N independent electrons in a volume V (assuming periodic boundary conditions) I] The system 3 V = ( ) k ( ) i k k k 1/2

Size: px
Start display at page:

Download "N independent electrons in a volume V (assuming periodic boundary conditions) I] The system 3 V = ( ) k ( ) i k k k 1/2"

Transcription

1 Lecture #6. Understanding the properties of metals: the free electron model and the role of Pauli s exclusion principle.. Counting the states in the E model.. ermi energy, and momentum. 4. DOS 5. ermi-dirac distribution 6. Calculating thermodynamic properties of the electron gas 7. Heat capacity of the electron gas Questions you should be able to answer by the end of today s lecture:. Understand how to count the number of allowed eigenstates using the -space graphic description.. What assumptions are used in the free electron model?. What is the physical significance of the ermi energy and ermi vector? 4. Why is the ermi temperature so high? 5. How do would you calculate the DOS? What is it s significance? 6. What are the basic steps used to derive the ermi-dirac distribution and where did the fermionic properties of the electrons enter in the derivation? 7. What electrons participate in determining the thermodynamic and transport properties of metals?

2 N independent electrons in a volume V (assuming periodic boundary conditions) I] The system N electrons in a box of side L such that V L II] Hamiltonian N N ˆ ħ H( r, r,... r ) ˆ N i H i i m i III] Eigenvalues and eigenfunctions, ( ) ( ) Hˆ u x, y, z E u x, y, z i u ( x, y, z) u ( r) e / V ħ ( x + y + z ) m III] Boundary condition: Born Von-Karman u x+ L, y, z u x, y, z ii r ( ) ( ) (,, + ) (,, ) (, +, ) (,, ) u x y z L u x y z u x y L z u x y z The vector in this case is the momentum and the energy eigenfunctions are correspondingly momentum eigenfunctions. ˆ ħ Pu ( r) u ( r) u ħ ( r) i we can also interpret the vector as a wave vector π λ where λ is the de-broglie wavelength. The application of the boundary condition leads to the following identities, i x L i y L i z L e e e which in turn lead to quantization of the vectors π nx x (same for y and z) L h ( nx + n y + n z ) ml

3 Enumerating the states (D x - y plot introduction to space just an efficient way to display information) The number of allowed points is just the volume of the space divided by the volume occupied per point. y x The region of space of volume O will contain N allowed points Ω N π L the factor L π can be interpreted as the density of points in space. We now attempt to construct a many electron wavefunction of the free electron eigenstates using the symmetrization postulate u ( r ) ( )... u r N ψ ( r, r, r,... rn ) N! u r The process of identifying the combination of N, free electron eigenstates needed to produce the lowest possible energy configuration involves choosing the lowest energy s first and then choosing eigenfunctions associated with higher energies. The resulting volume occupied by the set of chosen s for a large number of electrons is approximately a sphere, N ( )

4 Definitions ermi sphere the surface in space that separates occupied from unoccupied levels. ermi momentum - p ħ p ermi velocity - plays a role in metals similar to that of the thermal velocity in a m classical gas. 4π 4π V N N n π ( π ) V π L All of these quantities depend on a single parameter the density of the free electrons Typical values for the free electron densities in metals are: elec L i cm elec K. 0 cm elec Ag cm elec e 7 0 cm The corresponding de-broglie wavelength is on the order on angstroms The ermi velocity is about 0.0c where c is the speed of light. The ermi energy is ħ m typically in the range of.5-5ev To calculate the ground state energy E, of N electrons, E ħ m where all of the states are explicitly counted. Because of the small spacing in the space it is also possible to transform to a continuous variable and integrate. 5 V ħ V ħ E d 8π m π 0 m < # of states in volume d The energy per electron in the ground state (using the expression for N/V from above), E 4 T 0 K N 5

5 Density of Levels A very useful number is the density of states(dos) function it tells us how many states are located between energies + d? How is this number found? represents a surface of constant energy. irst it is important to realize that ( ) Once we have a surface how do we calculate the volume enclosed between or the free electron case 4π m V N N π ħ π L The density of states function is defined as, / ( ) + d? dn m m g ( ) d ħ π ħ The number of one-electron levels in the energy range of + d per unit volume is: g d ( ) In general the density of states in a particular band is given by: ds g n ( ) 4π S ( ) ( ) n g( ) g n ( ) It used for calculating thermodynamic quantities: U d g( ) f ( ) n

6 The ermi Dirac Distribution Up till now we considered the properties of the free-electron gas at the ground state (T0) what happens at elevated temperatures? One needs to calculate the properties of the excited states of the N electron system. The canonical ensemble formulation of statistical mechanics tell us that the properties of an N particle system which is in thermal equilibrium at temperature T should be calculated by averaging over all N particle eigenstates where each state of energy is weighted by / B T e P ( ) i / B T e all states The denominator is called the partition function and is related to the Helmholtz free energy. / B T i/ B T e e all states The probability of having a particular electron level with energy e occupied by an electron is just, f ( ) ( )/ B T e µ + One can derive this probability by considering that it is nothing else but the sum of independent probabilities of having a particular energy level occupied f ( ) P α ( ) summation over all states - where there is an electron in level E It is also useful to note that the sum of all occupation numbers should equal the number of electrons in the system N f i ( ) all states The chemical potential at temperature T is defined as the difference in free energies upon adding an additional particle to the system µ N+ N the chemical potential has a wea temperature dependence and is sometimes called the ermi energy the energy is given by, ħ ( ) m Does this occupation probability function reproduce the ground state occupation? ( ) < f, s 0 ( ) > which is exactly what is recovered at the limit of T approaching 0 from the occupation function α

7 lim f T 0, s ( ) < 0 ( ) > We can use this function to evaluate different average quantities of the gas for example, The total energy of the system at temperature T, U f all states ( ) ( ) ( ) The energy density is given by, U ħ u d f ( ( ) ) V 4π m The density of states function is defined as, # of occupied states in volume d m m g ( ) ħ π ħ and the number of one-electron levels in the energy range of is: g d 0 0 ( ) ( ) ( ) u d g f ( ) ( ) n d g f + d per unit volume

8 The heat capacity of the free electron gas The heat capacity of an electron gas: The equipartition theorem basically states that for each degree of freedom in the Hamiltonian there is a contribution of / to the heat capacity. Therefore it is expected that the free electron gas will have a heat capacity of: cv n B yet in reality the contribution of the free electrons to the heat capacity was only 0.0 of that value? The basic paradox was how were the electrons mobile enough to participate in the conduction process yet did not contribute to the heat capacity? When we heat the sample from T0K not every electron gains B Tas expected from classical considerations in fact only the electrons near the ermi energy can absorb that extra inetic energy by promoting themselves to higher energy orbitals. The rest of the electrons are trapped in their orbitals. T The fraction of electrons that can be excited is on the order of T π cv B T n B

Lecture 14 The Free Electron Gas: Density of States

Lecture 14 The Free Electron Gas: Density of States Lecture 4 The Free Electron Gas: Density of States Today:. Spin.. Fermionic nature of electrons. 3. Understanding the properties of metals: the free electron model and the role of Pauli s exclusion principle.

More information

International Physics Course Entrance Examination Questions

International Physics Course Entrance Examination Questions International Physics Course Entrance Examination Questions (May 2010) Please answer the four questions from Problem 1 to Problem 4. You can use as many answer sheets you need. Your name, question numbers

More information

I. BASICS OF STATISTICAL MECHANICS AND QUANTUM MECHANICS

I. BASICS OF STATISTICAL MECHANICS AND QUANTUM MECHANICS I. BASICS OF STATISTICAL MECHANICS AND QUANTUM MECHANICS Marus Holzmann LPMMC, Maison de Magistère, Grenoble, and LPTMC, Jussieu, Paris marus@lptl.jussieu.fr http://www.lptl.jussieu.fr/users/marus (Dated:

More information

Identical Particles. Bosons and Fermions

Identical Particles. Bosons and Fermions Identical Particles Bosons and Fermions In Quantum Mechanics there is no difference between particles and fields. The objects which we refer to as fields in classical physics (electromagnetic field, field

More information

We already came across a form of indistinguishably in the canonical partition function: V N Q =

We already came across a form of indistinguishably in the canonical partition function: V N Q = Bosons en fermions Indistinguishability We already came across a form of indistinguishably in the canonical partition function: for distinguishable particles Q = Λ 3N βe p r, r 2,..., r N ))dτ dτ 2...

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

Grand Canonical Formalism

Grand Canonical Formalism Grand Canonical Formalism Grand Canonical Ensebmle For the gases of ideal Bosons and Fermions each single-particle mode behaves almost like an independent subsystem, with the only reservation that the

More information

Concepts for Specific Heat

Concepts for Specific Heat Concepts for Specific Heat Andreas Wacker 1 Mathematical Physics, Lund University August 17, 018 1 Introduction These notes shall briefly explain general results for the internal energy and the specific

More information

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit:

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: Chapter 13 Ideal Fermi gas The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: k B T µ, βµ 1, which defines the degenerate Fermi gas. In this

More information

The non-interacting Bose gas

The non-interacting Bose gas Chapter The non-interacting Bose gas Learning goals What is a Bose-Einstein condensate and why does it form? What determines the critical temperature and the condensate fraction? What changes for trapped

More information

Lecture-XXVI. Time-Independent Schrodinger Equation

Lecture-XXVI. Time-Independent Schrodinger Equation Lecture-XXVI Time-Independent Schrodinger Equation Time Independent Schrodinger Equation: The time-dependent Schrodinger equation: Assume that V is independent of time t. In that case the Schrodinger equation

More information

Applications of Quantum Theory to Some Simple Systems

Applications of Quantum Theory to Some Simple Systems Applications of Quantum Theory to Some Simple Systems Arbitrariness in the value of total energy. We will use classical mechanics, and for simplicity of the discussion, consider a particle of mass m moving

More information

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values Lecture 6 Four postulates of quantum mechanics The eigenvalue equation Momentum and energy operators Dirac delta function Expectation values Objectives Learn about eigenvalue equations and operators. Learn

More information

Free Electron Model. Assume N electrons that are non-interacting (identical) fermions Assume they are confined to a box of V=L 3

Free Electron Model. Assume N electrons that are non-interacting (identical) fermions Assume they are confined to a box of V=L 3 As we mentioned previously, the Pauli exclusion principle plays an important role in the behavior of solids The first quantum model we ll look at is called the free electron model or the ermi gas model

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 25: Chemical Potential and Equilibrium Outline Microstates and Counting System and Reservoir Microstates Constants in Equilibrium Temperature & Chemical

More information

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1 L1.P1 Lecture #1 Review Postulates of quantum mechanics (1-3) Postulate 1 The state of a system at any instant of time may be represented by a wave function which is continuous and differentiable. Specifically,

More information

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline:

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: Time-Dependent Schrödinger Equation Solutions to thetime-dependent Schrödinger Equation Expansion of Energy Eigenstates Things you

More information

Physics 2203, Fall 2011 Modern Physics

Physics 2203, Fall 2011 Modern Physics Physics 2203, Fall 2011 Modern Physics. Friday, Nov. 2 nd, 2012. Energy levels in Nitrogen molecule Sta@s@cal Physics: Quantum sta@s@cs: Ch. 15 in our book. Notes from Ch. 10 in Serway Announcements Second

More information

In chapter 3, when we discussed metallic bonding, the primary attribute was that electrons are delocalized.

In chapter 3, when we discussed metallic bonding, the primary attribute was that electrons are delocalized. Lecture 15: free electron gas Up to this point we have not discussed electrons explicitly, but electrons are the first offenders for most useful phenomena in materials. When we distinguish between metals,

More information

Electrons in a periodic potential: Free electron approximation

Electrons in a periodic potential: Free electron approximation Dr. A. Sapelin, Jan 01 Electrons in a periodic potential: ree electron approximation ree electron ermi gas - gas of non-interacting electrons subject to Pauli principle Wealy bound electrons move freely

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

1 Quantum field theory and Green s function

1 Quantum field theory and Green s function 1 Quantum field theory and Green s function Condensed matter physics studies systems with large numbers of identical particles (e.g. electrons, phonons, photons) at finite temperature. Quantum field theory

More information

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in Lecture #3. Incorporating a vector potential into the Hamiltonian. Spin postulates 3. Description of spin states 4. Identical particles in classical and QM 5. Exchange degeneracy - the fundamental problem

More information

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 5 Hartree-Fock Theory WS2010/11: Introduction to Nuclear and Particle Physics Particle-number representation: General formalism The simplest starting point for a many-body state is a system of

More information

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017 Thermal & Statistical Physics Study Questions for the Spring 018 Department Exam December 6, 017 1. a. Define the chemical potential. Show that two systems are in diffusive equilibrium if 1. You may start

More information

Harmonic Oscillator I

Harmonic Oscillator I Physics 34 Lecture 7 Harmonic Oscillator I Lecture 7 Physics 34 Quantum Mechanics I Monday, February th, 008 We can manipulate operators, to a certain extent, as we would algebraic expressions. By considering

More information

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0. Problem #1 A. A projectile of mass m is shot vertically in the gravitational field. Its initial velocity is v o. Assuming there is no air resistance, how high does m go? B. Now assume the projectile is

More information

Quantum Mechanics: Particles in Potentials

Quantum Mechanics: Particles in Potentials Quantum Mechanics: Particles in Potentials 3 april 2010 I. Applications of the Postulates of Quantum Mechanics Now that some of the machinery of quantum mechanics has been assembled, one can begin to apply

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 27st Page 1 Lecture 27 L27.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11 C/CS/Phys C191 Particle-in-a-box, Spin 10/0/08 Fall 008 Lecture 11 Last time we saw that the time dependent Schr. eqn. can be decomposed into two equations, one in time (t) and one in space (x): space

More information

Homework Hint. Last Time

Homework Hint. Last Time Homework Hint Problem 3.3 Geometric series: ωs τ ħ e s= 0 =? a n ar = For 0< r < 1 n= 0 1 r ωs τ ħ e s= 0 1 = 1 e ħω τ Last Time Boltzmann factor Partition Function Heat Capacity The magic of the partition

More information

Lecture 12. The harmonic oscillator

Lecture 12. The harmonic oscillator Lecture 12 The harmonic oscillator 107 108 LECTURE 12. THE HARMONIC OSCILLATOR 12.1 Introduction In this chapter, we are going to find explicitly the eigenfunctions and eigenvalues for the time-independent

More information

The goal of equilibrium statistical mechanics is to calculate the diagonal elements of ˆρ eq so we can evaluate average observables < A >= Tr{Â ˆρ eq

The goal of equilibrium statistical mechanics is to calculate the diagonal elements of ˆρ eq so we can evaluate average observables < A >= Tr{Â ˆρ eq Chapter. The microcanonical ensemble The goal of equilibrium statistical mechanics is to calculate the diagonal elements of ˆρ eq so we can evaluate average observables < A >= Tr{Â ˆρ eq } = A that give

More information

Sommerfeld-Drude model. Ground state of ideal electron gas

Sommerfeld-Drude model. Ground state of ideal electron gas Sommerfeld-Drude model Recap of Drude model: 1. Treated electrons as free particles moving in a constant potential background. 2. Treated electrons as identical and distinguishable. 3. Applied classical

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

Quantum field theory and Green s function

Quantum field theory and Green s function 1 Quantum field theory and Green s function Condensed matter physics studies systems with large numbers of identical particles (e.g. electrons, phonons, photons) at finite temperature. Quantum field theory

More information

Section 10: Many Particle Quantum Mechanics Solutions

Section 10: Many Particle Quantum Mechanics Solutions Physics 143a: Quantum Mechanics I Section 10: Many Particle Quantum Mechanics Solutions Spring 015, Harvard Here is a summary of the most important points from this week (with a few of my own tidbits),

More information

Phys Midterm. March 17

Phys Midterm. March 17 Phys 7230 Midterm March 17 Consider a spin 1/2 particle fixed in space in the presence of magnetic field H he energy E of such a system can take one of the two values given by E s = µhs, where µ is the

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5) LECTURE 12 Maxwell Velocity Distribution Suppose we have a dilute gas of molecules, each with mass m. If the gas is dilute enough, we can ignore the interactions between the molecules and the energy will

More information

16. GAUGE THEORY AND THE CREATION OF PHOTONS

16. GAUGE THEORY AND THE CREATION OF PHOTONS 6. GAUGE THEORY AD THE CREATIO OF PHOTOS In the previous chapter the existence of a gauge theory allowed the electromagnetic field to be described in an invariant manner. Although the existence of this

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM SPARKS CH301 Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL UNIT 2 Day 2 LM15, 16 & 17 due W 8:45AM QUIZ: CLICKER QUESTION Which of these types of light has the highest energy photons?

More information

Part II - Electronic Properties of Solids Lecture 12: The Electron Gas (Kittel Ch. 6) Physics 460 F 2006 Lect 12 1

Part II - Electronic Properties of Solids Lecture 12: The Electron Gas (Kittel Ch. 6) Physics 460 F 2006 Lect 12 1 Part II - Electronic Properties of Solids Lecture 12: The Electron Gas (Kittel Ch. 6) Physics 460 F 2006 Lect 12 1 Outline Overview - role of electrons in solids The starting point for understanding electrons

More information

The Ideal Gas. One particle in a box:

The Ideal Gas. One particle in a box: IDEAL GAS The Ideal Gas It is an important physical example that can be solved exactly. All real gases behave like ideal if the density is small enough. In order to derive the law, we have to do following:

More information

Next topic: Quantum Field Theories for Quantum Many-Particle Systems; or "Second Quantization"

Next topic: Quantum Field Theories for Quantum Many-Particle Systems; or Second Quantization Next topic: Quantum Field Theories for Quantum Many-Particle Systems; or "Second Quantization" Outline 1 Bosons and Fermions 2 N-particle wave functions ("first quantization" 3 The method of quantized

More information

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle.

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle. CHEM 2060 Lecture 18: Particle in a Box L18-1 Atomic Orbitals If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle. We can only talk

More information

= X = X ( ~) } ( ) ( ) On the other hand, when the Hamiltonian acts on ( ) one finds that

= X = X ( ~) } ( ) ( ) On the other hand, when the Hamiltonian acts on ( ) one finds that 6. A general normalized solution to Schrödinger s equation of motion for a particle moving in a time-independent potential is of the form ( ) = P } where the and () are, respectively, eigenvalues and normalized

More information

Chem 452 Mega Practice Exam 1

Chem 452 Mega Practice Exam 1 Last Name: First Name: PSU ID #: Chem 45 Mega Practice Exam 1 Cover Sheet Closed Book, Notes, and NO Calculator The exam will consist of approximately 5 similar questions worth 4 points each. This mega-exam

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 17 Page 1 Lecture 17 L17.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Complete nomenclature for electron orbitals

Complete nomenclature for electron orbitals Complete nomenclature for electron orbitals Bohr s model worked but it lacked a satisfactory reason why. De Broglie suggested that all particles have a wave nature. u l=h/p Enter de Broglie again It was

More information

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19 Page 404 Lecture : Simple Harmonic Oscillator: Energy Basis Date Given: 008/11/19 Date Revised: 008/11/19 Coordinate Basis Section 6. The One-Dimensional Simple Harmonic Oscillator: Coordinate Basis Page

More information

CHAPTER 8 The Quantum Theory of Motion

CHAPTER 8 The Quantum Theory of Motion I. Translational motion. CHAPTER 8 The Quantum Theory of Motion A. Single particle in free space, 1-D. 1. Schrodinger eqn H ψ = Eψ! 2 2m d 2 dx 2 ψ = Eψ ; no boundary conditions 2. General solution: ψ

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova

Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova Outline 1) The framework: microcanonical statistics versus the

More information

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics.

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics. A 10-MINUTE RATHER QUICK INTRODUCTION TO QUANTUM MECHANICS 1. What is quantum mechanics (as opposed to classical mechanics)? Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours

More information

Statistical Mechanics in a Nutshell

Statistical Mechanics in a Nutshell Chapter 2 Statistical Mechanics in a Nutshell Adapted from: Understanding Molecular Simulation Daan Frenkel and Berend Smit Academic Press (2001) pp. 9-22 11 2.1 Introduction In this course, we will treat

More information

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

Monatomic ideal gas: partition functions and equation of state.

Monatomic ideal gas: partition functions and equation of state. Monatomic ideal gas: partition functions and equation of state. Peter Košovan peter.kosovan@natur.cuni.cz Dept. of Physical and Macromolecular Chemistry Statistical Thermodynamics, MC260P105, Lecture 3,

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q.

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. 1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. (a) Compute the electric part of the Maxwell stress tensor T ij (r) = 1 {E i E j 12 } 4π E2 δ ij both inside

More information

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I Physics 342 Lecture 17 Midterm I Recap Lecture 17 Physics 342 Quantum Mechanics I Monday, March 1th, 28 17.1 Introduction In the context of the first midterm, there are a few points I d like to make about

More information

Last Name or Student ID

Last Name or Student ID 12/05/18, Chem433 Final Exam Last Name or Student ID 1. (2 pts) 12. (3 pts) 2. (6 pts) 13. (3 pts) 3. (3 pts) 14. (2 pts) 4. (3 pts) 15. (3 pts) 5. (4 pts) 16. (3 pts) 6. (2 pts) 17. (15 pts) 7. (9 pts)

More information

Lecture 45: The Eigenvalue Problem of L z and L 2 in Three Dimensions, ct d: Operator Method Date Revised: 2009/02/17 Date Given: 2009/02/11

Lecture 45: The Eigenvalue Problem of L z and L 2 in Three Dimensions, ct d: Operator Method Date Revised: 2009/02/17 Date Given: 2009/02/11 Page 757 Lecture 45: The Eigenvalue Problem of L z and L 2 in Three Dimensions, ct d: Operator Method Date Revised: 2009/02/17 Date Given: 2009/02/11 The Eigenvector-Eigenvalue Problem of L z and L 2 Section

More information

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney Solid State Physics Lecture 10 Band Theory Professor Stephen Sweeney Advanced Technology Institute and Department of Physics University of Surrey, Guildford, GU2 7XH, UK s.sweeney@surrey.ac.uk Recap from

More information

Semiclassical Electron Transport

Semiclassical Electron Transport Semiclassical Electron Transport Branislav K. Niolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 64: Introduction to Solid State Physics http://www.physics.udel.edu/~bniolic/teaching/phys64/phys64.html

More information

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am Sparks CH301 Quantum Mechanics Waves? Particles? What and where are the electrons!? UNIT 2 Day 3 LM 14, 15 & 16 + HW due Friday, 8:45 am What are we going to learn today? The Simplest Atom - Hydrogen Relate

More information

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 6 Photons, electrons and other quanta EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku From classical to quantum theory In the beginning of the 20 th century, experiments

More information

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H Solutions exam 2 roblem 1 a Which of those quantities defines a thermodynamic potential Why? 2 points i T, p, N Gibbs free energy G ii T, p, µ no thermodynamic potential, since T, p, µ are not independent

More information

Part II Statistical Physics

Part II Statistical Physics Part II Statistical Physics Theorems Based on lectures by H. S. Reall Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

3. Quantum Mechanics in 3D

3. Quantum Mechanics in 3D 3. Quantum Mechanics in 3D 3.1 Introduction Last time, we derived the time dependent Schrödinger equation, starting from three basic postulates: 1) The time evolution of a state can be expressed as a unitary

More information

The Birth of Quantum Mechanics. New Wave Rock Stars

The Birth of Quantum Mechanics. New Wave Rock Stars The Birth of Quantum Mechanics Louis de Broglie 1892-1987 Erwin Schrödinger 1887-1961 Paul Dirac 1902-1984 Werner Heisenberg 1901-1976 New Wave Rock Stars Blackbody radiation: Light energy is quantized.

More information

Phonon II Thermal Properties

Phonon II Thermal Properties Phonon II Thermal Properties Physics, UCF OUTLINES Phonon heat capacity Planck distribution Normal mode enumeration Density of states in one dimension Density of states in three dimension Debye Model for

More information

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Marc R. Roussel January 5, 2018 Marc R. Roussel Introduction to molecular orbitals January 5, 2018 1 / 24 Review: quantum mechanics

More information

Elements of Statistical Mechanics

Elements of Statistical Mechanics Elements of Statistical Mechanics Thermodynamics describes the properties of macroscopic bodies. Statistical mechanics allows us to obtain the laws of thermodynamics from the laws of mechanics, classical

More information

Solution Set of Homework # 6 Monday, December 12, Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Laloë, Second Volume

Solution Set of Homework # 6 Monday, December 12, Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Laloë, Second Volume Department of Physics Quantum II, 570 Temple University Instructor: Z.-E. Meziani Solution Set of Homework # 6 Monday, December, 06 Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Laloë, Second

More information

Elements of Statistical Mechanics

Elements of Statistical Mechanics Dr. Y. Aparna, Associate Prof., Dept. of Physics, JNTU College of ngineering, JNTU - H, lements of Statistical Mechanics Question: Discuss about principles of Maxwell-Boltzmann Statistics? Answer: Maxwell

More information

PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #4 SOLUTIONS

PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #4 SOLUTIONS PHYSICS 0A : EQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #4 SOLUTIONS () For a noninteracting quantum system with single particle density of states g(ε) = A ε r (with ε 0), find the first three virial

More information

Planck s Hypothesis of Blackbody

Planck s Hypothesis of Blackbody Course : Bsc Applied Physical Science (Computer Science) Year Ist (Sem IInd) Paper title : Thermal Physics Paper No : 6 Lecture no. 20. Planck s Hypothesis of Blackbody Hello friends, in the last lecture

More information

Lectures 21 and 22: Hydrogen Atom. 1 The Hydrogen Atom 1. 2 Hydrogen atom spectrum 4

Lectures 21 and 22: Hydrogen Atom. 1 The Hydrogen Atom 1. 2 Hydrogen atom spectrum 4 Lectures and : Hydrogen Atom B. Zwiebach May 4, 06 Contents The Hydrogen Atom Hydrogen atom spectrum 4 The Hydrogen Atom Our goal here is to show that the two-body quantum mechanical problem of the hydrogen

More information

Appendix 1: Normal Modes, Phase Space and Statistical Physics

Appendix 1: Normal Modes, Phase Space and Statistical Physics Appendix : Normal Modes, Phase Space and Statistical Physics The last line of the introduction to the first edition states that it is the wide validity of relatively few principles which this book seeks

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

I. BASICS OF STATISTICAL MECHANICS AND QUANTUM MECHANICS

I. BASICS OF STATISTICAL MECHANICS AND QUANTUM MECHANICS I. BASICS OF STATISTICAL MECHANICS AND QUANTUM MECHANICS Markus Holzmann LPMMC, Maison de Magistère, Grenoble, and LPTMC, Jussieu, Paris markus@lptl.jussieu.fr http://www.lptl.jussieu.fr/users/markus/cours.html

More information

Chapter 28 Quantum Mechanics of Atoms

Chapter 28 Quantum Mechanics of Atoms Chapter 28 Quantum Mechanics of Atoms 28.1 Quantum Mechanics The Theory Quantum mechanics incorporates wave-particle duality, and successfully explains energy states in complex atoms and molecules, the

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 2: LONELY ATOMS - Systems of electrons - Spin-orbit interaction and LS coupling - Fine structure - Hund s rules - Magnetic susceptibilities Reference books: -

More information

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS CHAPTER 2: POSTULATES OF QUANTUM MECHANICS Basics of Quantum Mechanics - Why Quantum Physics? - Classical mechanics (Newton's mechanics) and Maxwell's equations (electromagnetics theory) can explain MACROSCOPIC

More information

Quantum Physics & From Ideas to Implementation. Underlying concepts in the syllabus

Quantum Physics & From Ideas to Implementation. Underlying concepts in the syllabus Quantum Physics & From Ideas to Implementation Underlying concepts in the syllabus 1 1 What is Quantum Physics? Wave-particle duality Tells us that energy comes in packets, particles are wave-like. Systems

More information

v(r i r j ) = h(r i )+ 1 N

v(r i r j ) = h(r i )+ 1 N Chapter 1 Hartree-Fock Theory 1.1 Formalism For N electrons in an external potential V ext (r), the many-electron Hamiltonian can be written as follows: N H = [ p i i=1 m +V ext(r i )]+ 1 N N v(r i r j

More information

Problem Sheet 1 From material in Lectures 2 to 5

Problem Sheet 1 From material in Lectures 2 to 5 lectrons in Solids ) Problem Sheet From material in Lectures to 5 ) [Standard derivation] Consider the free electron model for a - dimensional solid between x = and x = L. For this model the time independent

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby Lecture 1: Probabilities Lecture 2: Microstates for system of N harmonic oscillators Lecture 3: More Thermodynamics,

More information

Minimum Bias Events at ATLAS

Minimum Bias Events at ATLAS Camille Bélanger-Champagne Lehman McGill College University City University of New York Thermodynamics Charged Particle and Correlations Statistical Mechanics in Minimum Bias Events at ATLAS Statistical

More information

Principles of Molecular Spectroscopy

Principles of Molecular Spectroscopy Principles of Molecular Spectroscopy What variables do we need to characterize a molecule? Nuclear and electronic configurations: What is the structure of the molecule? What are the bond lengths? How strong

More information

Lecture on First-principles Computation (2): The Hartree-Fock theory and the homogeneous electron gas

Lecture on First-principles Computation (2): The Hartree-Fock theory and the homogeneous electron gas Lecture on First-principles Computation (2): The Hartree-Fock theory and the homogeneous electron gas 任新国 (Xinguo Ren) 中国科学技术大学量子信息重点实验室 Key Laboratory of Quantum Information, USTC Hefei, 2016.9.18 Recall:

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29 Physics 1C Lecture 29A Finish off Ch. 28 Start Ch. 29 Particle in a Box Let s consider a particle confined to a one-dimensional region in space. Following the quantum mechanics approach, we need to find

More information

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions. 1. Quantum Mechanics (Spring 2007) Consider a hydrogen atom in a weak uniform magnetic field B = Bê z. (a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron,

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information