Poincaré Invariant Three-Body Scattering

Size: px
Start display at page:

Download "Poincaré Invariant Three-Body Scattering"

Transcription

1 Poincaré Invariant Three-Body Scattering Ch. Elster T. Lin W. Polyzou, W. Glöckle 10/9/008 Supported by: U.S. DOE, OSC, NERSC

2 A Few-Body Theorist s view of the Nuclear Chart

3 Bound State: 3 H - 3 He Scattering: Elastic Inelastic (Breakup) Energy Scale: kev MeV GeV

4 Challenges in 3N Physics Test of nuclear forces in the simplest nuclear environment (over a large energy range!) Two-body forces Genuine three-body forces Reaction mechanisms Example: deuteron breakup, (p,n) charge exchange. Higher Energy: Lorentz vs. Galilean Invariance Check of commonly used approximations (Glauber) Three-body decays of particles (e.g. η or η )

5 Relativistic Effects at Higher Energies Computational Challenge: 3N and 4N systems: Solution: standard treatment based on pw projected momentum space successful (3N scattering up to 50 MeV) but rather tedious N: j max =5, 3N: J max =5/ 00 `channels Computational maximum today: N: j max =7, 3N: J max =31/ NO partial wave decomposition of basis states

6 Roadmap for 3N problem without PW Scalar NN model Realistic NN Model NN scattering bound state 3N bound state 3N bound state 3NF 3N scattering: Full Faddeev Calculation Elastic scattering Below and above break-up Break-up Poincarė Invariant Faddeev Calculations NN scattering deuteron Potentials AV18 and Bonn-B Break-up in first order: (p,n) charge exchange Max. Energy 500 MeV Lorentz kinematics Exact Faddeev Calculation NN interactions High energy limits

7 Variables for 3D Scattering Calculation 3 distinct vectors in the problem: q 0 q p 5 independent variables: p = p, q = q x x p = pˆ qˆ, = qˆ qˆ 0 = (q q) (q p) q pq 0 0 x q 0 0 q system : z q q 0 system : z q 0 Numerical calculation: Three-body transition amplitude is a function of 5 variables

8 Relativistic Three-Body Problem Context: Poincarė Invariant Quantum Mechanics Poincarė invariance is exact symmetry, realized by a unitary representation of the Poincarė group on a fewparticle Hilbert space Instant form Faddeev equations same operator form but different ingredients Kinematics Lorentz transformations between frames Dynamics Bakamjian-Thomas Scheme: Mass Operator M=M 0 V replaces Hamiltonian H=H 0 v Connect Galilean two-body v with Poincarė two-body v Construct V := M q M 0 q

9 Three-Body Scattering Transition operator for elastic scattering U = PG -1 0 PT Transition operator for breakup scattering U 0 = (1 P)T U U 0 Faddeev equation (Multiple Scattering Series) T 0 = tp tg PtP L 1 st Order in tp t = v vg 0 t =: NN t-matrix P = P 1 P 3 P 13 P 3 Permutation Operator

10 Kinematic Relativistic Ingredients: Lorentz transformation Lab c.m. frame (3-body) Phase space factors in cross sections Poincarė-Jacobi momenta Permutations for identical particles

11 Kinematics: Poincaré-Jacobi momenta Nonrelativistic (Galilei) 1 q 3 p Relativistic (Lorentz) 1 ( Kpq) k1k k3 = Kpq (k k ) 3 0

12 Relativistic kinematics: IA (1 st order) T = tp Lorentz transformation Lab c.m. frame) (3-body) Phase space factors in cross sections Poincarė-Jacobi momenta Permutations

13 Quantum Mechanics Galilei Invariant: K NR NR NR H = h ; h = h0 v1 v13 v3 M g Poincaré Invariant: H = K M ; M = M 0 V1 V3 V 31 V ij = M ij M 0 = ( m v ) 0, ij ij q k m 0, ij q k Two-body interaction embedded in the 3-particle Hilbert space m 0, ij = m i p ij m j p ij M 0 = m 0, ij q k m k q k

14 V ij embedded in the 3-particle Hilbert space ij ij ( m v ) q m q V = M M = 0 0, ij ij k 0, ij k need matrix elements :

15 Two-Body Input: T1-operator embedded in 3-body system T 1 (p', p; q) = V (p', p; q) d 3 k " ( E ( V (p', k" p ' )) q ; q) T 1 (k", p; q) ( E ( k " )) q iε Do not solve for V! Obtain fully off-shell matrix elements T 1 (k,k,q) from half shell transition matrix elements by Solving a 1 st resolvent type equation: T 1 (q) = T 1 (q ) T 1 (q) [g 0 (q) - g 0 (q )] T 1 (q ) For every single off-shell momentum point Proposed in Keister & Polyzou, PRC 73, (006) Carried out for the first time here [PRC 76, (007)]

16 Obtain embedded N t-matrix T 1 (k,k,z ) halfshell in -body c.m. frame first : Solution of the relativistic N LS equation with -body potential

17 Consideration for two-body t-matrix Relativistic and non-relativistic t-matrix should give identical observables for determining relativistic effects Or two-body t-matrices should be phase-shift equivalent Four options: Start from relativistic LS equation natural option employed for NN interactions fit to 1 GeV If non-relativistic LS equation is used: Refit of parameters (maybe time consuming in practice) Transformation of Kamada-Glöckle PRL 80, 547 (1998) Transformation of Coester-Piper-Serduke as given in Polyzou PRC 58, 91 (1998)

18 Phase equivalent -body t-matrices: Coester-Pieper-Serduke (CPS) (PRC11, 1 (1975)) Add interaction to square of non-interacting mass operator NO need to evaluate v directly, since M, M, h have the same eigenstates Relation between half-shell t-matrices Relativistic and nonrelativistic cross sections are identical functions of the invariant momentum k { }, 4 with v M v u m m u m k h mh u M M = = = k m k t k k e k e m k k e t k NR R ) ( ' ') ( ) ( 4 )) ( ( ' =

19 Total Cross Section for Elastic Scattering: 1 st Order T= t P

20 Faddeev Equation as Multiple Scattering Series T = tp tg0pt T 0 = tp tg PtP L 1 st Order or IA

21 Convergence of the Faddeev Multiple Scattering Series E lab [GeV]

22 Elastic Scattering: Differential Cross Section

23 Differential Cross Section: Convergence of the Faddeev Multiple Scattering Series

24 Breakup Scattering Exclusive: Measure energy & angles of two ejected particles V.Punjabi et al. PRC 38, 78 (1998) TRIUMF 508 MeV Outgoing protons are measured in the scattering plane

25 Exclusive Breakup Scattering E lab = 508 MeV (symmetric configuration) (V.Punjabi et al. PRC 38, 78 (1998) QFS

26 Exclusive Breakup Scattering E lab = 508 MeV (asymmetric configuration) QFS

27 Exclusive Breakup Scattering E lab = 508 MeV QFS

28 Exclusive Breakup Scattering Space-Star E lab = 508 MeV

29 Poincaré Invariant Faddeev Calculations Kinematics Phase space factors Lorentz Transformation from Lab to c.m. frame Lorentz Transformation of Jacobi Coordinates Always reduces effects of phase-space factors Kinematics determines peak positions in break-up observables Dynamics Exact calculation of the two-body interaction embedded in the three-particle Hilbert space The dynamic effects act in general opposite kinematic effects

30 Poincaré Invariant Faddeev Calculations Carried out up to GeV for elastic and breakup scattering Solved Faddeev equation in vector variables = NO partial waves Relativistic effects are important at 500 MeV and higher Relativistic total elastic cross section increases up to 10% compared to the non-relativistic Relativistic kinematics determines QFS peak positions in inclusive and exclusive breakup Breakup: Relativistic effects very large dependent on configuration Above 800 MeV projectile energy: multiple scattering series converges after ~ iterations Future Systematic studies of selected cross sections & high energy limits Long term: include Spin

Relativity and Three-Body Systems

Relativity and Three-Body Systems Relativity and Three-Body Systems Ch. Elster T. Lin W. Polyzou, W. Glöcle 6/17/008 Supported by: U.S. DOE, OSC, NERSC A Few-Body Theorist s view of the Nuclear Chart Relativistic Three-Body Problem Context:

More information

Poincaré Invariant Three-Body Scattering at Intermediate Energies

Poincaré Invariant Three-Body Scattering at Intermediate Energies Poincaré Invariant Three-Boy Scattering at Intermeiate nergies Ch. lster T. Lin W. Polyzou, W. Glöcle 5/8/9 Supporte by: U.S. DO, OSC, NRSC A Few-Boy Theorist s view of the Nuclear Chart Boun State: H

More information

First Order Relativistic Three-Body Scattering. Ch. Elster

First Order Relativistic Three-Body Scattering. Ch. Elster First Order Relativistic Three-Body Scattering Ch. Elster T. Lin, W. Polyzou W. Glöcle 4//7 Supported by: U.S. DOE, NERSC,OSC Nucleons: Binding Energy of H NN Model E t [MeV] Nijm I -7.7 Nijm II -7.64

More information

LORENTZ BOOSTED NUCLEON-NUCLEON T-MATRIX AND THE TRITON BINDING ENERGY

LORENTZ BOOSTED NUCLEON-NUCLEON T-MATRIX AND THE TRITON BINDING ENERGY October 7, 28 22:52 WSPC/INSTRUCTION FILE Modern Physics Letters A c World Scientific Publishing Company LORENTZ BOOSTED NUCLEON-NUCLEON T-MATRIX AND THE TRITON BINDING ENERGY H. KAMADA Department of Physics,

More information

Relativistic Effects in Exclusive pd Breakup Scattering at Intermediate Energies

Relativistic Effects in Exclusive pd Breakup Scattering at Intermediate Energies Relativistic Effects in Exclusive pd Breakup Scattering at Intermediate Energies T. Lin a, Ch. Elster a,b, W. N. Polyzou c, W. Glöckle d, a Institute of Nuclear and Particle Physics, and Department of

More information

Poincaré Invariant Calculation of the Three-Body Bound State Energy and Wave Function

Poincaré Invariant Calculation of the Three-Body Bound State Energy and Wave Function Poincaré Invariant Calculation of the Three-Body Bound State Energy and Wave Function q [fm ] 8 6 4 M. R. Hadizadeh, Ch. Elster and W. N. Polyzou log Ψ nr 8 7 7 7 3 3 7 7 3 3 4 6 8 log Ψ r p [fm ] 8 4

More information

Calculation of relativistic nucleon-nucleon potentials in three dimensions

Calculation of relativistic nucleon-nucleon potentials in three dimensions Eur. Phys. J. A (7) 53: DOI./epja/i7-9- Regular Article Theoretical Physics THE EUROPEAN PHYSICAL JOURNAL A Calculation of relativistic nucleon-nucleon potentials in three dimensions M.R. Hadizadeh,,a

More information

arxiv: v1 [nucl-th] 3 Sep 2015

arxiv: v1 [nucl-th] 3 Sep 2015 Relativistic few-body methods W. N. Polyzou Department of Physics and Astronomy The University of Iowa Iowa City, IA 52242, USA arxiv:1509.00928v1 [nucl-th] 3 Sep 2015 Contribution to the 21-st International

More information

Calculations of three-nucleon reactions

Calculations of three-nucleon reactions Calculations of three-nucleon reactions H. Witała Jagiellonian University, Kraków in collaboration with: J. Golak, R. Skibiński, K. Topolnicki, Kraków H. Kamada, Kyushu Institute of Technology E. Epelbaum,

More information

Solution of two nucleon systems using vector variables in momentum space - an innovative approach

Solution of two nucleon systems using vector variables in momentum space - an innovative approach University of Iowa Iowa Research Online Theses and Dissertations Spring 2011 Solution of two nucleon systems using vector variables in momentum space - an innovative approach Saravanan Veerasamy University

More information

arxiv: v1 [hep-ph] 22 Jun 2012

arxiv: v1 [hep-ph] 22 Jun 2012 Electroweak hadron structure in point-form dynamics heavy-light systems arxiv:1206.5150v1 [hep-ph] 22 Jun 2012 and Wolfgang Schweiger Institut für Physik, Universität Graz, A-8010 Graz, Austria E-mail:

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky Few-Body Systems 0, 11 16 (2003) Few- Body Systems c by Springer-Verlag 2003 Printed in Austria Selected Topics in Correlated Hyperspherical Harmonics A. Kievsky INFN and Physics Department, Universita

More information

Three- and four-particle scattering

Three- and four-particle scattering Three- and four-particle scattering A. Deltuva Centro de Física Nuclear da Universidade de Lisboa Few-particle scattering Three-particle scattering equations Three-nucleon system Three-body direct nuclear

More information

Three-Body Bound State Calculations by Using Three-Dimensional Low Momentum Interaction V low k

Three-Body Bound State Calculations by Using Three-Dimensional Low Momentum Interaction V low k Preprint number: 6.668 Three-Body Bound State Calculations by Using Three-Dimensional Low Momentum Interaction V low k arxiv:6.668v [nucl-th Feb M. R. Hadizadeh, Institute of Nuclear and Particle Physics,

More information

The Coulomb Problem in Momentum Space without Screening. Ch. Elster

The Coulomb Problem in Momentum Space without Screening. Ch. Elster The Coulomb Problem in Momentum Space without Screening Ch. Elster V. Eremenko, L. Hlophe, N.J. Upadhyay, F. Nunes, G. Arbanas, J. E. Escher, I.J. Thompson (The TORUS Collaboration) Physics Problem: Nuclear

More information

Signature of the (1405) resonance in neutron spectra from the reaction. J. Révai Wigner RCP, Budapest BLTP, JINR, Dubna

Signature of the (1405) resonance in neutron spectra from the reaction. J. Révai Wigner RCP, Budapest BLTP, JINR, Dubna Signature of the (1405) resonance in neutron spectra from K d the reaction J. Révai Wigner RCP, Budapest BLTP, JINR, Dubna Motivation - the Λ(1405) plays a central role in low-enegry Kaon-nuclear physics

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

arxiv:nucl-th/ v1 18 Jan 1999

arxiv:nucl-th/ v1 18 Jan 1999 Modern NN Force Predictions for the Total ND Cross Section up to 3 MeV H. Wita la, H. Kamada, A. Nogga, W. Glöckle Institute for Theoretical Physics II, Ruhr-University Bochum, D-4478 Bochum, Germany.

More information

Mini Review of Poincaré Invariant Quantum Theory

Mini Review of Poincaré Invariant Quantum Theory Mini Review of Poincaré Invariant Quantum Theory Few-Body Systems ISSN 0177-7963 Volume 49 Combined 1-4 Few-Body Syst (2010) 49:129-147 DOI 10.1007/s00601-010-0149- x 1 23 Your article is protected by

More information

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n. University of Groningen Proton-proton bremsstrahlung in a relativistic covariant model Martinus, Gerard Henk IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Relativistic Formulation of Reaction Theory

Relativistic Formulation of Reaction Theory Relativistic Formulation of Reaction Theory W. N. Polyzou Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA Ch. Elster Institute of Nuclear and Particle Physics, and

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

Nucleon Nucleon Forces and Mesons

Nucleon Nucleon Forces and Mesons Canada s ational Laboratory for Particle and uclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules ucleon ucleon Forces and Mesons Sonia Bacca

More information

Polarization: an essential tool for the study of the nucleon structure

Polarization: an essential tool for the study of the nucleon structure Polarization: an essential tool for the study of the nucleon structure Egle Tomasi-Gustafsson IRFU/SPhN, Saclay and IN2P3/IPN Orsay Wolfgang Pauli Niels Bohr (années 30) GDR, 7-VII-2009 1 PLAN Part I Generalities,definitions

More information

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna)

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna) MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS Carlotta Giusti Università and INFN, Pavia Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna) Nuclear ab initio Theories and Neutrino Physics: INT Seattle

More information

A Poincaré Covariant Nucleon Spectral Function for A=3 nuclei within the Light-front Hamiltonian Dynamics

A Poincaré Covariant Nucleon Spectral Function for A=3 nuclei within the Light-front Hamiltonian Dynamics A Poincaré Covariant Nucleon Spectral Function for A=3 nuclei within the Light-front Hamiltonian Dynamics Giovanni Salmè INFN - Rome In collaboration with: Emanuele Pace ( Tor Vergata Rome U.& INFN) Sergio

More information

Four-nucleon scattering

Four-nucleon scattering Four-nucleon scattering A. Deltuva Centro de Física Nuclear da Universidade de Lisboa Hamiltonian H + i> j 4N scattering v i j 1 v 12 4 3 2 Wave function: Schrödinger equation (HH + Kohn VP) [M. Viviani,

More information

Jacopo Ferretti Sapienza Università di Roma

Jacopo Ferretti Sapienza Università di Roma Jacopo Ferretti Sapienza Università di Roma NUCLEAR RESONANCES: FROM PHOTOPRODUCTION TO HIGH PHOTON VIRTUALITIES ECT*, TRENTO (ITALY), -6 OCTOBER 05 Three quark QM vs qd Model A relativistic Interacting

More information

Four-, Five-, and. Double Strangeness

Four-, Five-, and. Double Strangeness Four-, Five-, and Six-Body Calculations of Double Strangeness s-shell Hypernuclei H. Nemura Institute of Particle and Nuclear Studies, KEK This talk is based on the work S= 2 world nucl-th/0407033 in collaboration

More information

QFT. Unit 11: Cross Sections and Decay Rates

QFT. Unit 11: Cross Sections and Decay Rates QFT Unit 11: Cross Sections and Decay Rates Decays and Collisions n When it comes to elementary particles, there are only two things that ever really happen: One particle decays into stuff Two particles

More information

arxiv: v1 [nucl-th] 1 Oct 2013

arxiv: v1 [nucl-th] 1 Oct 2013 Calculations of three-nucleon reactions with N 3 LO chiral forces: achievements and challenges H. Wita la, J. Golak, R. Skibiński, and K. Topolnicki M. Smoluchowski Institute of Physics, Jagiellonian University,

More information

Theoretical Optical Potential Derived From Chiral Potentials

Theoretical Optical Potential Derived From Chiral Potentials NUCLEAR THERY, Vol. 35 (206) eds. M. Gaidarov, N. Minkov, Heron Press, Sofia Theoretical ptical Potential Derived From Chiral Potentials M. Vorabbi,2, P. Finelli 3, C. Giusti 2 TRIUMF, 4004 Wesbrook Mall,

More information

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics Relativistic Quantum Mechanics Wayne Polyzou polyzou@uiowa.edu The University of Iowa Relativistic Quantum Mechanics p.1/42 Collaborators F. Coester (ANL), B. Keister (NSF), W. H. Klink (Iowa), G. L. Payne

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

Scattering amplitudes and the Feynman rules

Scattering amplitudes and the Feynman rules Scattering amplitudes and the Feynman rules based on S-10 We have found Z( J ) for the phi-cubed theory and now we can calculate vacuum expectation values of the time ordered products of any number of

More information

Theory Challenges for describing Nuclear Reactions

Theory Challenges for describing Nuclear Reactions Theory Challenges for describing Nuclear Reactions Ch. Elster 06/20/2014 Supported by: U.S. Department of Energy Astrophysics: Stellar Evolution Nuclear Physics: Nuclear Synthesis Indirect Methods: Nuclear

More information

Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions

Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions Scott Bogner September 2005 Collaborators: Dick Furnstahl, Achim Schwenk, and Andreas Nogga The Conventional Nuclear Many-Body Problem

More information

Light hypernuclei based on chiral and phenomenological interactions

Light hypernuclei based on chiral and phenomenological interactions Mitglied der Helmholtz-Gemeinschaft Light hypernuclei based on chiral and phenomenological interactions Andreas Nogga, Forschungszentrum Jülich International Conference on Hypernuclear and Strange Particle

More information

Muon Capture With Improved Chiral Forces

Muon Capture With Improved Chiral Forces , Jacek Golak, Kacper Topolnicki, Henryk Witała M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland E-mail: roman.skibinski@uj.edu.pl Muon capture on the 2 H, 3 H and

More information

Many-Body Theory of the Electroweak Nuclear Response

Many-Body Theory of the Electroweak Nuclear Response Many-Body Theory of the Electroweak Nuclear Response Omar Benhar INFN and Department of Physics Università La Sapienza, I-00185 Roma Collaborators N. Farina, D. Meloni, H. Nakamura, M. Sakuda, R. Seki

More information

arxiv: v1 [nucl-th] 18 Nov 2014

arxiv: v1 [nucl-th] 18 Nov 2014 Relativistic Elastic Differential Cross Sections for Equal Mass Nuclei C. M. Werneth, 1 K. M. Maung, and W. P. Ford 1 NASA Langley Research Center, West Reid Street, Hampton, VA 3681 The University of

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 k q k P P A generic scatter of a lepton off of some target. k µ and k µ are the 4-momenta of the lepton and P

More information

Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances

Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances Akinobu Doté (KEK Theory Center, IPS / J-PARC branch) Takashi Inoue (ihon university) Takayuki Myo (Osaka

More information

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Mr. Davide Lancierini http://www.physik.uzh.ch/de/lehre/phy211/hs2017.html

More information

1 The pion bump in the gamma reay flux

1 The pion bump in the gamma reay flux 1 The pion bump in the gamma reay flux Calculation of the gamma ray spectrum generated by an hadronic mechanism (that is by π decay). A pion of energy E π generated a flat spectrum between kinematical

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 5 : Electron-Proton Elastic Scattering Prof. M.A. Thomson Michaelmas 2011 149 i.e. the QED part of ( q q) Electron-Proton Scattering In this

More information

Studies of The Nuclear Three-Body System with Three Dimensional Faddeev Calculations

Studies of The Nuclear Three-Body System with Three Dimensional Faddeev Calculations Studies of The Nuclear Three-Body System with Three Dimensional Faddeev Calculations A dissertation presented to the faculty of the College of Arts and Sciences In partial fulfillment of the requirements

More information

Three-Nucleon dynamics With BINA detector

Three-Nucleon dynamics With BINA detector INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science MPD program, co-financed by the European Union within the

More information

Quantum mechanics of many-fermion systems

Quantum mechanics of many-fermion systems Quantum mechanics of many-fermion systems Kouichi Hagino Tohoku University, Sendai, Japan 1. Identical particles: Fermions and Bosons 2. Simple examples: systems with two identical particles 3. Pauli principle

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

1. Kinematics, cross-sections etc

1. Kinematics, cross-sections etc 1. Kinematics, cross-sections etc A study of kinematics is of great importance to any experiment on particle scattering. It is necessary to interpret your measurements, but at an earlier stage to determine

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

Units. In this lecture, natural units will be used:

Units. In this lecture, natural units will be used: Kinematics Reminder: Lorentz-transformations Four-vectors, scalar-products and the metric Phase-space integration Two-body decays Scattering The role of the beam-axis in collider experiments Units In this

More information

Shells Orthogonality. Wave functions

Shells Orthogonality. Wave functions Shells Orthogonality Wave functions Effect of other electrons in neutral atoms Consider effect of electrons in closed shells for neutral Na large distances: nuclear charge screened to 1 close to the nucleus:

More information

Light Front (LF) Nuclear Structure Gerald A Miller, U. of Washington

Light Front (LF) Nuclear Structure Gerald A Miller, U. of Washington Light Front (LF) Nuclear Structure Gerald A Miller, U. of Washington formulate the NN interaction on the light front solve the Weinberg equation for the deuteron prescription from FS 81 review constructs

More information

Physic 492 Lecture 16

Physic 492 Lecture 16 Physic 492 Lecture 16 Main points of last lecture: Angular momentum dependence. Structure dependence. Nuclear reactions Q-values Kinematics for two body reactions. Main points of today s lecture: Measured

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

Electromagnetic Response of Light Nuclei with Integral Transforms

Electromagnetic Response of Light Nuclei with Integral Transforms Electromagnetic Response of Light Nuclei with Integral Transforms LIT method Low-energy continuum observables with LIT Resonances S-Factor in presence of Coulomb potential Electron scattering at q 500

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 1: Hamiltonian Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-Body Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: Correlations Two-Body

More information

Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics

Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics Outline Introduction Compton scattering (A=2) Δ degrees of freedom in 3He(e,e') (A=3) Role of 0+ resonance in 4He(e,e')

More information

Proton deuteron elastic scattering above the deuteron breakup

Proton deuteron elastic scattering above the deuteron breakup Proton deuteron elastic scattering above the deuteron breakup A. Kievsky, S. Rosati and M. Viviani Istituto Nazionale di Fisica Nucleare, Via Buonarroti 2, 56100 Pisa, Italy Dipartimento di Fisica, Via

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

Physics 125 Course Notes Identical Particles Solutions to Problems F. Porter

Physics 125 Course Notes Identical Particles Solutions to Problems F. Porter Physics 5 Course Notes Identical Particles Solutions to Problems 00 F. Porter Exercises. Let us use the Pauli exclusion principle, and the combination of angular momenta, to find the possible states which

More information

Covariant effective field theory (EFT!)

Covariant effective field theory (EFT!) Outline Covariant effective field theory (EFT!) (or, can the dinosaur learn anything from the cockroach?) Part I: The Covariant Spectator approach for two and three nucleon interactions at JLab momentum

More information

arxiv:nucl-th/ v1 22 Sep 2000

arxiv:nucl-th/ v1 22 Sep 2000 1 arxiv:nucl-th/967v1 22 Sep 2 Chiral Dynamics in Few Nucleon Systems E. Epelbaum a, H. Kamada a,b, A. Nogga b, H. Wita la c, W. Glöckle b, and Ulf-G. Meißner a a Forschungszentrum Jülich, Institut für

More information

Towards Faddeev-AGS equations in a Coulomb basis in momentum space

Towards Faddeev-AGS equations in a Coulomb basis in momentum space Towards Faddeev-AGS equations in a Coulomb basis in momentum space V. Eremenko 1,5 L. Hlophe 1 Ch. Elster 1 F. M. Nunes 2 I. J. Thompson 3 G. Arbanas 4 J. E. Escher 3 TORUS Collaboration (http://reactiontheory.org)

More information

Three- and Four-Nucleon Dynamics at Intermediate Energies

Three- and Four-Nucleon Dynamics at Intermediate Energies Three- and Four-Nucleon Dynamics at Intermediate Energies By: Ghanshyam Khatri 05 June, 2013 G. Khatri, MPD Symposium, Kraków 1 \ 20 Outline Motivation 3N dynamics Experiment with BINA: present work -

More information

A zz in Quasielastic and Deep Inelastic Scattering at x>1

A zz in Quasielastic and Deep Inelastic Scattering at x>1 A zz in Quasielastic and Deep Inelastic Scattering at x> Fantasia on a theme of tensor polarizations Main Motivation: To use Tensor Polarizations to study short range distances in the deuteron & large

More information

PHY-494: Applied Relativity Lecture 5 Relativistic Particle Kinematics

PHY-494: Applied Relativity Lecture 5 Relativistic Particle Kinematics PHY-494: Applied Relativity ecture 5 Relativistic Particle Kinematics Richard J. Jacob February, 003. Relativistic Two-body Decay.. π 0 Decay ets return to the decay of an object into two daughter objects.

More information

arxiv:nucl-th/ v3 23 Jul 2001

arxiv:nucl-th/ v3 23 Jul 2001 Covariant axial form factor of the nucleon in a chiral constituent quark model L.Ya. Glozman a,b, M. Radici b, R.F. Wagenbrunn a, S. Boffi b, W. Klink c, and W. Plessas a arxiv:nucl-th/0105028v3 23 Jul

More information

Problem Set # 2 SOLUTIONS

Problem Set # 2 SOLUTIONS Wissink P640 Subatomic Physics I Fall 007 Problem Set # SOLUTIONS 1. Easy as π! (a) Consider the decay of a charged pion, the π +, that is at rest in the laboratory frame. Most charged pions decay according

More information

Quantitative understanding nuclear structure and scattering processes, based on underlying NN interactions.

Quantitative understanding nuclear structure and scattering processes, based on underlying NN interactions. Microscopic descriptions of nuclear scattering and reaction processes on the basis of chiral EFT M. Kohno Research Center for Nuclear Physics, Osaka, Japan Quantitative understanding nuclear structure

More information

Particle Physics Dr. Alexander Mitov Handout 1 : Introduction

Particle Physics Dr. Alexander Mitov Handout 1 : Introduction Dr. A. Mitov Particle Physics 1 Particle Physics Dr. Alexander Mitov Handout 1 : Introduction Cambridge Particle Physics Courses PART II Particle and Nuclear Physics Dr. Potter Introductory course PART

More information

Cluster Models for Light Nuclei

Cluster Models for Light Nuclei Cluster Models for Light Nuclei N. Itagaki, T. Otsuka, University of Tokyo S. Aoyama, Niigata University K. Ikeda, RIKEN S. Okabe, Hokkaido University Purpose of the present study Cluster model explore

More information

H. Kamada, A. Nogga, and W. Glockle, Institute fur Theoretische Physik 11, Ruhr-Universitat Bochum, D-44780

H. Kamada, A. Nogga, and W. Glockle, Institute fur Theoretische Physik 11, Ruhr-Universitat Bochum, D-44780 J Title: RECENT PROGRESS N THE 3N SYSTEM NCLUDNG THREE-NUCLEON FORCES Author(s): D. Hueber, T-5, MS-B283, Theoretical Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA

More information

The nucleon-nucleon interaction with the leading order relativistic effects

The nucleon-nucleon interaction with the leading order relativistic effects The nucleon-nucleon interaction with the leading order relativistic effects Petr Veselý Institute of Particle and Nuclear Physics Faculty of Mathematics and Physics Charles University, Prague Preface This

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

Nucleon-nucleon interaction in covariant chiral effective field theory

Nucleon-nucleon interaction in covariant chiral effective field theory Guilin, China The Seventh Asia-Pacific Conference on Few-Body Problems in Physics Nucleon-nucleon interaction in covariant chiral effective field theory Xiu-Lei Ren School of Physics, Peking University

More information

Electromagentic Reactions and Structure of Light Nuclei

Electromagentic Reactions and Structure of Light Nuclei Electromagentic Reactions and Structure of Light Nuclei Sonia Bacca CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities

More information

NN-Correlations in the spin symmetry energy of neutron matter

NN-Correlations in the spin symmetry energy of neutron matter NN-Correlations in the spin symmetry energy of neutron matter Symmetry energy of nuclear matter Spin symmetry energy of neutron matter. Kinetic and potential energy contributions. A. Rios, I. Vidaña, A.

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

The 7th Asia-Pacific Conference on Few-Body Problems in Physics. Dp breakup reaction investigation using polarized and unpolarized deuteron beam

The 7th Asia-Pacific Conference on Few-Body Problems in Physics. Dp breakup reaction investigation using polarized and unpolarized deuteron beam The 7th Asia-Pacific Conference on Few-Body Problems in Physics Dp breakup reaction investigation using polarized and unpolarized deuteron beam M. Janek on behalf of DSS collaboration (Russia-Japan-JINR-Romania-Bulgaria-Slovakia)

More information

Dynamical coupled channel calculation of pion and omega meson production

Dynamical coupled channel calculation of pion and omega meson production Dynamical coupled channel calculation of pion and omega meson production INT-JLab Workshop on Hadron Spectroscopy 2009/11/11 Mark Paris Center for Nuclear Studies Data Analysis Center George Washington

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 5 - Quantum Statistics & Kinematics Nuclear Reaction Types Nuclear reactions are often written as: a+x Y+b for accelerated projectile a colliding

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY Young-Ho Song(RISP, Institute for Basic Science) Collaboration with R. Lazauskas( IPHC, IN2P3-CNRS) U. van Kolck (Orsay, IPN & Arizona

More information

Experimental Investigation of Few-Nucleon Dynamics at Medium Energies

Experimental Investigation of Few-Nucleon Dynamics at Medium Energies Experimental Investigation of Few-Nucleon Dynamics at Medium Energies by Ghanshyam Khatri 1 \ 22 Outline Introduction Three-body (3N) force Experimental tools BINA Detector and it s status at CCB (Krakow)

More information

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles Decays and Scattering Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles 1 Decay Rates There are THREE experimental probes of Elementary Particle Interactions - bound states

More information

Hadron Spectroscopy at COMPASS

Hadron Spectroscopy at COMPASS Hadron Spectroscopy at Overview and Analysis Methods Boris Grube for the Collaboration Physik-Department E18 Technische Universität München, Garching, Germany Future Directions in Spectroscopy Analysis

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

A path to lepton-nucleus reactions from first principles

A path to lepton-nucleus reactions from first principles Canada s National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules A path to lepton-nucleus reactions from

More information

Nuclear Forces - Lecture 3 -

Nuclear Forces - Lecture 3 - Physics Department, Tohoku University, June 30 July 2, 2014 Nuclear Forces - Lecture 3 - The Meson Theory of Nuclear Forces R. Machleidt University of Idaho 1 Lecture 3: The Meson Theory of Nuclear Forces

More information

Research Activities at the RCNP Cyclotron Facility

Research Activities at the RCNP Cyclotron Facility Research Activities at the RCNP Cyclotron Facility Kichiji Hatanaka Research Center for Nuclear Physics Osaka University International Symposium on Nuclear Physics in Asia Convention Center of Beihang

More information

Few- and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces

Few- and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces Few- and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces S. Binder,, 2 A. Calci, 3 E. Epelbaum, 4 R.J. Furnstahl, 5 J. Golak, 6 K. Hebeler, 7 T. Hüther, 7

More information

Spin structure of 3 He studied by deuteron and nucleon knockout processes

Spin structure of 3 He studied by deuteron and nucleon knockout processes Spin structure of 3 He studied by deuteron and nucleon knockout processes S. Širca, U. of Ljubljana, Slovenia Electron-Nucleus Scattering XIII Marciana Marina, Isola d Elba 25 June 2014 1 Experiments covered

More information

Momentum Transfer Dependence of Spin Isospin Modes in Quasielastic Region (RCNP E131 Collaboration) Tomotsugu WAKASA RCNP Osaka University

Momentum Transfer Dependence of Spin Isospin Modes in Quasielastic Region (RCNP E131 Collaboration) Tomotsugu WAKASA RCNP Osaka University Momentum Transfer Dependence of Spin Isospin Modes in Quasielastic Region (RCNP E131 Collaboration) Tomotsugu WAKASA RCNP Osaka University Overview Motivations Experiment Definition of Experimental Spin

More information

Lecture 3. Experimental Methods & Feynman Diagrams

Lecture 3. Experimental Methods & Feynman Diagrams Lecture 3 Experimental Methods & Feynman Diagrams Natural Units & the Planck Scale Review of Relativistic Kinematics Cross-Sections, Matrix Elements & Phase Space Decay Rates, Lifetimes & Branching Fractions

More information

Inelastic scattering

Inelastic scattering Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent variables, unlike the elastic scattering situation.

More information