Particles and Deep Inelastic Scattering

Size: px
Start display at page:

Download "Particles and Deep Inelastic Scattering"

Transcription

1 Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1

2 k q k P P A generic scatter of a lepton off of some target. k µ and k µ are the 4-momenta of the lepton and P µ and P µ indicate the target and the final state of the target, which may consist of many particles. q µ = k µ k µ is the 4-momentum transfer to the target. June 2010 HUGS 2

3 Lorentz invariants k q k P P The 5 invariant masses k 2 = m 2 l, k 2 = m 2 l, P 2 = M 2, P 2 W 2, q 2 Q 2 are invariants. In addition you can define 3 Mandelstam variables: s = (k + P ) 2, t = (k k ) 2 and u = (P k ) 2. s + t + u = m 2 l + M 2 + m 2 l + W 2. There are also handy variables ν = (p q)/m, x = Q 2 /2Mµ and y = (p q)/(p k). June 2010 HUGS 3

4 In the lab frame k M q k θ P The beam k is going in the z direction. Confine the scatter to the x z plane. k µ = (E k, 0, 0, k) P µ = (M, 0, 0, 0) k µ = (E k, k sin θ, 0, k cos θ) q µ = k µ k µ June 2010 HUGS 4

5 In the lab frame k M q k θ P s = E 2 CM = 2E k M + M 2 m 2 2E k M t = Q 2 = 2E k E k + 2kk cos θ + m 2 k + m 2 k 2kk (1 cos θ) ν = (p q)/m = E k E k energy transfer to target y = (p q)/(p k) = (E k E k)/e k the inelasticity P 2 = W 2 = 2Mν + M 2 Q 2 invariant mass of P µ June 2010 HUGS 5

6 In the CM frame k k q P P The beam k is going in the z direction. Confine the scatter to the x z plane. k µ = (E k, 0, 0, k) P µ = (E M, 0, 0, k) k µ = (E k, k sin θ, 0, k cos θ) q µ = k µ k µ June 2010 HUGS 6

7 In the CM frame k k q P P s = E 2 CM = (E k + E M ) 2 4k 2 t = Q 2 = m 2 k + m 2 k 2(E k E k kk cos θ CM ) 2kk (1 cos θ CM ) ν = (p q)/m = (E k E k )E M + k(k k cos θ) M y = (p q)/(p k) = (E k E k )E M + k(k k cos θ) E k E m + k 2 k2 M (1 cos θ CM ) 1 cos θ CM 2 June 2010 HUGS 7

8 For such a two body process the cross section looks like dσ dt = 1 64π 1 s 1 k CM 2 M 2 k CM = km s s/2 dσ dt = 1 64π 1 k 2 M 2 M π 1 s 2 M 2 June 2010 HUGS 8

9 e + µ + e + µ + e µ γ e µ electron muon scattering occurs through the t channel (ie the exchanged γ has momentum q µ.). dσ dt = 2πα2 s2 + u 2 s 2 t 2 dσ dy = s 1 4πα2 Q 4 2 [ 1 + (1 y) 2 ] ] June 2010 HUGS 9

10 Angular dependence µ µ µ e e J = 0 µ e e J = 1 What angular dependence do we expect? These are spin 1/2 particles scattering through the exchange of a spin 1 particle so one expects to have final state with: no angular dependence (J z = 0), dσ dy 1 (J z = 1), dσ dy (1 + cos θ cm) (1 y)2 June 2010 HUGS 10

11 ν µ + e + µ + ν e µ ν µ W e ν e muon neutrino scattering also occurs through the t channel (ie the exchanged W has momentum q µ.). June 2010 HUGS 11

12 If you do a substitution of weak interaction variables into the µe µe process dσ dy = s 1 4πα2 Q 4 2 α 1 Q 2 [ 1 + (1 y) 2 ] 2 π G F MW 2 1 Q 2 + MW 2 G 2 F M W 4 s (MW 2 Q2 ) 2 π Note that the weak interaction only allows one angular momentum combination (J z = 0) in this case. June 2010 HUGS 12

13 Now we can start studying more complex objects k k p=xp q p P If you scatter an electron off of something - you get an electron - or possibly an electron neutrino. But when you scatter off a proton, you can either get a proton out (elastic scattering) or a neutron (quasi-elastic scattering) or a bunch of hadrons (inelastic scattering). Since the proton breaks up, it must be composite. So maybe we can probe the stuff inside using electron, muons and neutrinos. June 2010 HUGS 13

14 A quasi-elastic neutrino reaction in the Minerva neutrino detector June 2010 HUGS 14

15 k k p=xp q p P Imagine a quark carrying momentum fraction x of the proton momentum P µ P and scatter an electron off of it. This is a t channel process. Imagine that you only detect the incoming and outgoing scattered electrons. Assume the electron mass is zero. June 2010 HUGS 15

16 k k p=xp q p P in a frame where E P >> M P k µ = (E, 0, 0, E), k µ = (E, E sin θ, 0, E cos θ) P µ P = (E P, 0, 0, E P ) p µ = xp = (xe P, 0, 0, xe P ) p µ = k µ + p µ k µ = q µ + p µ p µ p µ = p µ p µ = x 2 MP 2 The last expression assume the quark is still the same after the scatter. June 2010 HUGS 16

17 Observables - charged lepton scattering You know the target mass M You can measure the incoming and outgoing electron or muon momenta k µ and k µ. From these you can calculate the invariants s, ν, Q 2. June 2010 HUGS 17

18 June 2010 HUGS 18

19 One can solve for x! (p ) 2 = (q + p) 2 = q 2 + p 2 + 2(q p) x 2 M 2 P = Q 2 + x 2 M 2 P + 2x(q P ) Q 2 = 2xνM x = Q 2 2Mν You can measure x, the fraction of the total momemtum carried by an individual parton just by measuring the incoming proton momentum and the incoming and outgoing electron 4-vectors. June 2010 HUGS 19

20 So what would we expect to see? d d d u u u u Proton A proton has 2 u quarks and a d quark. So we d expect the electron-quark electron center of mass energy s ŝ = xs and the charge factor α 2 α 2 ( q i e ) 2. Naively we d expect each quark to carry 1/3 of the momentum, so the x probability densities would be δ(x 1/3). d 2 σ dydx = i=1,3 4πα 2 q 2 i sx i Q 4 δ(x i 1/3) 1 2 [ 1 + (1 y) 2 ] ] June 2010 HUGS 20

21 What we expect to see σ 1/3 x June 2010 HUGS 21

22 The u quarks have charge 2 3 e while the d quarks have charge 1 3 e. We d also predict that a neutron would have a scattering cross section which is smaller by a factor of: σ n σ p = ( 1 3 )2 + ( 1 3 )2 + ( 2 3 )2 ( 2 3 )2 + ( 1 3 )2 + ( 2 3 )2 = 2 3 June 2010 HUGS 22

23 What we actually see What we actually see when we plot cross sections vs x. There are no little spikes at (1/3)! (this is e + p e + X data from the Zeus experiment at HERA) June 2010 HUGS 23

24 n/p Observed n/p ratio as a function of x. June 2010 HUGS 24

25 New model of the proton d u u d d u u Proton Our new model has the proton containing the 3 valence u and d quarks but a whole sea of quark anti-quark pairs. June 2010 HUGS 25

26 We can measure the momentum fraction x carried by these quarks! At each x the total cross section will be depend on the probability of there being a quark of fraction x around and on the rate for hard electron-quark scattering. These probability density functions are called Parton Distribution Functions or PDF s. dσ dx (e + p e + X) = i dˆσ dx (e + i e + i; ŝ, ˆt, û)f i (x) By measuring dσ dx on different targets and using the simple predictions for the ˆσ(e + q i e + q i ; xs) one can measure the different f i (x). June 2010 HUGS 26

27 quark kinematics compared to proton kinematics In all frames: In the cm frame ŝ = (k + xp) 2 = k 2 + 2xkp + x 2 M 2 2xk µ p µ = xs (1) ˆt = t = (k k ) 2 (2) û = = (p k ) 2 xu (3) ŝ = xs (4) ˆt = xq 2 = xs sin 2 θ cm 2 û = xs cos 2 θ cm 2 (5) (6) (7) June 2010 HUGS 27

28 If we substitute s/x and Q 2 for ŝ and ˆt we end up with: dσ dxdy (e + P e + X) = 4πα2 s Q [1 + (1 y)2 ] x[ 4 9 (u(x) + u(x)) + 1 (d(x) + d(x)) (s(x) + s(x))] Note: this is an approximation - we ve neglected quark and lepton masses in assuming ŝ = xs. June 2010 HUGS 28

29 What can neutrons tell us Early in the history of particle physics Heisenberg noticed that the strong interactions didn t care if particle was a neutron or a proton. In modern language this means that the strong interaction is flavor blind. This leads to an approximate symmetry called Isospin where the proton and neutron are the +1/2 and 1/2 eigenstates and the symmetry acts like spin. The u and d quarks have the same relation under isospin as the proton and neutron and it has been argued that the u content of the neutron u n (x) should be the same as the d content of the proton d p (x) ie applying an isospin rotation to a neutron changes it to a proton and also exchanges all the u and d quarks. We re not certain this is perfectly so (after all the neutron and proton do differ a bit). June 2010 HUGS 29

30 But it does mean that scattering from neutrons should be like: dσ dydx (e + n) = 4πα2 s Q [1 + (1 y)2 ] x[ 4 9 (u n(x) + u n (x)) (d n(x) + d n (x)) (s n(x) + s n (x))] +... = 4πα2 s Q [1 + (1 y)2 ] x[ 4 9 (d p(x) + d p (x)) (u p(x) + u p (x)) (s n(x) + s n (x))] +... June 2010 HUGS 30

31 And if you assume that the s quarks are the same for protons and neutrons you can look at the difference. 1 x [ ] dσ dσ (e + p) (e + n) dx dx 1 [u(x) + u(x) d(x) d(x)] 3 You can use this to check to see if there really is one more u than d quark in the proton. June 2010 HUGS 31

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 01/13 (3.11.01) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 6, 3.101 Content of Today Structure of the proton: Inelastic proton scattering can be described by elastic scattering

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 4531 v.kudryavtsev@sheffield.ac.uk The structure of the nucleon Electron - nucleon elastic scattering Rutherford, Mott cross-sections

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

Physics at Hadron Colliders Partons and PDFs

Physics at Hadron Colliders Partons and PDFs Physics at Hadron Colliders Partons and PDFs Marina Cobal Thanks to D. Bettoni Università di Udine 1 2 How to probe the nucleon / quarks? Scatter high-energy lepton off a proton: Deep-Inelastic Scattering

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 013 Weak Interactions II 1 Important Experiments Wu-Experiment (1957): radioactive decay of Co60 Goldhaber-Experiment (1958): radioactive decay

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University ukyang@snu.ac.kr Un-ki Yang - DIS 1 Elastic and Inelastic scattering Electron-Proton Scattering P Electron-proton

More information

Electron-Positron Annihilation

Electron-Positron Annihilation Evidence for Quarks The quark model originally arose from the analysis of symmetry patterns using group theory. The octets, nonets, decuplets etc. could easily be explained with coloured quarks and the

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

Structure of Hadrons and the parton model

Structure of Hadrons and the parton model Structure of Hadrons and the parton model Ben Kilminster University of Zürich - Physik Institut Phenomenology of Particle Physics - PPP2 Lecture: 10/3/2015 Topics in this lecture How do we study the structure

More information

Interactions of Neutrinos. Kevin McFarland University of Rochester INSS 2013, Beijing 6-8 August 2013

Interactions of Neutrinos. Kevin McFarland University of Rochester INSS 2013, Beijing 6-8 August 2013 Interactions of Neutrinos Kevin McFarland University of Rochester INSS 013, Beijing 6-8 August 013 Outline Brief Motivation for and History of Measuring Interactions Key reactions and thresholds Weak interactions

More information

QCD and deep inelastic scattering

QCD and deep inelastic scattering QCD and deep inelastic scattering Alex Tapper Slides available at: http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Outline We ll start with some history of the structure of matter and scattering experiments.

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS 754 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 04 Thursday, 9 June,.30 pm 5.45 pm 5 minutes

More information

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep.

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. of strong dynamics and parton picture) Experimental Development Fixed

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 22 Fermi Theory Standard Model of Particle Physics SS 22 2 Standard Model of Particle Physics SS 22 Fermi Theory Unified description of all kind

More information

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors 1 Experimental Aspects of Deep-Inelastic Scattering Kinematics, Techniques and Detectors 2 Outline DIS Structure Function Measurements DIS Kinematics DIS Collider Detectors DIS process description Dirac

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS A047W SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 05 Thursday, 8 June,.30 pm 5.45 pm 5 minutes

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 23 Fermi Theory Standard Model of Particle Physics SS 23 2 Standard Model of Particle Physics SS 23 Weak Force Decay of strange particles Nuclear

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 Experimental Tests of QED Part 2 1 Overview PART I Cross Sections and QED tests Accelerator Facilities + Experimental Results and Tests PART

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Inelastic scattering

Inelastic scattering Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent variables, unlike the elastic scattering situation.

More information

Partículas Elementares (2015/2016)

Partículas Elementares (2015/2016) Partículas Elementares (015/016) 11 - Deep inelastic scattering Quarks and Partons Mário Pimenta Lisboa, 10/015 pimenta@lip.pt Elastic scattering kinematics (ep) Lab 1 θ 3 Only one independent variable!

More information

Flavor Asymmetry of the Nucleon Sea and W-Boson Production*

Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Department of Physics University of Illinois 7 December 2012 *R. Yang, J.C. Peng, M. Grosse-Perdekamp, Phys. Lett. B 680 (2009) 231-234 What

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 Sum rules You can integrate the structure functions and recover quantities like the net number of quarks. Momentum

More information

Nucleon Spin. Tyler Corbett

Nucleon Spin. Tyler Corbett Nucleon Spin Tyler Corbett Abstract: In 1988 the European Muon Collaboration showed that the quark contribution to spin only accounts for 20-30 percent of the nucleon spin; The "naive quark parton model

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 Experimental Tests of QED Part 2 1 Overview PART I Cross Sections and QED tests Accelerator Facilities + Experimental Results and Tests PART

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

Studying Nuclear Structure

Studying Nuclear Structure Microscope for the Studying Nuclear Structure with s School of Physics Seoul National University November 15, 2004 Outline s Microscope for the s Smaller, smaller Quest for basic building blocks of the

More information

A SPIN ON THE PROTON FOR SEEKING NUCLEON STRUCTURE. Nigel Buttimore

A SPIN ON THE PROTON FOR SEEKING NUCLEON STRUCTURE. Nigel Buttimore A SPIN ON THE PROTON FOR SEEKING NUCLEON STRUCTURE Nigel Buttimore Trinity College Dublin 22 May 2009 DAMTP Cambridge Cavendish Laboratory OUTLINE Introduction to spin and the spin structure of the nucleon

More information

Isospin. K.K. Gan L5: Isospin and Parity 1

Isospin. K.K. Gan L5: Isospin and Parity 1 Isospin Isospin is a continuous symmetry invented by Heisenberg: Explain the observation that the strong interaction does not distinguish between neutron and proton. Example: the mass difference between

More information

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013 Experimental results on nucleon structure Lecture I Barbara Badelek University of Warsaw National Nuclear Physics Summer School 2013 Stony Brook University, July 15 26, 2013 Barbara Badelek (Univ. of Warsaw

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 5 : Electron-Proton Elastic Scattering Prof. M.A. Thomson Michaelmas 2011 149 i.e. the QED part of ( q q) Electron-Proton Scattering In this

More information

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Juan Guerrero Hampton University & Jefferson Lab QCD evolution 2017 May 26, 2017 Based on: J. G., J. Ethier, A. Accardi, S. Casper,W. Melnitchouk,

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

Study of Strange Quark in the Nucleon with Neutrino Scattering

Study of Strange Quark in the Nucleon with Neutrino Scattering July 28, 2004 NuFact 04, Osaka Study of Strange Quark in the Nucleon with Neutrino Scattering T.-A. Shibata Tokyo Institute of Technology Contents: 3. Physics Motivation --- Quark Structure of the Nucleon

More information

Quark-Hadron Duality in Structure Functions

Quark-Hadron Duality in Structure Functions Approaches to QCD, Oberwoelz, Austria September 10, 2008 Quark-Hadron Duality in Structure Functions Wally Melnitchouk Outline Bloom-Gilman duality Duality in QCD OPE & higher twists Resonances & local

More information

NuSOnG. Neutrinos Scattering On Glass. Let s consider each of these (though not in this order) William Seligman, 30-Jun-08.

NuSOnG. Neutrinos Scattering On Glass. Let s consider each of these (though not in this order) William Seligman, 30-Jun-08. NuSOnG Neutrinos Scattering On Glass Let s consider each of these (though not in this order) William Seligman, 30-Jun-08 Page 1 of 46 NuSOnG Neutrinos Scattering On Glass Page 2 of 46 Obtaining a neutrino

More information

Physics Results on the Tagged Structure Functions at HERA

Physics Results on the Tagged Structure Functions at HERA Physics Results on the Tagged Structure Functions at HERA DESY on behalf of H1 and ZEUS Thomas Jefferson National Accelerator Facility Newport News, VA January 16-18 014 Page 1 Exploring Hadron Structure

More information

Review of hadron-hadron interactions

Review of hadron-hadron interactions Chapter 10 Deep inelastic scattering between leptons and nucleons Confirm quarks are more than mathematical objects High momentum transfer from leptons to hadron constituents QCD predicts small coupling

More information

Overview of Elementary Particle Physics

Overview of Elementary Particle Physics Overview of Elementary Particle Physics Michael Gold Physics 330 May 3, 2006 Overview of Elementary Particle Physics Rutherford e p elastic elastic scattering e p inelastic scattering zeus Parton model

More information

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration Physics at HERA Summer Student Lectures 10 13 August 009 Kirchhoff Institut für Physik H1 Collaboration email: katja.krueger@desy.de Overview Introduction to HERA Inclusive DIS & Structure Functions formalism

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

Introduction to particle physics Lecture 7

Introduction to particle physics Lecture 7 Introduction to particle physics Lecture 7 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Deep-inelastic scattering and the structure of protons 2 Elastic scattering Scattering on extended

More information

Fundamental Open Questions in Spin Physics

Fundamental Open Questions in Spin Physics Fundamental Open Questions in Spin Physics p. 1/55 Fundamental Open Questions in Spin Physics Jacques Soffer Physics Department, Temple University, Philadelphia,PA, USA Fundamental Open Questions in Spin

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 ecture: Standard Model of Particle Physics Heidelberg SS 013 (Weak) Neutral Currents 1 Contents Theoretical Motivation for Neutral Currents NC Processes Experimental Discovery Measurement of the Weinberg

More information

Structure Functions at Very High Q 2 From HERA

Structure Functions at Very High Q 2 From HERA Structure Functions at Very High Q 2 From HERA Christopher M. Cormack For the H1 and ZEUS Collaborations Rutherford Appleton Laboratory, Chilton, Didcot, Oxford, OX11 0QX, United Kingdom Abstract. Measurements

More information

Open Issues in DIS The High Energy Perspective

Open Issues in DIS The High Energy Perspective Open Issues in DIS The High Energy Perspective My private point of view using data from DIS in collider mode: Accelerator and Experiments HERA success story: Precision cross sections, structure functions

More information

Form Factors and Structure Functions

Form Factors and Structure Functions Form Factors and Structure Functions Yury Kolomensky Physics 129, Fall 2010 Standard Model Primer 3 fundamental interactions Electromagnetic: U=q 1 q 2 /r Vector couplings Fine structure constant α=e 2

More information

Novel Measurements of Proton Structure at HERA

Novel Measurements of Proton Structure at HERA Introduction Combined Cross Sections & QCD Fits NC & CC Cross Section Measurements F L Summary Novel Measurements of Proton Structure at HERA Katie Oliver University of Oxford On behalf of the H1 and ZEUS

More information

Physics 161 Homework 2 - Solutions Wednesday August 31, 2011

Physics 161 Homework 2 - Solutions Wednesday August 31, 2011 Physics 161 Homework 2 - s Wednesday August 31, 2011 Make sure your name is on every page, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the problems,

More information

BRIEF INTRODUCTION TO HERA PHYSICS

BRIEF INTRODUCTION TO HERA PHYSICS BRIEF INTRODUCTION TO HERA PHYSICS aim: get to exercises as soon as possible cover: HERA accelarator and experiments DIS kinematics, how to compare theory and data:mc generators ==> next step: use them!

More information

Quark-Hadron Duality in DIS Form Factors and. Drell-Yan Antiquark Flavor Asymmetries

Quark-Hadron Duality in DIS Form Factors and. Drell-Yan Antiquark Flavor Asymmetries Quark-Hadron Duality in DIS Form Factors and Peter Ehlers University of Minnesota, Morris University of Washington Mentor: Wally Melnitchouk Table of Contents 1 Quark-Hadron Duality in DIS Form Factors

More information

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Mr. Davide Lancierini http://www.physik.uzh.ch/de/lehre/phy211/hs2017.html

More information

High-energy neutrino interactions: first cross section measurements at TeV and above

High-energy neutrino interactions: first cross section measurements at TeV and above High-energy neutrino interactions: first cross section measurements at TeV and above Mauricio Bustamante TeVPA 2017 August 10, 2017 Two seemingly unrelated questions 1 Where are the most energetic particles

More information

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section Lecture 3 Cross Section Measurements Ingredients to a Cross Section Prerequisites and Reminders... Natural Units Four-Vector Kinematics Lorentz Transformation Lorentz Boost Lorentz Invariance Rapidity

More information

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309 SLAC-PUB-662 September 1994 (TE) SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 9439 Work supported by Department

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

Physics 231a Problem Set Number 1 Due Wednesday, October 6, 2004

Physics 231a Problem Set Number 1 Due Wednesday, October 6, 2004 Physics 231a Problem Set Number 1 Due Wednesday, October 6, 2004 Note: Some problems may be review for some of you. If the material of the problem is already well-known to you, such that doing the problem

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

The Quark-Parton Model

The Quark-Parton Model The Quark-Parton Model Before uarks and gluons were generally acceted Feynman roosed that the roton was made u of oint-like constituents artons Both Bjorken Scaling and the Callan-Gross relationshi can

More information

Symmetry Tests in Nuclear Physics

Symmetry Tests in Nuclear Physics Symmetry Tests in Nuclear Physics Krishna Kumar University of Massachusetts Editorial Board: Parity Violation: K. K, D. Mack, M. Ramsey-Musolf, P. Reimer, P. Souder Low Energy QCD: B. Bernstein, A. Gasparian,

More information

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3 Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W 1 + 2 W 2 + 3 W 3 Substitute B = cos W A + sin W Z 0 Sum over first generation particles. up down Left handed

More information

8 The structure of the nucleon

8 The structure of the nucleon 8 The structure of the nucleon Elastic and deep inelastic scattering from nucleons, 1956 1973 Hadronic scattering experiments produced extensive and rich data revealing resonances and regularities of cross

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Theory of Elementary Particles homework XI (July??)

Theory of Elementary Particles homework XI (July??) Theory of Elementary Particles homework XI (July??) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report (like II-1, II-3, IV- ).

More information

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles Decays and Scattering Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles 1 Decay Rates There are THREE experimental probes of Elementary Particle Interactions - bound states

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

Decay rates and Cross section. Ashfaq Ahmad National Centre for Physics

Decay rates and Cross section. Ashfaq Ahmad National Centre for Physics Decay rates and Cross section Ashfaq Ahmad National Centre for Physics 11/17/2014 Ashfaq Ahmad 2 Outlines Introduction Basics variables used in Exp. HEP Analysis Decay rates and Cross section calculations

More information

Subatomic Physics: Particle Physics Study Guide

Subatomic Physics: Particle Physics Study Guide Subatomic Physics: Particle Physics Study Guide This is a guide of what to revise for the exam. The other material we covered in the course may appear in uestions but it will always be provided if reuired.

More information

Constituent Quarks and the Gluonic Contribution to the Spin of the Nucleon

Constituent Quarks and the Gluonic Contribution to the Spin of the Nucleon Constituent Quarks and the Gluonic Contribution to the Spin of the Nucleon Ludwig-Maximilians-Universität München Faculty of Physics Thesis submitted By Gamal Eldahoumi from Benghazi/Libya Munich January

More information

Introductory Lectures on Collider Physics

Introductory Lectures on Collider Physics Introductory Lectures on Collider Physics Tim M.P. Tait Department of Physics and Astronomy, University of California, Irvine, California 92697 (Dated: June 14, 2011) 1 pa p1 pa p1 Q = p1 - pa V(x) pb

More information

Two Photon Exchange in Inclusive and Semi Inclusive DIS

Two Photon Exchange in Inclusive and Semi Inclusive DIS Two Photon Exchange in Inclusive and Semi Inclusive DIS Marc Schlegel Theory Center, Jefferson Lab In collaboration with Christian Weiss, Andrei Afanasev, Andreas Metz Two Photon Exchange in elastic scattering

More information

Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC

Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC Aug 25, 2004 NP04, KEK Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC T.-A. Shibata (Tokyo Tech) in collaboration with N. Saito (Kyoto Univ) and Y. Miyachi (Tokyo Tech) for

More information

CHAPTER 2 ELECTRON-PROTON COLLISION

CHAPTER 2 ELECTRON-PROTON COLLISION CHAPTER ELECTRON-PROTON COLLISION.1 Electron-proton collision at HERA The collision between electron and proton at HERA is useful to obtain the kinematical values of particle diffraction and interaction

More information

Measurement of the photon structure function (x,q 2 ) with the LUMI detector at L3. Gyongyi Baksay

Measurement of the photon structure function (x,q 2 ) with the LUMI detector at L3. Gyongyi Baksay Measurement of the photon structure function F (x,q ) with the LUMI detector at L3 Gyongyi Baksay Florida Institute of Technology Melbourne, Florida, USA Advisor: Dr. Marcus Hohlmann Orlando, March -3,

More information

Lecture 11 Weak interactions, Cabbibo-angle. angle. SS2011: Introduction to Nuclear and Particle Physics, Part 2

Lecture 11 Weak interactions, Cabbibo-angle. angle. SS2011: Introduction to Nuclear and Particle Physics, Part 2 Lecture 11 Weak interactions, Cabbibo-angle angle SS2011: Introduction to Nuclear and Particle Physics, Part 2 1 Neutrino-lepton reactions Consider the reaction of neutrino-electron scattering: Feynman

More information

Proton Structure Function Measurements from HERA

Proton Structure Function Measurements from HERA Proton Structure Function Measurements from HERA Jörg Gayler DESY, Notkestrasse 85, 2263 Hamburg, Germany E-mail: gayler@mail.desy.de Abstract. Measurements of proton structure functions made in neutral

More information

Fundamental Interactions (Forces) of Nature

Fundamental Interactions (Forces) of Nature Chapter 14 Fundamental Interactions (Forces) of Nature Interaction Gauge Boson Gauge Boson Mass Interaction Range (Force carrier) Strong Gluon 0 short-range (a few fm) Weak W ±, Z M W = 80.4 GeV/c 2 short-range

More information

arxiv:hep-ph/ v1 4 Feb 1997

arxiv:hep-ph/ v1 4 Feb 1997 DOUBLE SPIN TRANSVERSE ASYMMETRIES IN DRELL YAN PROCESSES V. Barone a,b, T. Calarco c and A. Drago c a Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino, 10125 Torino, Italy

More information

Particle Physics Dr. Alexander Mitov Handout 1 : Introduction

Particle Physics Dr. Alexander Mitov Handout 1 : Introduction Dr. A. Mitov Particle Physics 1 Particle Physics Dr. Alexander Mitov Handout 1 : Introduction Cambridge Particle Physics Courses PART II Particle and Nuclear Physics Dr. Potter Introductory course PART

More information

Models of the Nucleon & Parton Distribution Functions

Models of the Nucleon & Parton Distribution Functions 11th CTEQ Summer School on QCD Analysis and Phenomenology Madison, Wisconsin, June 22-30, 2004 Models of the Nucleon & Parton Distribution Functions Wally Melnitchouk Jefferson Lab Outline Introduction

More information

Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment. Hidekazu Tanaka

Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment. Hidekazu Tanaka Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment A Dissertation By Hidekazu Tanaka February 25 Department of Physics Tokyo Institute of Technology Abstract

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 2012/13 (9.11.2012) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 226, 3.101 QED Feyman Rules Starting from elm potential exploiting Fermi s gold rule derived QED Feyman

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 W- and Z-Bosons 1 2 Contents Discovery of real W- and Z-bosons Intermezzo: QCD at Hadron Colliders LEP + Detectors W- and Z- Physics at LEP

More information

Lepton Angular Distributions in Drell-Yan Process

Lepton Angular Distributions in Drell-Yan Process Lepton ngular Distributions in Drell-Yan Process Jen-Chieh Peng University of Illinois at Urbana-Champaign QCD Evolution 08 Santa Fe May 0-4, 08 Based on the paper of JCP, Wen-Chen Chang, Evan McClellan,

More information

Study of Inclusive Jets Production in ep Interactions at HERA

Study of Inclusive Jets Production in ep Interactions at HERA HEP 003 Europhysics Conference in Aachen, Germany Study of Inclusive Jets Production in ep Interactions at HERA Mónica Luisa Vázquez Acosta Universidad Autónoma de Madrid On behalf of the ZEUS & H1 Collaborations

More information

Timelike Compton Scattering

Timelike Compton Scattering Timelike Compton Scattering Tanja Horn In collaboration with: Y. Illieva, F.J. Klein, P. Nadel-Turonski, R. Paremuzyan, S. Stepanyan 12 th Int. Conference on Meson-Nucleon Physics and the Structure of

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

3.2 DIS in the quark parton model (QPM)

3.2 DIS in the quark parton model (QPM) Experimental studies of QCD 1. Elements of QCD 2. Tests of QCD in annihilation 3. Studies of QCD in DIS 4. QCD in collisions 3.2 DIS in the quark parton model (QPM) M W Elastic scattering: W = M only one

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Quasi-PDFs and Pseudo-PDFs

Quasi-PDFs and Pseudo-PDFs s and s A.V. Radyushkin Physics Department, Old Dominion University & Theory Center, Jefferson Lab 2017 May 23, 2017 Densities and Experimentally, one works with hadrons Theoretically, we work with quarks

More information

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Problem 2 has nothing to do with what we have done in class. It introduces somewhat strange coordinates called rapidity and pseudorapidity

More information

Lecture 9. Isospin The quark model

Lecture 9. Isospin The quark model Lecture 9 Isospin The quark model There is one more symmetry that applies to strong interactions. isospin or isotopic spin It was useful in formulation of the quark picture of known particles. We can consider

More information

QCD at hadron colliders

QCD at hadron colliders QCD at hadron colliders This will be a brief experimentalist s view, with a concentration on the two hadron-hadron colliders mentioned in the previous talk If you want a good reference book for graduate

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

Weak Interactions & Neutral Currents

Weak Interactions & Neutral Currents Weak Interactions & Neutral Currents Until the the mid-970 s all known weak interaction processes could be described by the exchange of a charged, spin boson, the W boson. Weak interactions mediated by

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

The Exchange Model. Lecture 2. Quantum Particles Experimental Signatures The Exchange Model Feynman Diagrams. Eram Rizvi

The Exchange Model. Lecture 2. Quantum Particles Experimental Signatures The Exchange Model Feynman Diagrams. Eram Rizvi The Exchange Model Lecture 2 Quantum Particles Experimental Signatures The Exchange Model Feynman Diagrams Eram Rizvi Royal Institution - London 14 th February 2012 Outline A Century of Particle Scattering

More information