAS inite T >> B T A T=0 K Df B As T increases from 0 K, points in shaded area A become unoccupied and points in B become occupied increase in energy U U(number of electrons that have increased energy) x (energy increase for each one). We can also see that electrons near ermi level are the ones contributing to the energy increase. Then for ɛ >> B T : Measured from ɛ = 0. And for the heat capacity: and since we obtain: [ ] [ ] [ ]

8 Dr. A. Sapelin, Jan 01 which leads to [ ] In real metals, C v AT D( ) B T Heat capacity of lattice C V T Electronic contribution dominates at low T Measures D(ɛ ) T ELECTRICAL CONDUCTIVITY O REE ELECTRON GAS Remember that for free electron, ( ) m p m Momentum related to wavevector by: m v In electric field E and magnetic field B the force on electron, e ( E v B) When B=0,

9 Dr. A. Sapelin, Jan 01 ee Equation of motion, dv d m dt dt ermi sphere is displaced at constant rate as the value of the state occupied by each electron changes uniformly and equally, eet ( t) (0) t=0 t>0 y y x x E, d/dt Sphere reaches steady state due to scattering: τ = relaxation time = scattering time = time to change state by collision with impurities/ lattice imperfection/lattice vibrations dv d m dt dt ee for each electron

10 Dr. A. Sapelin, Jan 01 If n electrons per unit volume and v inc =incremental (drift) velocity increase: j n( e) v inc E e ne n( e) E E m m NB Kittel uses v for actual velocity and also for incremental velocity Electrical conductivity defined as j=e Drude equation ne m Resistivity is defined as 1/ so m ne At RT, τ ~10-14 s l=mean free path between collisions=vτ or electrons at the ermi surface, l= v τ At RT, l~0.1 μm, i.e. > lattice spacing

11 Dr. A. Sapelin, Jan 01 ree electron approximation Successes Temperature dependence of Heat Capacity paramagnetic (Pauli) susceptibility Ratio of thermal and electrical conductivities (Lorentz number) Magnitudes of heat capacities and Hall effect in simple metals ailures Heat capacities and Hall effect of many metals are wrong Hall effect can be positive Does not explain why mean free paths can be so long Does not explain why some materials are metals, some insulators and some are semiconductors

Unit III Free Electron Theory Engineering Physics

Unit III Free Electron Theory Engineering Physics . Introduction The electron theory of metals aims to explain the structure and properties of solids through their electronic structure. The electron theory is applicable to all solids i.e., both metals

More information

Chapter 6 Free Electron Fermi Gas

Chapter 6 Free Electron Fermi Gas Chapter 6 Free Electron Fermi Gas Free electron model: The valence electrons of the constituent atoms become conduction electrons and move about freely through the volume of the metal. The simplest metals

More information

7. FREE ELECTRON THEORY.

7. FREE ELECTRON THEORY. 7. FREE ELECTRON THEORY. Aim: To introduce the free electron model for the physical properties of metals. It is the simplest theory for these materials, but still gives a very good description of many

More information

Part II - Electronic Properties of Solids Lecture 12: The Electron Gas (Kittel Ch. 6) Physics 460 F 2006 Lect 12 1

Part II - Electronic Properties of Solids Lecture 12: The Electron Gas (Kittel Ch. 6) Physics 460 F 2006 Lect 12 1 Part II - Electronic Properties of Solids Lecture 12: The Electron Gas (Kittel Ch. 6) Physics 460 F 2006 Lect 12 1 Outline Overview - role of electrons in solids The starting point for understanding electrons

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lecture 10: Condensed matter systems Ideal quantum, condensed system of fermions Aims: Degenerate systems: non-interacting quantum particles at high density ermions: ermi energy and chemical potential

More information

Chapter 6 Free Electron Fermi Gas

Chapter 6 Free Electron Fermi Gas Chapter 6 Free Electron Fermi Gas Free electron model: The valence electrons of the constituent atoms become conduction electrons and move about freely through the volume of the metal. The simplest metals

More information

Electrons in metals PHYS208. revised Go to Topics Autumn 2010

Electrons in metals PHYS208. revised Go to Topics Autumn 2010 Go to Topics Autumn 010 Electrons in metals revised 0.1.010 PHYS08 Topics 0.1.010 Classical Models The Drude Theory of metals Conductivity - static electric field Thermal conductivity Fourier Law Wiedemann-Franz

More information

Class 24: Density of States

Class 24: Density of States Class 24: Density of States The solution to the Schrödinger wave equation showed us that confinement leads to quantization. The smaller the region within which the electron is confined, the more widely

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Semiconductor Physics and Devices Chapter 3.

Semiconductor Physics and Devices Chapter 3. Introduction to the Quantum Theory of Solids We applied quantum mechanics and Schrödinger s equation to determine the behavior of electrons in a potential. Important findings Semiconductor Physics and

More information

3. LATTICE VIBRATIONS. 3.1 Sound Waves

3. LATTICE VIBRATIONS. 3.1 Sound Waves 3. LATTIC VIBRATIONS Atoms in lattice are not stationary even at T 0K. They vibrate about particular equilibrium positions at T 0K ( zero-point energy). For T > 0K, vibration amplitude increases as atoms

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

HALL EFFECT IN SEMICONDUCTORS

HALL EFFECT IN SEMICONDUCTORS Warsaw University of Technology Faculty of Physics Physics Laboratory I P Andrzej Kubiaczyk 30 HALL EFFECT IN SEMICONDUCTORS 1. ackground 1.1. Electron motion in electric and magnetic fields A particle

More information

Electrons & Phonons. Thermal Resistance, Electrical Resistance P = I 2 R T = P R TH V = I R. R = f( T)

Electrons & Phonons. Thermal Resistance, Electrical Resistance P = I 2 R T = P R TH V = I R. R = f( T) lectrons & Phonons Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size ffects and Breadown of Classical Laws 1 Thermal Resistance, lectrical Resistance

More information

Assumptions of classical free electron model

Assumptions of classical free electron model Module 2 Electrical Conductivity in metals & Semiconductor 1) Drift Velocity :- The Velocity attain by an Electron in the Presence of applied electronic filed is Known as drift Velocity. 2) Mean free Path:-

More information

Semiclassical Electron Transport

Semiclassical Electron Transport Semiclassical Electron Transport Branislav K. Niolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 64: Introduction to Solid State Physics http://www.physics.udel.edu/~bniolic/teaching/phys64/phys64.html

More information

Chapter 4: Summary. Solve lattice vibration equation of one atom/unitcellcase Consider a set of ions M separated by a distance a,

Chapter 4: Summary. Solve lattice vibration equation of one atom/unitcellcase Consider a set of ions M separated by a distance a, Chapter 4: Summary Solve lattice vibration equation of one atom/unitcellcase case. Consider a set of ions M separated by a distance a, R na for integral n. Let u( na) be the displacement. Assuming only

More information

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture - 10 The Free Electron Theory of Metals - Electrical Conductivity (Refer Slide Time: 00:20)

More information

N independent electrons in a volume V (assuming periodic boundary conditions) I] The system 3 V = ( ) k ( ) i k k k 1/2

N independent electrons in a volume V (assuming periodic boundary conditions) I] The system 3 V = ( ) k ( ) i k k k 1/2 Lecture #6. Understanding the properties of metals: the free electron model and the role of Pauli s exclusion principle.. Counting the states in the E model.. ermi energy, and momentum. 4. DOS 5. ermi-dirac

More information

Microscopic Ohm s Law

Microscopic Ohm s Law Microscopic Ohm s Law Outline Semiconductor Review Electron Scattering and Effective Mass Microscopic Derivation of Ohm s Law 1 TRUE / FALSE 1. Judging from the filled bands, material A is an insulator.

More information

ADVANCED UNDERGRADUATE LABORATORY EXPERIMENT 20. Semiconductor Resistance, Band Gap, and Hall Effect

ADVANCED UNDERGRADUATE LABORATORY EXPERIMENT 20. Semiconductor Resistance, Band Gap, and Hall Effect ADVANCED UNDERGRADUATE LABORATORY EXPERIMENT 20 Semiconductor Resistance, Band Gap, and Hall Effect Revised: November 1996 by David Bailey March 1990 by John Pitre & Taek-Soon Yoon Introduction Solid materials

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 Spring 2009 POP QUIZ

More information

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport The study of the transport of electrons & holes (in semiconductors) under various conditions. A broad & somewhat specialized

More information

Electrical conduction in solids

Electrical conduction in solids Equations of motion Electrical conduction in solids Electrical conduction is the movement of electrically charged particles through a conductor or semiconductor, which constitutes an electric current.

More information

Phonon II Thermal Properties

Phonon II Thermal Properties Phonon II Thermal Properties Physics, UCF OUTLINES Phonon heat capacity Planck distribution Normal mode enumeration Density of states in one dimension Density of states in three dimension Debye Model for

More information

半導體元件與物理. Semiconductor Devices and physics 許正興國立聯合大學電機工程學系 聯大電機系電子材料與元件應用實驗室

半導體元件與物理. Semiconductor Devices and physics 許正興國立聯合大學電機工程學系 聯大電機系電子材料與元件應用實驗室 半導體元件與物理 Semiconductor Devices and physics 許正興國立聯合大學電機工程學系 1. Crystal Structure of Solids 2. Quantum Theory of Solids 3. Semiconductor in Equilibrium and Carrier Transport phenomena 4. PN Junction and

More information

In chapter 3, when we discussed metallic bonding, the primary attribute was that electrons are delocalized.

In chapter 3, when we discussed metallic bonding, the primary attribute was that electrons are delocalized. Lecture 15: free electron gas Up to this point we have not discussed electrons explicitly, but electrons are the first offenders for most useful phenomena in materials. When we distinguish between metals,

More information

Nasser S. Alzayed.

Nasser S. Alzayed. Lecture #4 Nasser S. Alzayed nalzayed@ksu.edu.sa ELECTRICAL CONDUCTIVITY AND OHM'S LAW The momentum of a free electron is related to the wavevector by mv = ћk. In an electric field E and magnetic field

More information

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back

More information

Lecture 17: Semiconductors - continued (Kittel Ch. 8)

Lecture 17: Semiconductors - continued (Kittel Ch. 8) Lecture 17: Semiconductors - continued (Kittel Ch. 8) Fermi nergy Conduction Band All bands have the form - const 2 near the band edge Valence Bands X = (2,,) π/a L = (1,1,1) π/a Physics 46 F 26 Lect 17

More information

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney Solid State Physics Lecture 10 Band Theory Professor Stephen Sweeney Advanced Technology Institute and Department of Physics University of Surrey, Guildford, GU2 7XH, UK s.sweeney@surrey.ac.uk Recap from

More information

In an electric field R and magnetic field B, the force on an electron (charge e) is given by:

In an electric field R and magnetic field B, the force on an electron (charge e) is given by: Lecture 17 Electric conduction Electrons motion in magnetic field Electrons thermal conductivity Brief review In solid state physics, we do not think about electrons zipping around randomly in real space.

More information

Lecture 14 The Free Electron Gas: Density of States

Lecture 14 The Free Electron Gas: Density of States Lecture 4 The Free Electron Gas: Density of States Today:. Spin.. Fermionic nature of electrons. 3. Understanding the properties of metals: the free electron model and the role of Pauli s exclusion principle.

More information

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL Solid State Physics FREE ELECTRON MODEL Lecture 17 A.H. Harker Physics and Astronomy UCL Magnetic Effects 6.7 Plasma Oscillations The picture of a free electron gas and a positive charge background offers

More information

EE 346: Semiconductor Devices

EE 346: Semiconductor Devices EE 346: Semiconductor Devices Lecture - 6 02/06/2017 Tewodros A. Zewde 1 DENSTY OF STATES FUNCTON Since current is due to the flow of charge, an important step in the process is to determine the number

More information

PHY 140A: Solid State Physics. Solution to Homework #7

PHY 140A: Solid State Physics. Solution to Homework #7 PHY 14A: Solid State Physics Solution to Homework #7 Xun Jia 1 December 5, 26 1 Email: jiaxun@physics.ucla.edu Fall 26 Physics 14A c Xun Jia (December 5, 26) Problem #1 Static magnetoconductivity tensor.

More information

Outline. Part II - Electronic Properties of Solids Lecture 13: The Electron Gas Continued (Kittel Ch. 6) E. Electron Gas in 3 dimensions

Outline. Part II - Electronic Properties of Solids Lecture 13: The Electron Gas Continued (Kittel Ch. 6) E. Electron Gas in 3 dimensions Part II - lectronic Properties of Solids Lecture 13: The lectron Gas Continued (Kittel Ch. 6) quilibrium - no field Physics 460 F 2006 Lect 13 1 Outline From last time: Success of quantum mechanics Pauli

More information

Free Electron Model. Assume N electrons that are non-interacting (identical) fermions Assume they are confined to a box of V=L 3

Free Electron Model. Assume N electrons that are non-interacting (identical) fermions Assume they are confined to a box of V=L 3 As we mentioned previously, the Pauli exclusion principle plays an important role in the behavior of solids The first quantum model we ll look at is called the free electron model or the ermi gas model

More information

Sommerfeld-Drude model. Ground state of ideal electron gas

Sommerfeld-Drude model. Ground state of ideal electron gas Sommerfeld-Drude model Recap of Drude model: 1. Treated electrons as free particles moving in a constant potential background. 2. Treated electrons as identical and distinguishable. 3. Applied classical

More information

Elements of Statistical Mechanics

Elements of Statistical Mechanics Dr. Y. Aparna, Associate Prof., Dept. of Physics, JNTU College of ngineering, JNTU - H, lements of Statistical Mechanics Question: Discuss about principles of Maxwell-Boltzmann Statistics? Answer: Maxwell

More information

ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline:

ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: Effective Mass Intrinsic Material Extrinsic Material Things you should know when you leave Key Questions What is the physical meaning

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

Draft of solution Exam TFY4220, Solid State Physics, 29. May 2015.

Draft of solution Exam TFY4220, Solid State Physics, 29. May 2015. Draft of solution Exam TY40, Solid State Physics, 9. May 05. Problem (5%) Introductory questions (answers can be found in the books) a) Small Ewald sphere, not many reflections in Bragg with a single crystal.

More information

Lecture 3: Electron statistics in a solid

Lecture 3: Electron statistics in a solid Lecture 3: Electron statistics in a solid Contents Density of states. DOS in a 3D uniform solid.................... 3.2 DOS for a 2D solid........................ 4.3 DOS for a D solid........................

More information

EECS 117 Lecture 13: Method of Images / Steady Currents

EECS 117 Lecture 13: Method of Images / Steady Currents EECS 117 Lecture 13: Method of Images / Steady Currents Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 217 Lecture 13 p. 1/21 Point Charge Near Ground Plane Consider

More information

Condensed matter theory Lecture notes and problem sets 2012/2013

Condensed matter theory Lecture notes and problem sets 2012/2013 Condensed matter theory Lecture notes and problem sets 2012/2013 Dmitri Ivanov Recommended books and lecture notes: [AM] N. W. Ashcroft and N. D. Mermin, Solid State Physics. [Mar] M. P. Marder, Condensed

More information

HALL. Semiconductor Resistance, Band Gap, and Hall Effect

HALL. Semiconductor Resistance, Band Gap, and Hall Effect ADVANCED UNDERGRADUATE LABORATORY HALL Semiconductor Resistance, Band Gap, and Hall Effect Revisions: September 2016, January 2018: Young-June Kim November 2011, January 2016: David Bailey October 2010:

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

SEMICONDUCTOR BEHAVIOR AND THE HALL EFFECT

SEMICONDUCTOR BEHAVIOR AND THE HALL EFFECT 5 Feb 14 Semi.1 SEMICONDUCTOR BEHAVIOR AND THE HALL EFFECT The object of this experiment is to study various properties of n- and p-doped germanium crystals. The temperature dependence of the electrical

More information

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1 Laser Diodes Revised: 3/14/14 14:03 2014, Henry Zmuda Set 6a Laser Diodes 1 Semiconductor Lasers The simplest laser of all. 2014, Henry Zmuda Set 6a Laser Diodes 2 Semiconductor Lasers 1. Homojunction

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

Phonons II - Thermal Properties (Kittel Ch. 5)

Phonons II - Thermal Properties (Kittel Ch. 5) Phonons II - Thermal Properties (Kittel Ch. 5) Heat Capacity C T 3 Approaches classical limit 3 N k B T Physics 460 F 2006 Lect 10 1 Outline What are thermal properties? Fundamental law for probabilities

More information

PAP342-Solid State Physics I Solution 09/10 Semester 2

PAP342-Solid State Physics I Solution 09/10 Semester 2 PAP342-Solid State Physics I Solution 09/10 Seester 2 Wang Shengtao May 10, 2010 Question 1. (a) A scheatic showing the position of the Feri level related to the (b) band edges can be found in [Kittel]

More information

Lecture 22 Metals - Superconductivity

Lecture 22 Metals - Superconductivity Lecture 22: Metals (Review and Kittel Ch. 9) and Superconductivity I (Kittel Ch. 1) Resistence Ω Leiden, Netherlands - 1911.1 4.6 K g sample < 1-5 Ω Outline metals Recall properties (From lectures 12,

More information

Motion and Recombination of Electrons and Holes

Motion and Recombination of Electrons and Holes Chater Motion and Recombination of Electrons and Holes OBJECTIVES. Understand how the electrons and holes resond to an electric field (drift).. Understand how the electrons and holes resond to a gradient

More information

Materials & Properties II: Thermal & Electrical Characteristics. Sergio Calatroni - CERN

Materials & Properties II: Thermal & Electrical Characteristics. Sergio Calatroni - CERN Materials & Properties II: Thermal & Electrical Characteristics Sergio Calatroni - CERN Outline (we will discuss mostly metals) Electrical properties - Electrical conductivity o Temperature dependence

More information

Lecture 15: Optoelectronic devices: Introduction

Lecture 15: Optoelectronic devices: Introduction Lecture 15: Optoelectronic devices: Introduction Contents 1 Optical absorption 1 1.1 Absorption coefficient....................... 2 2 Optical recombination 5 3 Recombination and carrier lifetime 6 3.1

More information

Mat E 272 Lecture 25: Electrical properties of materials

Mat E 272 Lecture 25: Electrical properties of materials Mat E 272 Lecture 25: Electrical properties of materials December 6, 2001 Introduction: Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom) while Cu has a valence of +1 (1

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications Band Theory Fermi-Dirac Function f(e) = 1/[1 + e (E-E F)/kT ] Where the Fermi Energy, E F, is defined as the energy where f(e) = 1/2. That is to say

More information

Problem Set 10: Solutions

Problem Set 10: Solutions University of Alabama Department of Physics and Astronomy PH 253 / LeClair Fall 21 Problem Set 1: Solutions 1. For a one-dimensional infinite square well of length l the allowed energies for noninteracting

More information

Calculating Band Structure

Calculating Band Structure Calculating Band Structure Nearly free electron Assume plane wave solution for electrons Weak potential V(x) Brillouin zone edge Tight binding method Electrons in local atomic states (bound states) Interatomic

More information

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices EE143 Fall 2016 Microfabrication Technologies Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) 1-2 1 Why

More information

Ohm s Law. R = L ρ, (2)

Ohm s Law. R = L ρ, (2) Ohm s Law Ohm s Law which is perhaps the best known law in all of Physics applies to most conducting bodies regardless if they conduct electricity well or poorly, or even so poorly they are called insulators.

More information

equals the chemical potential µ at T = 0. All the lowest energy states are occupied. Highest occupied state has energy µ. For particles in a box:

equals the chemical potential µ at T = 0. All the lowest energy states are occupied. Highest occupied state has energy µ. For particles in a box: 5 The Ideal Fermi Gas at Low Temperatures M 5, BS 3-4, KK p83-84) Applications: - Electrons in metal and semi-conductors - Liquid helium 3 - Gas of Potassium 4 atoms at T = 3µk - Electrons in a White Dwarf

More information

Lecture 4: Basic elements of band theory

Lecture 4: Basic elements of band theory Phys 769 Selected Topics in Condensed Matter Physics Summer 010 Lecture 4: Basic elements of band theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 Introduction Most matter, in particular most insulating

More information

Physics 342 Lecture 30. Solids. Lecture 30. Physics 342 Quantum Mechanics I

Physics 342 Lecture 30. Solids. Lecture 30. Physics 342 Quantum Mechanics I Physics 342 Lecture 30 Solids Lecture 30 Physics 342 Quantum Mechanics I Friday, April 18th, 2008 We can consider simple models of solids these highlight some special techniques. 30.1 An Electron in a

More information

The potential is minimum at the positive ion sites and maximum between the two ions.

The potential is minimum at the positive ion sites and maximum between the two ions. 1. Bloch theorem: - A crystalline solid consists of a lattice, which is composed of a large number of ion cores at regular intervals, and the conduction electrons that can move freely through out the lattice.

More information

Section 10 Metals: Electron Dynamics and Fermi Surfaces

Section 10 Metals: Electron Dynamics and Fermi Surfaces Electron dynamics Section 10 Metals: Electron Dynamics and Fermi Surfaces The next important subject we address is electron dynamics in metals. Our consideration will be based on a semiclassical model.

More information

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. ------------------- Duration: 2h 30m Chapter 39 Quantum Mechanics of Atoms Units of Chapter 39 39-1 Quantum-Mechanical View of Atoms 39-2

More information

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 8 Notes

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 8 Notes Overview 1. Electronic Band Diagram Review 2. Spin Review 3. Density of States 4. Fermi-Dirac Distribution 1. Electronic Band Diagram Review Considering 1D crystals with periodic potentials of the form:

More information

Carrier Mobility and Hall Effect. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carrier Mobility and Hall Effect. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carrier Mobility and Hall Effect 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 calculation Calculate the hole and electron densities

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

Introduction to Engineering Materials ENGR2000. Dr.Coates

Introduction to Engineering Materials ENGR2000. Dr.Coates Introduction to Engineering Materials ENGR2000 Chapter 18: Electrical Properties Dr.Coates 18.2 Ohm s Law V = IR where R is the resistance of the material, V is the voltage and I is the current. l R A

More information

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor: 16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE Energy bands in Intrinsic and Extrinsic silicon: Energy Band Diagram of Conductor, Insulator and Semiconductor: 1 2 Carrier transport: Any motion

More information

Problem Solving Section 1

Problem Solving Section 1 Problem Solving Section 1 Problem 1: Copper has a mass density ρ m 8.95 gmcm 3 and an electrical resistivity ρ 1.55 10 8 ohm m at room temperature. Calculate, (a). The concentration of the conduction electrons.

More information

Charge Carriers in Semiconductor

Charge Carriers in Semiconductor Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms

More information

EE 346: Semiconductor Devices

EE 346: Semiconductor Devices EE 346: Semiconductor Devices Lecture - 5 02/01/2017 Tewodros A. Zewde 1 The One-Electron Atom The potential function is due to the coulomb attraction between the proton and electron and is given by where

More information

Lecture 1 - Electrons, Photons and Phonons. September 4, 2002

Lecture 1 - Electrons, Photons and Phonons. September 4, 2002 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 1-1 Lecture 1 - Electrons, Photons and Phonons Contents: September 4, 2002 1. Electronic structure of semiconductors 2. Electron statistics

More information

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy Course overview Me: Dr Luke Wilson Office: E17 open door policy email: luke.wilson@sheffield.ac.uk The course: Physics and applications of semiconductors 10 lectures aim is to allow time for at least one

More information

ENGINEERING PHYSICS II S.No CONTENTS PAGE.NO UNIT I CHAPTER I CONDUCTING MATERIALS 1.1 Introduction 1 1.1. 1.Basic Terminologies 1 1.2 Conducting Materials 1 1.3 Electron Theory of solids 2 1.4 Classical

More information

Condensed Matter Physics 2016 Lecture 13/12: Charge and heat transport.

Condensed Matter Physics 2016 Lecture 13/12: Charge and heat transport. Condensed Matter Physics 2016 Lecture 13/12: Charge and heat transport. 1. Theoretical tool: Boltzmann equation (review). 2. Electrical and thermal conductivity in metals. 3. Ballistic transport and conductance

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL BASIS

More information

DO PHYSICS ONLINE ELECTRIC CURRENT FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS

DO PHYSICS ONLINE ELECTRIC CURRENT FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS DO PHYSICS ONLINE FROM IDEAS TO IMPLEMENTATION 9.4.3 ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS ELECTRIC CURRENT Different substances vary considerably in their electrical properties. It is a

More information

Key Questions. ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I 9/10/12. Class Outline: Effective Mass Intrinsic Material

Key Questions. ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I 9/10/12. Class Outline: Effective Mass Intrinsic Material 9/1/1 ECE 34 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: Things you should know when you leave Key Questions What is the physical meaning of the effective mass What does a negative effective

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

Direct and Indirect Semiconductor

Direct and Indirect Semiconductor Direct and Indirect Semiconductor Allowed values of energy can be plotted vs. the propagation constant, k. Since the periodicity of most lattices is different in various direction, the E-k diagram must

More information

Advanced Prop. of Materials: What else can we do?

Advanced Prop. of Materials: What else can we do? 1.021, 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2011 Part II Quantum Mechanical Methods : Lecture 6 Advanced Prop. of Materials: What else can we do? Jeffrey C. Grossman

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications Crystal Structure: XRD XRD: Diffraction Peak Positions Centering Allowed Peaks I-centered h+k+l is an even number F-centered hkl either all even or

More information

+ 1. which gives the expected number of Fermions in energy state ɛ. The expected number of Fermions in energy range ɛ to ɛ + dɛ is then dn = n s g s

+ 1. which gives the expected number of Fermions in energy state ɛ. The expected number of Fermions in energy range ɛ to ɛ + dɛ is then dn = n s g s Chapter 8 Fermi Systems 8.1 The Perfect Fermi Gas In this chapter, we study a gas of non-interacting, elementary Fermi particles. Since the particles are non-interacting, the potential energy is zero,

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ES 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Oice 4101b 1 The ree electron model o metals The ree electron model o metals

More information

Variation of Energy Bands with Alloy Composition E

Variation of Energy Bands with Alloy Composition E Variation of Energy Bands with Alloy Composition E 3.0 E.8.6 L 0.3eV Al x GaAs AlAs 1- xas 1.43eV.16eV X k.4 L. X.0 X 1.8 L 1.6 1.4 0 0. 0.4 0.6 X 0.8 1 1 Carriers in intrinsic Semiconductors Ec 4º 1º

More information

The Microscopic Theory of Electrical Conduction

The Microscopic Theory of Electrical Conduction 7C7.PGS 0/7/00 :48 PM Page 89 CHAPTER 7 The Microscopic Theory of Electrical Conduction Simultaneously acquired topographic (top) and spectroscopic (bottom) images of three gadolinium atoms on top of a

More information

Summary lecture VII. Boltzmann scattering equation reads in second-order Born-Markov approximation

Summary lecture VII. Boltzmann scattering equation reads in second-order Born-Markov approximation Summary lecture VII Boltzmann scattering equation reads in second-order Born-Markov approximation and describes time- and momentum-resolved electron scattering dynamics in non-equilibrium Markov approximation

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Problem 1: Ripplons Problem Set #11 Due in hand-in box by 4:00 PM, Friday, May 10 (k) We have seen

More information

Nanostructural properties 2009/10 Mini-course on fundamental electronic and optical properties of organic semiconductors (part 1) Lorenzo Stella

Nanostructural properties 2009/10 Mini-course on fundamental electronic and optical properties of organic semiconductors (part 1) Lorenzo Stella Nanostructural properties 2009/10 Mini-course on fundamental electronic and optical properties of organic semiconductors (part 1) Lorenzo Stella Nano-bio group - ETSF lorenzo.stella@ehu.es Outline A. Introduction

More information

Localization I: General considerations, one-parameter scaling

Localization I: General considerations, one-parameter scaling PHYS598PTD A.J.Leggett 2013 Lecture 4 Localization I: General considerations 1 Localization I: General considerations, one-parameter scaling Traditionally, two mechanisms for localization of electron states

More information

Nearly Free Electron Gas model - II

Nearly Free Electron Gas model - II Nearly Free Electron Gas model - II Contents 1 Lattice scattering 1 1.1 Bloch waves............................ 2 1.2 Band gap formation........................ 3 1.3 Electron group velocity and effective

More information

Non-Continuum Energy Transfer: Phonons

Non-Continuum Energy Transfer: Phonons Non-Continuum Energy Transfer: Phonons D. B. Go Slide 1 The Crystal Lattice The crystal lattice is the organization of atoms and/or molecules in a solid simple cubic body-centered cubic hexagonal a NaCl

More information

8. FREE-ELECTRON METALS: QUANTUM MECHANICS

8. FREE-ELECTRON METALS: QUANTUM MECHANICS 8. FREE-ELECTRON METALS: QUANTUM MECHANICS Here I will consider the free-electron theory of metals. This theory was developed in the late 1920s and early 1930s by Sommerfeld 86 and others. 87,88 The basic

More information