Solving Exponential and Logarithmic Equations

Size: px
Start display at page:

Download "Solving Exponential and Logarithmic Equations"

Transcription

1 Solving Exponential and Logarithmic Equations We will now use the properties of logarithms along with the fact that exponential and logarithmic functions are inverses of each other to solve problems involving exponential and logarithmic equations Exponential Equations: To solve: 1) Try to write both sides of the equation with the same base, if possible Then set the exponents equal to each other 2) If you cannot write both sides of the equation with the same base, then take the log(using the given base or a base you ve converted to) of both sides of the equation Then solve Solve 1) 9 8x 27 x3 2) x x (3) 3 x3 log x1 log x 3 3x9 x 1 log 5 1 2x = 3x 9 x = 5 x 1 log5 log x 1 log5 log 211

2 Now, you try to solve the following problems A) 3 2x 27 B) 2 3x x 3 log 3 2 3x 2 log x 3 x = 3/2 x 3x log15 log2 log15 log You must isolate the exponential part of the equation before logging both sides of the equation For example, let s solve, log 10 2x3 log x3 17--> 10 2x > > 2x 3 ln13 ln10 --> x 111 *Note(Important): When solving Exponential and Logarithmic equations, be sure to try to keep as many decimal places in the middle steps of the problem as possible Otherwise, your final answer may be quite a bit off from what the true answer is Often, you can use the word log in your calculations without having to find out a decimal equivalent of the log in every step of the problem

3 Logarithmic Equations: To solve: 1) Try to write both sides of the equation with the same base logarithm, if possible Then set the arguments of the logarithms equal to each other 2) If you cannot write both sides of the equation with the same base logarithm, then exponentiate both sides of the equation using the given base or a base you ve converted to *OR, at some point in the problem, you could change from logarithmic notation to exponential notation which makes the problem one step shorter Then solve *3) With any equation that starts with logarithms in the equation, you MUST check your answer because you may have extraneous solutions The reason for this is because the domain of a logarithmic function is usually x > 0 or it could be x > some other number if the function has been shifted left or right Solve 1) log (2x 1) 2log x --> Before we do anything here, we must get rid of any coefficients in front of any log statement or the logarithmic properties won t work So, we bring the coefficient of 2 up as an exponent --> log (2x 1) log x 2 log (2x1) log x --> Now six both sides, 2 --> The base and log undo each other since they are inverses and we are left with 2x 1 x 2 x 2 2x 1 0 (x 1) 2 0 x 1 which checks in the original equation

4 log (2x 1) 1 2) Yes, we could six both sides, but instead let s change to exponential form --> 1 2x 1 This saved us the one step that sixing both sides would have 1 added Now, 2x 1 2x 11 x 7 2, which checks *Note(Important): Once again, as we said in the previous section, if you use Properties of Logs the base for the logs must be the SAME or somehow you can convert the base to be the same or you cannot use Properties of Logs log 100 log (x 1) 1 log 100 3) --> x > Yes, we could both sides but instead let s cut off that step by converting from log notation to exponential notation --> x 100 x 2 x 1, which checks in the original equation Notice that changing to exponential notation works only if you put all of the logs to one side of the equation leaving a constant on the other side of the equation We could have done Example 1) above the same way by setting the original equation equal to 0, but it would have been more work than simply equating the arguments of the logs Now, you try to solve the following logarithmic equations: A) C) log 8 3 log (3x 1) 2 5 log (2x 1) 3 B) D) log (5x 1) 3 log8 3log x log (x 7)

5 Answers(All answers check in the original equation): A) x = 73/1 B) x = 2 C) x = 8 D) x = 5 Sometimes you can find creative ways to get to the answers for these problems Solve, log x x x x 5 2 x 25 *Remember, you must check your answers if the problem begins with logs in it Solve log x 12 log (x 1) 1 12 log But x = - does not check in the original equation since we cannot take the log of a negative number So, the only solution here is x = 3 12 xx 1 1 log (x 2 x) 1 x 2 x 12 1 x 2 x 12 0 x 3 or x 12 Applications of Exponential and Logarithmic Equations Now that we can solve both exponential and logarithmic equations, we can model other real-life situations and solve problems in those situations Example: Plutonium 239 has a half-life of 2,110 years How long does it take for a 1 gram sample of Pu-239 to decay to 01 g?

6 This is a continuous decay problem, so our equation will of course involve e Recall the equation for continuous growth or decay, A(t) A 0 e rt For these types of problems, very similar to our direct and inverse variation problems, the rate of decay will be a constant, which we will call k So, we replace r with k in the function and it now looks like, A(t) A 0 e kt Put the numbers into the equation, 011e kt and we cannot solve it because we don t know k Just as we did with direct and inverse variation problems, we need to use some initial information given in the problem to solve for k before we can solve for t That information is Plutonium 239 has a half-life of 2,110 years We started with 1g of Plutonium 239 So, 2,110 years later, 05g will be leftover Now, the equation becomes, A(t) A 0 e kt 05 1e k2, e k2,110 Take the ln of both sides and keep a lot of decimal places for k, ln05 lne k2, ,110k k Back to the original equation: A(t) A 0 e kt --> 011e t ln both sides--> ln01 lne t t which gives us t 80,092 years Example: Suppose a bacteria culture doubles in size every hour How many hours will it take for the number of bacteria to exceed 1,000,000? N(t) 2 t Doubling means we are using the exponential function where N represents the number of bacteria at any time t after

7 the start of bacteria growth So, we need to solve the inequality, 2 t 1,000,000 Take the log base 2 of both sides: log 2 t log 1,000,000 t log1,000, hours 2 2 log2 This problem was a bit easier since we did not need to figure out any k, but problems like these could involve a growth constant as well Yes, we could have just done a log or ln to both sides of this equation and then brought the exponent t down in front of the base of 2 *Note: Radioactive elements decay continuously Now, you try to solve the following problems: A) The magnitude M of an earthquake that releases energy E, in egrs, can be modeled by the equation M 0291lnE 117 On May 22, 190, one of the most powerful earthquakes on record shook the country of Chile The earthquake had a magnitude of 95 How much energy did this earthquake release? Put your answer in scientific notation B) Determine how long it will take for a 50mg sample of Chromium-51, which has a half-life of about 28 days, to decay to 200mg *Keep at least 5 decimal places for k A(t) A 0 e kt Answers: A) E 2702 x ergs B) k ; t 7 years *Hmwk: Do the first two problems below and do odd, 3- all, 8-70 all shown below Also, read Section 5 in your textbook and do p339(29-35 odd) and p30(71, 73)

8

9

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals By the end of this chapter, you should be able to Graph exponential growth functions. (8.1) Graph exponential

More information

Part 4: Exponential and Logarithmic Functions

Part 4: Exponential and Logarithmic Functions Part 4: Exponential and Logarithmic Functions Chapter 5 I. Exponential Functions (5.1) II. The Natural Exponential Function (5.2) III. Logarithmic Functions (5.3) IV. Properties of Logarithms (5.4) V.

More information

Exponential Functions Concept Summary See pages Vocabulary and Concept Check.

Exponential Functions Concept Summary See pages Vocabulary and Concept Check. Vocabulary and Concept Check Change of Base Formula (p. 548) common logarithm (p. 547) exponential decay (p. 524) exponential equation (p. 526) exponential function (p. 524) exponential growth (p. 524)

More information

3.4 Exponential and Logarithmic Equations

3.4 Exponential and Logarithmic Equations 3.4 Exponential and Logarithmic Equations Pre-Calculus Mr. Niedert Pre-Calculus 3.4 Exponential and Logarithmic Equations Mr. Niedert 1 / 18 3.4 Exponential and Logarithmic Equations 1 Solving Simple Equations

More information

10 Exponential and Logarithmic Functions

10 Exponential and Logarithmic Functions 10 Exponential and Logarithmic Functions Concepts: Rules of Exponents Exponential Functions Power Functions vs. Exponential Functions The Definition of an Exponential Function Graphing Exponential Functions

More information

Positive exponents indicate a repeated product 25n Negative exponents indicate a division by a repeated product

Positive exponents indicate a repeated product 25n Negative exponents indicate a division by a repeated product Lesson.x Understanding Rational Exponents Sample Lesson, Algebraic Literacy Earlier, we used integer exponents for a number or variable base, like these: x n Positive exponents indicate a repeated product

More information

Population Changes at a Constant Percentage Rate r Each Time Period

Population Changes at a Constant Percentage Rate r Each Time Period Concepts: population models, constructing exponential population growth models from data, instantaneous exponential growth rate models. Population can mean anything from bacteria in a petri dish, amount

More information

Practice Questions for Final Exam - Math 1060Q - Fall 2014

Practice Questions for Final Exam - Math 1060Q - Fall 2014 Practice Questions for Final Exam - Math 1060Q - Fall 01 Before anyone asks, the final exam is cumulative. It will consist of about 50% problems on exponential and logarithmic functions, 5% problems on

More information

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years.

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years. Exam 4 Review Approximate the number using a calculator. Round your answer to three decimal places. 1) 2 1.7 2) e -1.4 Use the compound interest formulas A = P 1 + r n nt and A = Pe rt to solve. 3) Find

More information

Section 2.3: Logarithmic Functions Lecture 3 MTH 124

Section 2.3: Logarithmic Functions Lecture 3 MTH 124 Procedural Skills Learning Objectives 1. Build an exponential function using the correct compounding identifiers (annually, monthly, continuously etc...) 2. Manipulate exponents algebraically. e.g. Solving

More information

25 = 2. Remember to put the base lower than the g of log so you don t get confused 2. Write the log equation in exponential form 2.

25 = 2. Remember to put the base lower than the g of log so you don t get confused 2. Write the log equation in exponential form 2. LOGARITHMS The logarithm of a number to a given base is the exponent to which that base must be raised in order to produce the number. For example: What is the exponent that must be raised to in order

More information

C. HECKMAN TEST 1A SOLUTIONS 170

C. HECKMAN TEST 1A SOLUTIONS 170 C. HECKMAN TEST 1A SOLUTIONS 170 1) Thornley s Bank of Atlanta offers savings accounts which earn 4.5% per year. You have $00, which you want to invest. a) [10 points] If the bank compounds the interest

More information

What You Need to Know for the Chapter 7 Test

What You Need to Know for the Chapter 7 Test Score: /46 Name: Date: / / Hr: Alg 2C Chapter 7 Review - WYNTK CH 7 What You Need to Know for the Chapter 7 Test 7.1 Write & evaluate exponential expressions to model growth and decay situations. Determine

More information

Fundamentals of Mathematics (MATH 1510)

Fundamentals of Mathematics (MATH 1510) Fundamentals of Mathematics () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University February 3-5, 2016 Outline 1 growth (doubling time) Suppose a single bacterium

More information

5.2 Infinite Series Brian E. Veitch

5.2 Infinite Series Brian E. Veitch 5. Infinite Series Since many quantities show up that cannot be computed exactly, we need some way of representing it (or approximating it). One way is to sum an infinite series. Recall that a n is the

More information

Summary sheet: Exponentials and logarithms

Summary sheet: Exponentials and logarithms F Know and use the function a and its graph, where a is positive Know and use the function e and its graph F2 Know that the gradient of e k is equal to ke k and hence understand why the eponential model

More information

Algebra 2 Honors. Logs Test Review

Algebra 2 Honors. Logs Test Review Algebra 2 Honors Logs Test Review Name Date Let ( ) = ( ) = ( ) =. Perform the indicated operation and state the domain when necessary. 1. ( (6)) 2. ( ( 3)) 3. ( (6)) 4. ( ( )) 5. ( ( )) 6. ( ( )) 7. (

More information

p351 Section 5.5: Bases Other than e and Applications

p351 Section 5.5: Bases Other than e and Applications p351 Section 5.5: Bases Other than e and Applications Definition of Exponential Function to Base a If a is a positive real number (a 1) and x is any real number, then the exponential function to the base

More information

LEARNING OUTCOMES AND ASSESSMENT STANDARDS. Converting to exponential form Solve for x: log 2. x = 3

LEARNING OUTCOMES AND ASSESSMENT STANDARDS. Converting to exponential form Solve for x: log 2. x = 3 Lesson LOGARITHMS () LEARNING OUTCOMES AND ASSESSMENT STANDARDS Learning outcome 1: Number and number relationships Assessment Standard 1.1. Demonstrates an understanding of the definition of a logarithm

More information

Applications of Exponential Functions Group Activity 7 STEM Project Week #10

Applications of Exponential Functions Group Activity 7 STEM Project Week #10 Applications of Exponential Functions Group Activity 7 STEM Project Week #10 In the last activity we looked at exponential functions. We looked at an example of a population growing at a certain rate.

More information

17 Exponential and Logarithmic Functions

17 Exponential and Logarithmic Functions 17 Exponential and Logarithmic Functions Concepts: Exponential Functions Power Functions vs. Exponential Functions The Definition of an Exponential Function Graphing Exponential Functions Exponential Growth

More information

Population Changes at a Constant Percentage Rate r Each Time Period

Population Changes at a Constant Percentage Rate r Each Time Period Concepts: population models, constructing exponential population growth models from data, instantaneous exponential growth rate models, logistic growth rate models. Population can mean anything from bacteria

More information

Algebra III: Blizzard Bag #1 Exponential and Logarithm Functions

Algebra III: Blizzard Bag #1 Exponential and Logarithm Functions NAME : DATE: PERIOD: Algebra III: Blizzard Bag #1 Exponential and Logarithm Functions Students need to complete the following assignment, which will aid in review for the end of course exam. Look back

More information

Chapter 6: Exponential and Logarithmic Functions

Chapter 6: Exponential and Logarithmic Functions Section 6.1: Algebra and Composition of Functions #1-9: Let f(x) = 2x + 3 and g(x) = 3 x. Find each function. 1) (f + g)(x) 2) (g f)(x) 3) (f/g)(x) 4) ( )( ) 5) ( g/f)(x) 6) ( )( ) 7) ( )( ) 8) (g+f)(x)

More information

Logarithmic Functions

Logarithmic Functions Name Student ID Number Group Name Group Members Logarithmic Functions 1. Solve the equations below. xx = xx = 5. Were you able solve both equations above? If so, was one of the equations easier to solve

More information

MAC Module 8 Exponential and Logarithmic Functions I. Rev.S08

MAC Module 8 Exponential and Logarithmic Functions I. Rev.S08 MAC 1105 Module 8 Exponential and Logarithmic Functions I Learning Objectives Upon completing this module, you should be able to: 1. Distinguish between linear and exponential growth. 2. Model data with

More information

MAC Module 8. Exponential and Logarithmic Functions I. Learning Objectives. - Exponential Functions - Logarithmic Functions

MAC Module 8. Exponential and Logarithmic Functions I. Learning Objectives. - Exponential Functions - Logarithmic Functions MAC 1105 Module 8 Exponential and Logarithmic Functions I Learning Objectives Upon completing this module, you should be able to: 1. Distinguish between linear and exponential growth. 2. Model data with

More information

Study Guide and Review - Chapter 7

Study Guide and Review - Chapter 7 Choose a word or term from the list above that best completes each statement or phrase. 1. A function of the form f (x) = b x where b > 1 is a(n) function. exponential growth 2. In x = b y, the variable

More information

4.1 Solutions to Exercises

4.1 Solutions to Exercises 4.1 Solutions to Exercises 1. Linear, because the average rate of change between any pair of points is constant. 3. Exponential, because the difference of consecutive inputs is constant and the ratio of

More information

Unit 3 NOTES Honors Math 2 21

Unit 3 NOTES Honors Math 2 21 Unit 3 NOTES Honors Math 2 21 Warm Up: Exponential Regression Day 8: Point Ratio Form When handed to you at the drive-thru window, a cup of coffee was 200 o F. Some data has been collected about how the

More information

Solving Exponential Equations (Applied Problems) Class Work

Solving Exponential Equations (Applied Problems) Class Work Solving Exponential Equations (Applied Problems) Class Work Objective: You will be able to solve problems involving exponential situations. Quick Review: Solve each equation for the variable. A. 2 = 4e

More information

Logarithms involve the study of exponents so is it vital to know all the exponent laws.

Logarithms involve the study of exponents so is it vital to know all the exponent laws. Pre-Calculus Mathematics 12 4.1 Exponents Part 1 Goal: 1. Simplify and solve exponential expressions and equations Logarithms involve the study of exponents so is it vital to know all the exponent laws.

More information

Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 2

Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 2 4-5 Warm Up Lesson Presentation Lesson Quiz Algebra 2 Warm Up Solve. 1. log 16 x = 3 2 64 2. log x 1.331 = 3 1.1 3. log10,000 = x 4 Objectives Solve exponential and logarithmic equations and equalities.

More information

3 Inequalities Absolute Values Inequalities and Intervals... 18

3 Inequalities Absolute Values Inequalities and Intervals... 18 Contents 1 Real Numbers, Exponents, and Radicals 1.1 Rationalizing the Denominator................................... 1. Factoring Polynomials........................................ 1. Algebraic and Fractional

More information

base 2 4 The EXPONENT tells you how many times to write the base as a factor. Evaluate the following expressions in standard notation.

base 2 4 The EXPONENT tells you how many times to write the base as a factor. Evaluate the following expressions in standard notation. EXPONENTIALS Exponential is a number written with an exponent. The rules for exponents make computing with very large or very small numbers easier. Students will come across exponentials in geometric sequences

More information

Pre-Calculus Notes from Week 6

Pre-Calculus Notes from Week 6 1-105 Pre-Calculus Notes from Week 6 Logarithmic Functions: Let a > 0, a 1 be a given base (as in, base of an exponential function), and let x be any positive number. By our properties of exponential functions,

More information

Exponential and Logarithmic Equations and Models. College Algebra

Exponential and Logarithmic Equations and Models. College Algebra Exponential and Logarithmic Equations and Models College Algebra Product Rule for Logarithms The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

Exponential and Logarithmic Functions. By Lauren Bae and Yamini Ramadurai

Exponential and Logarithmic Functions. By Lauren Bae and Yamini Ramadurai Exponential and Logarithmic Functions By Lauren Bae and Yamini Ramadurai What is an Exponential Function? An exponential function any function where the variable is now the power, rather than the base.

More information

Exponential Growth (Doubling Time)

Exponential Growth (Doubling Time) Exponential Growth (Doubling Time) 4 Exponential Growth (Doubling Time) Suppose we start with a single bacterium, which divides every hour. After one hour we have 2 bacteria, after two hours we have 2

More information

Part 3.3 Differentiation Taylor Polynomials

Part 3.3 Differentiation Taylor Polynomials Part 3.3 Differentiation 3..3.1 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

Working with Square Roots. Return to Table of Contents

Working with Square Roots. Return to Table of Contents Working with Square Roots Return to Table of Contents 36 Square Roots Recall... * Teacher Notes 37 Square Roots All of these numbers can be written with a square. Since the square is the inverse of the

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

Simplifying Radical Expressions

Simplifying Radical Expressions Simplifying Radical Expressions Product Property of Radicals For any real numbers a and b, and any integer n, n>1, 1. If n is even, then When a and b are both nonnegative. n ab n a n b 2. If n is odd,

More information

Day Date Assignment. 7.1 Notes Exponential Growth and Decay HW: 7.1 Practice Packet Tuesday Wednesday Thursday Friday

Day Date Assignment. 7.1 Notes Exponential Growth and Decay HW: 7.1 Practice Packet Tuesday Wednesday Thursday Friday 1 Day Date Assignment Friday Monday /09/18 (A) /1/18 (B) 7.1 Notes Exponential Growth and Decay HW: 7.1 Practice Packet Tuesday Wednesday Thursday Friday Tuesday Wednesday Thursday Friday Monday /1/18

More information

Exponential and Logarithmic Equations

Exponential and Logarithmic Equations OpenStax-CNX module: m49366 1 Exponential and Logarithmic Equations OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section,

More information

1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

More information

There are two main properties that we use when solving linear equations. Property #1: Additive Property of Equality

There are two main properties that we use when solving linear equations. Property #1: Additive Property of Equality Chapter 1.1: Solving Linear and Literal Equations Linear Equations Linear equations are equations of the form ax + b = c, where a, b and c are constants, and a zero. A hint that an equation is linear is

More information

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents Slide 1 / 261 Algebra II Slide 2 / 261 Linear, Exponential and 2015-04-21 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 261 Linear Functions Exponential Functions Properties

More information

Part I: Multiple Choice Questions

Part I: Multiple Choice Questions Name: Part I: Multiple Choice Questions. What is the slope of the line y=3 A) 0 B) -3 ) C) 3 D) Undefined. What is the slope of the line perpendicular to the line x + 4y = 3 A) -/ B) / ) C) - D) 3. Find

More information

Logarithmic and Exponential Equations and Inequalities College Costs

Logarithmic and Exponential Equations and Inequalities College Costs Logarithmic and Exponential Equations and Inequalities ACTIVITY 2.6 SUGGESTED LEARNING STRATEGIES: Summarize/ Paraphrase/Retell, Create Representations Wesley is researching college costs. He is considering

More information

College Algebra. Chapter 5 Review Created by: Lauren Atkinson. Math Coordinator, Mary Stangler Center for Academic Success

College Algebra. Chapter 5 Review Created by: Lauren Atkinson. Math Coordinator, Mary Stangler Center for Academic Success College Algebra Chapter 5 Review Created by: Lauren Atkinson Math Coordinator, Mary Stangler Center for Academic Success Note: This review is composed of questions from the chapter review at the end of

More information

Unit 5: Exponential and Logarithmic Functions

Unit 5: Exponential and Logarithmic Functions 71 Rational eponents Unit 5: Eponential and Logarithmic Functions If b is a real number and n and m are positive and have no common factors, then n m m b = b ( b ) m n n Laws of eponents a) b) c) d) e)

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions 6 Figure 1 Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE 6.1 Exponential Functions 6.5 Logarithmic Properties 6.2

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module 1 1.1 Order of Operations 1.6 Signed Numbers 1. Factorization of Integers 1.7 Further Signed Numbers 1.3 Fractions 1.8 Power Laws 1.4 Fractions and Decimals 1.9 Introduction to

More information

MA Lesson 30 Exponential and Logarithmic Application Problems

MA Lesson 30 Exponential and Logarithmic Application Problems MA 15200 Lesson 30 Exponential and Logarithmic Application Problems In order to solve the applied problems in this lesson, a student must know how to use the x log, ln, e, and power key functions on a

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Learning Targets 1. I can evaluate, analyze, and graph exponential functions. 2. I can solve problems involving exponential growth & decay. 3. I can evaluate expressions

More information

Logarithmic, Exponential, and Other Transcendental Functions. Copyright Cengage Learning. All rights reserved.

Logarithmic, Exponential, and Other Transcendental Functions. Copyright Cengage Learning. All rights reserved. 5 Logarithmic, Exponential, and Other Transcendental Functions Copyright Cengage Learning. All rights reserved. 5.5 Bases Other Than e and Applications Copyright Cengage Learning. All rights reserved.

More information

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 HW#1 Name Unit 4B Logarithmic Functions HW #1 Algebra II Mrs. Dailey 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 2) If the graph of y =6 x is reflected

More information

Jim Lambers Math 1B Fall Quarter Final Exam Solution (Version A)

Jim Lambers Math 1B Fall Quarter Final Exam Solution (Version A) Jim Lambers Math 1B Fall Quarter 004-05 Final Exam Solution (Version A) 1. Suppose that a culture initially contains 500 bacteria, and that the population doubles every hours. What is the population after

More information

Arrange the given terms to create a true exponential equation and a true logarithmic equation.

Arrange the given terms to create a true exponential equation and a true logarithmic equation. Lesson.1 Skills Practice Name Date All the Pieces of the Puzzle Exponential and Logarithmic Forms Vocabulary 1. Give an example of a logarithmic equation. Answers will vary. Sample answer: log 2 256 5

More information

(x! 4) (x! 4)10 + C + C. 2 e2x dx = 1 2 (1 + e 2x ) 3 2e 2x dx. # 8 '(4)(1 + e 2x ) 3 e 2x (2) = e 2x (1 + e 2x ) 3 & dx = 1

(x! 4) (x! 4)10 + C + C. 2 e2x dx = 1 2 (1 + e 2x ) 3 2e 2x dx. # 8 '(4)(1 + e 2x ) 3 e 2x (2) = e 2x (1 + e 2x ) 3 & dx = 1 33. x(x - 4) 9 Let u = x - 4, then du = and x = u + 4. x(x - 4) 9 = (u + 4)u 9 du = (u 0 + 4u 9 )du = u + 4u0 0 = (x! 4) + 2 5 (x! 4)0 (x " 4) + 2 5 (x " 4)0 ( '( = ()(x - 4)0 () + 2 5 (0)(x - 4)9 () =

More information

MATH 1431-Precalculus I

MATH 1431-Precalculus I MATH 43-Precalculus I Chapter 4- (Composition, Inverse), Eponential, Logarithmic Functions I. Composition of a Function/Composite Function A. Definition: Combining of functions that output of one function

More information

CHAPTER 2: Polynomial and Rational Functions

CHAPTER 2: Polynomial and Rational Functions 1) (Answers for Chapter 2: Polynomial and Rational Functions) A.2.1 CHAPTER 2: Polynomial and Rational Functions SECTION 2.1: QUADRATIC FUNCTIONS (AND PARABOLAS) ( ) ; c) x = 1 ( ) ( ) and ( 4, 0) ( )

More information

Week 7 Algebra 1 Assignment:

Week 7 Algebra 1 Assignment: Week 7 Algebra 1 Assignment: Day 1: Chapter 3 test Day 2: pp. 132-133 #1-41 odd Day 3: pp. 138-139 #2-20 even, 22-26 Day 4: pp. 141-142 #1-21 odd, 25-30 Day 5: pp. 145-147 #1-25 odd, 33-37 Notes on Assignment:

More information

Dimensional Analysis and Exponential Models Review Solutions

Dimensional Analysis and Exponential Models Review Solutions Dimensional Analysis and Exponential Models Review Solutions 1. Given 13 morks is 1 gloe, 5 gloes is 1 flit, 7 kits is one lonk, and 10 lonks is 1 gall. Convert 90 morks per kit to flits per gall. To solve

More information

MATH Section 4.1

MATH Section 4.1 MATH 1311 Section 4.1 Exponential Growth and Decay As we saw in the previous chapter, functions are linear if adding or subtracting the same value will get you to different coordinate points. Exponential

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.6 Inverse Functions and Logarithms In this section, we will learn about: Inverse functions and logarithms. INVERSE FUNCTIONS The table gives data from an experiment

More information

Chapter 11 Logarithms

Chapter 11 Logarithms Chapter 11 Logarithms Lesson 1: Introduction to Logs Lesson 2: Graphs of Logs Lesson 3: The Natural Log Lesson 4: Log Laws Lesson 5: Equations of Logs using Log Laws Lesson 6: Exponential Equations using

More information

DISCUSS DISCOVER PROVE WRITE. (a) log a x y b log x log y (b) log 2 1x y2 log 2 x log 2 y. (c) log 5 a a b 2 b log 5 a 2 log 5 b

DISCUSS DISCOVER PROVE WRITE. (a) log a x y b log x log y (b) log 2 1x y2 log 2 x log 2 y. (c) log 5 a a b 2 b log 5 a 2 log 5 b 360 CHAPTER 4 Exponential and Logarithmic Functions 74. Biodiversity Some biologists model the number of species S in a fixed area A (such as an island) by the species-area relationship log S log c k log

More information

EXPONENTIAL, LOGARITHMIC, AND TRIGONOMETRIC FUNCTIONS

EXPONENTIAL, LOGARITHMIC, AND TRIGONOMETRIC FUNCTIONS Calculus for the Life Sciences nd Edition Greenwell SOLUTIONS MANUAL Full download at: https://testbankreal.com/download/calculus-for-the-life-sciences-nd-editiongreenwell-solutions-manual-/ Calculus for

More information

Transformations of Functions and Exponential Functions January 24, / 35

Transformations of Functions and Exponential Functions January 24, / 35 Exponential Functions January 24, 2017 Exponential Functions January 24, 2017 1 / 35 Review of Section 1.2 Reminder: Week-in-Review, Help Sessions, Oce Hours Mathematical Models Linear Regression Function

More information

Logarithmic Properties

Logarithmic Properties Logarithmic Properties By: OpenStaxCollege The ph of hydrochloric acid is tested with litmus paper. (credit: David Berardan) In chemistry, ph is used as a measure of the acidity or alkalinity of a substance.

More information

MATH 1113 Exam 2 Review. Spring 2018

MATH 1113 Exam 2 Review. Spring 2018 MATH 1113 Exam 2 Review Spring 2018 Section 3.1: Inverse Functions Topics Covered Section 3.2: Exponential Functions Section 3.3: Logarithmic Functions Section 3.4: Properties of Logarithms Section 3.5:

More information

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains?

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains? Topic 33: One-to-One Functions Definition: A function f is said to be one-to-one if for every value f(x) in the range of f there is exactly one corresponding x-value in the domain of f. Ex. Are the following

More information

Chapter 6/7- Logarithmic and Exponential Functions

Chapter 6/7- Logarithmic and Exponential Functions Chapter 6/7- Logarithmic and Exponential Functions Lesson Package MHF4U Chapter 6/7 Outline Unit Goal: By the end of this unit, you will be able to demonstrate an understanding of the relationship between

More information

Core Mathematics 3 Exponentials and Natural Logarithms

Core Mathematics 3 Exponentials and Natural Logarithms Edexcel past paper questions Core Mathematics 3 Exponentials and Natural Logarithms Edited by: K V kumaran Email: kvkumaran@gmail.com Core Maths 3 Exponentials and natural Logarithms Page Ln and Exponentials

More information

#29: Logarithm review May 16, 2009

#29: Logarithm review May 16, 2009 #29: Logarithm review May 16, 2009 This week we re going to spend some time reviewing. I say re- view since you ve probably seen them before in theory, but if my experience is any guide, it s quite likely

More information

6.1 Antiderivatives and Slope Fields Calculus

6.1 Antiderivatives and Slope Fields Calculus 6. Antiderivatives and Slope Fields Calculus 6. ANTIDERIVATIVES AND SLOPE FIELDS Indefinite Integrals In the previous chapter we dealt with definite integrals. Definite integrals had limits of integration.

More information

Mock Final Exam Name. Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) A) {- 30} B) {- 6} C) {30} D) {- 28}

Mock Final Exam Name. Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) A) {- 30} B) {- 6} C) {30} D) {- 28} Mock Final Exam Name Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) 1) A) {- 30} B) {- 6} C) {30} D) {- 28} First, write the value(s) that make the denominator(s) zero. Then solve the

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

MA Lesson 14 Notes Summer 2016 Exponential Functions

MA Lesson 14 Notes Summer 2016 Exponential Functions Solving Eponential Equations: There are two strategies used for solving an eponential equation. The first strategy, if possible, is to write each side of the equation using the same base. 3 E : Solve:

More information

4. Sketch the graph of the function. Ans: A 9. Sketch the graph of the function. Ans B. Version 1 Page 1

4. Sketch the graph of the function. Ans: A 9. Sketch the graph of the function. Ans B. Version 1 Page 1 Name: Online ECh5 Prep Date: Scientific Calc ONLY! 4. Sketch the graph of the function. A) 9. Sketch the graph of the function. B) Ans B Version 1 Page 1 _ 10. Use a graphing utility to determine which

More information

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x Math 11. Exponential and Logarithmic Equations Fall 016 Instructions. Work in groups of 3 to solve the following problems. Turn them in at the end of class for credit. Names. 1. Find the (a) exact solution

More information

MATH 236 ELAC FALL 2017 CA 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 236 ELAC FALL 2017 CA 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 36 ELAC FALL 7 CA MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) In a certain country, the rate of increase of the population is proportional

More information

Differentiation of Logarithmic Functions

Differentiation of Logarithmic Functions Differentiation of Logarithmic Functions The rule for finding the derivative of a logarithmic function is given as: If y log a then dy or y. d a ( ln This rule can be proven by rewriting the logarithmic

More information

You separate binary numbers into columns in a similar fashion. 2 5 = 32

You separate binary numbers into columns in a similar fashion. 2 5 = 32 RSA Encryption 2 At the end of Part I of this article, we stated that RSA encryption works because it s impractical to factor n, which determines P 1 and P 2, which determines our private key, d, which

More information

SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer.

SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Math 131 Group Review Assignment (5.5, 5.6) Print Name SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Solve the logarithmic equation.

More information

Explicit form (n th term) Sum of the first n terms Sum of infinite series

Explicit form (n th term) Sum of the first n terms Sum of infinite series Unit 5 Study Guide Name Objectives: Write the explicit form of arithmetic and geometric sequences and find the n th term. (Memorize those formulas.) Use formulas (given) to find the sum of the first n

More information

weebly.com/ Core Mathematics 3 Exponentials and Natural Logarithms

weebly.com/ Core Mathematics 3 Exponentials and Natural Logarithms http://kumarmaths. weebly.com/ Core Mathematics 3 Exponentials and Natural Logarithms Core Maths 3 Exponentials and natural Logarithms Page 1 Ln and Exponentials C3 Content By the end of this unit you

More information

Section 3.7: Solving Radical Equations

Section 3.7: Solving Radical Equations Objective: Solve equations with radicals and check for extraneous solutions. In this section, we solve equations that have roots in the problem. As you might expect, to clear a root we can raise both sides

More information

Unit 3 Day 4. Solving Equations with Rational Exponents and Radicals

Unit 3 Day 4. Solving Equations with Rational Exponents and Radicals Unit Day 4 Solving Equations with Rational Exponents and Radicals Day 4 Warm Up You know a lot about inverses in mathematics we use them every time we solve equations. Write down the inverse operation

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.8 Exponential Growth and Decay In this section, we will: Use differentiation to solve real-life problems involving exponentially growing quantities. EXPONENTIAL

More information

Chapter 6/7- Logarithmic and Exponential Functions

Chapter 6/7- Logarithmic and Exponential Functions Chapter 6/7- Logarithmic and Exponential Functions Lesson Package MHF4U Chapter 6/7 Outline Unit Goal: By the end of this unit, you will be able to demonstrate an understanding of the relationship between

More information

, identify what the letters P, r, n and t stand for.

, identify what the letters P, r, n and t stand for. 1.In the formula At p 1 r n nt, identify what the letters P, r, n and t stand for. 2. Find the exponential function whose graph is given f(x) = a x 3. State the domain and range of the function (Enter

More information

Take the Anxiety Out of Word Problems

Take the Anxiety Out of Word Problems Take the Anxiety Out of Word Problems I find that students fear any problem that has words in it. This does not have to be the case. In this chapter, we will practice a strategy for approaching word problems

More information

Algebra 2 Honors: Final Exam Review

Algebra 2 Honors: Final Exam Review Name: Class: Date: Algebra 2 Honors: Final Exam Review Directions: You may write on this review packet. Remember that this packet is similar to the questions that you will have on your final exam. Attempt

More information

5.5. EXPONENTIAL AND LOGARITHMIC MODELS

5.5. EXPONENTIAL AND LOGARITHMIC MODELS 5.5. EXPONENTIAL AND LOGARITHMIC MODELS What You Should Learn Recognize the five most common types of models involving exponential and logarithmic functions. Use exponential growth and decay functions

More information

Chapter 5 Simplifying Formulas and Solving Equations

Chapter 5 Simplifying Formulas and Solving Equations Chapter 5 Simplifying Formulas and Solving Equations Look at the geometry formula for Perimeter of a rectangle P = L W L W. Can this formula be written in a simpler way? If it is true, that we can simplify

More information

Logarithms. Professor Richard Blecksmith Dept. of Mathematical Sciences Northern Illinois University

Logarithms. Professor Richard Blecksmith Dept. of Mathematical Sciences Northern Illinois University Logarithms Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math211 1. Definition of Logarithm For a > 0, a 1,

More information