Name: Date: Period: Momentum, Work, Power, Energy Study Guide

Size: px
Start display at page:

Download "Name: Date: Period: Momentum, Work, Power, Energy Study Guide"

Transcription

1 Momentum, Work, Power, Energy Study Guide Your test will have fill-in-the-blank and short answer questions. Use the following to help you. Be able to answer questions about the labs (egg drop, collisions, stairs, elevator). Be able to solve number problems about work, power, and energy. See pg. 127 one-step calculations and the worksheet we did for homework for examples. Write in the following definitions: Momentum Impulse Elastic Collision Inelastic Collision Conservation of Momentum Conservation of energy Work

2 Power Energy Kinetic Energy Gravitational Potential Energy Identify what quantities the following units measure: Joules Watts Calories Horsepower

3 Be able to answer the following questions: What force is a scale measuring when you stand on it in an elevator? Why does it change? In terms of impulse and momentum, why do padded dashboards make automobiles safer? In terms of impulse and momentum, why is it important that helicopter blades deflect air downward? Why is a punch more forceful with a bare fist than with a boxing glove? Your friend says that the law of conservation of momentum is violated when a ball rolls downhill and gains momentum. What do you say? If a tennis ball and a bowling ball collide in midair, does each undergo the same change in momentum? Defend your answer. What happens to work if force is increased? What if force is decreased? What happens to work if distance is increased? What if distance is decreased?

4 What happens to power if work is increased? What if work is decreased? What happens to power if time is increased? What if time is decreased? What happens to kinetic energy if velocity is increased? What if velocity is decreased? What happens to kinetic energy if mass is increased? What if mass is decreased? What happens to gravitational potential energy if height is increased? What if height is decreased? What happens to gravitational potential energy if mass is increased? What if mass is decreased? How much work do you do on a 25-kg backpack when you walk a horizontal distance of 100 m? When you lift it a vertical distance of 100 m? At what point in its motion is the KE of a pendulum bob at a maximum? At what point is its GPE at a maximum?

5 Someone trying to sell you a SuperBall claims that it will bounce to a greater height than the height from which it was dropped. Can this be? Explain. Once used, can energy be regenerated? Is your answer consistent with the term renewable energy? How can you increase your work done when you are going up the stairs? How can you increase your power when you are lifting weights? Math practice: 1. Two ice skaters push off against one another starting from a stationary position. The 45-kg skater acquires a velocity of m/s to the right. What velocity does the 60-kg skater acquire? 2. A 0.60-kg glider traveling at 8.0 m/s on a level air track undergoes a head-on collision with a 0.20-kg mass traveling toward it at 4.0 m/s. The two gliders stick in the collision. What is the velocity of the combined gliders after the collision? 3. A glider with mass m and speed v moving along an air track collides with a stationary cart with a mass m/3. After the collision the first cart has a speed v/2. What is the velocity of the second cart? 4. A 200-kg boulder is 1000-m above the ground. a) What is its potential energy when it is 1000-m above the ground?

6 b) What is its kinetic energy when it is 1000-m above the ground? c) The boulder begins to fall. What is its potential energy when it is 500-m above the ground? Where did the lost potential energy go? d) What is the kinetic energy of the boulder when it has fallen 500-m? e) What is the kinetic energy of the boulder just before it hits the ground? 5. Calculate the work done when a force of 1 N moves a book 2 m. 6. Calculate the watts of power expended when a force of 1 N moves a book 2 m in a time interval of 1 second. 7. How many Joules of gravitational potential energy does a 1 kg book gain when it is elevated 4 m? 8. Calculate the number of Joules of kinetic energy a 1 kg book has when tossed across the room at a speed of 2 m/s.

Conservation of Momentum and Energy

Conservation of Momentum and Energy ASU University Physics Labs - Mechanics Lab 5 p. 1 Conservation of Momentum and Energy As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet.

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20 Physics Final Exam Mechanics Review Answers 1. Use the velocity-time graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from -2 s 6 c. acceleration from 2-4 s 2 m/s 2 2 4 t (s)

More information

1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a

1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a Collisions Worksheet Honors: Name: Date: 1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 9,900-kg truck moving in the same direction

More information

CP Snr and Hon Freshmen Study Guide

CP Snr and Hon Freshmen Study Guide CP Snr and Hon Freshmen Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Displacement is which of the following types of quantities? a. vector

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Conservation of Momentum. Chapter 9: Collisions, CM, RP. Conservation of Momentum. Conservation of Momentum. Conservation of Momentum

Conservation of Momentum. Chapter 9: Collisions, CM, RP. Conservation of Momentum. Conservation of Momentum. Conservation of Momentum P H Y S I C S Chapter 9: Collisions, CM, RP Since impulse = change in momentum, If no impulse is exerted on an object, the momentum of the object will not change. If no external forces act on a system,

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Chapter 4 Conservation Laws

Chapter 4 Conservation Laws Conceptual Physics/ PEP Name: Date: Chapter 4 Conservation Laws Section Review 4.1 1. List three action and reaction pairs in the picture at right, on page 82 in text. c. 2. Why don t action and reaction

More information

Physics 130: Questions to study for midterm #1 from Chapter 7

Physics 130: Questions to study for midterm #1 from Chapter 7 Physics 130: Questions to study for midterm #1 from Chapter 7 1. Kinetic energy is defined to be one-half the a. mass times the speed. b. mass times the speed squared. c. mass times the acceleration. d.

More information

Physics. Impulse & Momentum

Physics. Impulse & Momentum Physics Impulse & Momentum Warm up - Write down everything you know about impulse and momentum. Objectives Students will learn the definitions and equations for impulse, momentum, elastic and inelastic

More information

Conservation of Momentum. The total momentum of a closed, isolated system does not change.

Conservation of Momentum. The total momentum of a closed, isolated system does not change. Conservation of Momentum In the 17 th century, Newton and others had measured the momentum of colliding objects before and after collision, and had discovered a strange phenomenon: the total momentum of

More information

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv. Momentum The momentum of a single object is simply equal to the product of its mass and its velocity. The symbol for momentum is p. Since mass is a scalar and velocity is a vector, momentum is also a vector.

More information

Chapter 4 Conservation Laws

Chapter 4 Conservation Laws Conceptual Physics/ PEP Name: Date: Chapter 4 Conservation Laws Section Review 4.1 1. List three action and reaction pairs in the picture at right, on page 82 in text. a. Force of paddle on water, and

More information

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car?

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? Slide 1 / 26 1 freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? 30,000 kg m/s 3,000 kg m/s 300,000 kg m/s

More information

Thinking about collisions (L8)

Thinking about collisions (L8) Thinking about collisions (L8) collisions can be very complicated two objects bang into each other and exert strong forces over short time intervals fortunately, even though we usually do not know the

More information

Part Two: Earlier Material

Part Two: Earlier Material Part Two: Earlier Material Problem 1: (Momentum and Impulse) A superball of m 1 = 0.08kg, starting at rest, is dropped from a height falls h 0 = 3.0m above the ground and bounces back up to a height of

More information

PSI AP Physics I Momentum

PSI AP Physics I Momentum PSI AP Physics I Momentum Multiple-Choice questions 1. A truck moves along a frictionless level road at a constant speed. The truck is open on top. A large load of gravel is suddenly dumped into the truck.

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Name 09-MAR-04. Work Power and Energy

Name 09-MAR-04. Work Power and Energy Page 1 of 16 Work Power and Energy Name 09-MAR-04 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? 1. 2.4 J 3. 12

More information

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? Page of 3 Work Power And Energy TEACHER ANSWER KEY March 09, 200. A spring has a spring constant of 20 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?. 2.

More information

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy.

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy. Physics Name: Date: Period: Final Review Write the appropriate formulas with all units below. Impulse Momentum Conservation of Momentum Rank these in order from least to most momentum:.01kg mass moving

More information

Physics: Impulse / Momentum Problem Set

Physics: Impulse / Momentum Problem Set Physics: Impulse / Momentum Problem Set A> Conceptual Questions 1) Explain two ways a heavy truck and a person on a skateboard can have the same momentum. 2) In stopping an object, how does the time of

More information

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution Assessment Chapter Test A Teacher Notes and Answers Momentum and Collisions CHAPTER TEST A (GENERAL) 1. c 2. c 3. b 4. c 5. a p i = 4.0 kg m/s p f = 4.0 kg m/s p = p f p i = ( 4.0 kg m/s) 4.0 kg m/s =

More information

Energy can change from one form to another without a net loss or gain.

Energy can change from one form to another without a net loss or gain. Energy can change from one form to another without a net loss or gain. Energy may be the most familiar concept in science, yet it is one of the most difficult to define. We observe the effects of energy

More information

UNIT 4 MOMENTUM & IMPULSE

UNIT 4 MOMENTUM & IMPULSE UNIT 4 UNIT 4 MOMENTUM & IMPULSE IMPULSE-MOMENTUM THEOREM Remember, means final initial p = p f p i v = v f v i J = F( t) = p = m v = (mv f mv i ) The impulse, J, that acts on an object is equal to the

More information

Energy Notes. Name: Hr:

Energy Notes. Name: Hr: Energy Notes Name: Hr: Guided Outline 5-1 Nature of Energy Directions: As you read through Chapter 5 in your textbook, fill in the missing information. I. Section 1: Nature of Energy A. What is Energy?

More information

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN 2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN Topics: Forces Motion Momentum Gravity Electrostatics DATE: TIME: ROOM: PROCTOR: YOU ARE REQUIRED TO BRING: 1. CALCULATOR (YOUR OWN NO SHARING) 2. PENCIL

More information

card timer glider B glider A light gates (a) *(i) Describe how you would use the apparatus shown to verify the law of conservation of momentum.

card timer glider B glider A light gates (a) *(i) Describe how you would use the apparatus shown to verify the law of conservation of momentum. 1 The law of conservation of momentum can be investigated using a low-friction track with two gliders. Glider B is stationary. Glider A is given a gentle push towards glider B. The gliders collide, stick

More information

Physics 131: Lecture 15. Today s Agenda

Physics 131: Lecture 15. Today s Agenda Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant t forces Impulse-momentum thm Conservation of Linear momentum External/Internal

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse

More information

Sometimes (like on AP test) you will see the equation like this:

Sometimes (like on AP test) you will see the equation like this: Work, Energy & Momentum Notes Chapter 5 & 6 The two types of energy we will be working with in this unit are: (K in book KE): Energy associated with of an object. (U in book PE): Energy associated with

More information

Unit 7, 8, 9 Physics Review

Unit 7, 8, 9 Physics Review Unit 7, 8, 9 Physics Review 1. A 2 kg mass is held 4 m above the ground. What is the approximate potential energy due to gravity of the mass with respect to the ground? a. 20 J. b. 40 J. c. 60 J. d. 80

More information

A big fish swims upon and swallows a small fish at rest. After lunch, the big fish has less a) momentum b) velocity

A big fish swims upon and swallows a small fish at rest. After lunch, the big fish has less a) momentum b) velocity 1 of 6 2/19/2019, 8:59 AM Impulse & Momentum Name : Class : Date : 1. In this type of collision, objects tend to "stick" together. a) elastic b) inelastic c) They "stick" together in both types of collisions

More information

Unit 8. Unit 8 - MTM. Outcomes. Momentum. Solve this problem. What does the word momentum mean to you?

Unit 8. Unit 8 - MTM. Outcomes. Momentum. Solve this problem. What does the word momentum mean to you? Outcomes Unit 8 THE MOMENTUM TRANSFER MODEL (MTM) I M P U L S E A N D M O M E N T U M What does the word momentum mean to you? Unit 8 - MTM P A R T 1 F O R C E S C H A N G E M O M E N T U M The home team

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

Chapter 9 Conceptual Physics Study Guide

Chapter 9 Conceptual Physics Study Guide Name : Date: Period: Chapter 9 Conceptual Physics Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In physics, work is defined as a. force times

More information

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass, what time would be required to stop a car of mass m traveling

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Inertia, momentum 6.4

Inertia, momentum 6.4 6.1 6.2 6.3 Inertia, momentum 6.4 Momentum Impulse (Ft) (mv) = F t 6.5 6.6 6.7 6.8 6.9 -- Questions -- MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More information

Slide 1 / 40. Multiple Choice AP Physics 1 Momentum

Slide 1 / 40. Multiple Choice AP Physics 1 Momentum Slide 1 / 40 Multiple Choice AP Physics 1 Momentum Slide 2 / 40 1 A truck moves along a frictionless level road at a constant speed. The truck is open on top. A large load of gravel is suddenly dumped

More information

Momentum in 1-Dimension

Momentum in 1-Dimension Momentum in 1-Dimension Level : Physics I Date : Warm-up Questions If you were in a car that was out of control and had to choose between hitting a concrete wall or a haystack to stop, which would you

More information

Conservation of Momentum

Conservation of Momentum Conservation of Momentum Law of Conservation of Momentum The sum of the momenta before a collision equal the sum of the momenta after the collision in an isolated system (=no external forces acting).

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Mechanical Energy Thermal Energy Chemical Energy Electrical Energy Electromagnetic Energy

Mechanical Energy Thermal Energy Chemical Energy Electrical Energy Electromagnetic Energy Physical Science PHYSICS UNIT 4 Study Guide. Chapter 15 - Energy Key Terms Energy Kinetic Energy Potential Gravitational Potential Elastic Potential Mechanical Energy Thermal Energy Chemical Energy Electrical

More information

Announcements - 9 Oct 2014

Announcements - 9 Oct 2014 Announcements - 9 Oct 2014 1. Prayer 2. Exam 2 results a. Median Score: b. Curve: c. Exams will be returned soon, our office assistant should put them in the boxes near N357 ESC sometime today. d. I'll

More information

2014 Physics Exam Review

2014 Physics Exam Review Name: ate: 1. The diagrams below show a model airplane. Which energy transformation occurs in a rubber band powered model airplane when it is flown?. Thermal energy stored in the rubber band is transformed

More information

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III 1. A solid metal ball and a hollow plastic ball of the same external radius are released from rest in a large vacuum chamber. When each has fallen 1m, they both have the same (A) inertia (B) speed (C)

More information

Unit 8. Unit 8 - MTM. Outcomes. What does the word momentum mean to you?

Unit 8. Unit 8 - MTM. Outcomes. What does the word momentum mean to you? Outcomes Unit 8 THE MOMENTUM TRANSFER MODEL (MTM) I M P U L S E A N D M O M E N T U M Unit 8 - MTM P A R T 1 F O R C E S C H A N G E M O M E N T U M P A R T 2 M O M E N T U M I S C O N S E R V E D What

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

Outline. Collisions in 1- and 2-D. Energies from Binary Star Expt. Energy Plot. Energies with Linear Fit. Energy Plot

Outline. Collisions in 1- and 2-D. Energies from Binary Star Expt. Energy Plot. Energies with Linear Fit. Energy Plot Collisions in 1- and 2-D Momentum and Energy Conservation Physics 109, Class Period 9 Experiment Number 6 in the Physics 121 Lab Manual 16 October 2007 Outline Brief summary of Binary Star Experiment Description

More information

AP Physics 1 Momentum and Impulse Practice Test Name

AP Physics 1 Momentum and Impulse Practice Test Name AP Physics 1 Momentum and Impulse Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A rubber ball and a lump of clay have equal

More information

spacecraft mass = kg xenon ions speed = m s 1 Fig. 2.1 Calculate the mass of one xenon ion. molar mass of xenon = 0.

spacecraft mass = kg xenon ions speed = m s 1 Fig. 2.1 Calculate the mass of one xenon ion. molar mass of xenon = 0. 1 (a) A solar-powered ion propulsion engine creates and accelerates xenon ions. The ions are ejected at a constant rate from the rear of a spacecraft, as shown in Fig. 2.1. The ions have a fixed mean speed

More information

Momentum Practice Problems

Momentum Practice Problems Momentum Practice Problems PSI AP Physics C Name Multiple Choice 1. A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball bounces

More information

The total momentum in any closed system will remain constant.

The total momentum in any closed system will remain constant. The total momentum in any closed system will remain constant. When two or more objects collide, the collision does not change the total momentum of the two objects. Whatever momentum is lost by one object

More information

1 Forces. 2 Energy & Work. GS 104, Exam II Review

1 Forces. 2 Energy & Work. GS 104, Exam II Review 1 Forces 1. What is a force? 2. Is weight a force? 3. Define weight and mass. 4. In European countries, they measure their weight in kg and in the United States we measure our weight in pounds (lbs). Who

More information

Momentum Practice Test

Momentum Practice Test Momentum Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following equations can be used to directly calculate an object s momentum,

More information

23. A snowmobile pulls a trailer with a force of 450 N while moving at a constant velocity of 15 m/s. How much work is done by the snowmobile in 28 s?

23. A snowmobile pulls a trailer with a force of 450 N while moving at a constant velocity of 15 m/s. How much work is done by the snowmobile in 28 s? Physics 04 Unit Review (June 013) 1. Which represents the rate of work done? (A) efficiency (B) force (C) power (D) work. In which situation is work done on a box? (A) The box is at rest on a table. (B)

More information

Solutions to Homework Set #9 Phys2414 Fall 2005

Solutions to Homework Set #9 Phys2414 Fall 2005 Solution Set #9 Solutions to Homework Set #9 Phys44 Fall 005 Note: The numbers in the boxes correspond to those that are generated by WebAssign. The numbers on your individual assignment will vary. Any

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

10/11/11. Physics 101 Tuesday 10/11/11 Class 14" Chapter " Inelastic collisions" Elastic collisions" Center of mass"

10/11/11. Physics 101 Tuesday 10/11/11 Class 14 Chapter  Inelastic collisions Elastic collisions Center of mass Consider the following situations and possible isolated systems: Physics 101 Tuesday Class 14" Chapter 9.5 9.7" Inelastic collisions" Elastic collisions" Center of mass" Two cars on an icy road collide.

More information

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Objectives: Learn to recognize and describe periodic motion. Develop some intuition for the principle of conservation of energy in periodic systems. Use

More information

Lecture 18. Newton s Laws

Lecture 18. Newton s Laws Agenda: l Review for exam Lecture 18 l Assignment: For Monday, Read chapter 14 Physics 207: Lecture 18, Pg 1 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient

More information

Momentum and Its Relation to Force

Momentum and Its Relation to Force Linear Momentum Momentum and Its Relation to Force The linear momentum, or momentum, of an object is defined as the product of its mass and its velocity. Momentum, p, is a vector and its direction is the

More information

AP PHYSICS C Momentum Name: AP Review

AP PHYSICS C Momentum Name: AP Review AP PHYSICS C Momentum Name: AP Review Momentum How hard it is to stop a moving object. Related to both mass and velocity. For one particle p = mv For a system of multiple particles P = p i = m ivi Units:

More information

Name: Physics 644 Date: / / Review: Work, Energy, Power Work. 1. What are the two important variables for work? (hint: look at the equation!

Name: Physics 644 Date: / / Review: Work, Energy, Power Work. 1. What are the two important variables for work? (hint: look at the equation! Name: Physics 644 Date: / / Review: Work, Energy, Power Work 1. What are the two important variables for work? (hint: look at the equation!) 2. Is work done in the following situations? A. Is work done

More information

10 Work, Energy, and Machines BIGIDEA

10 Work, Energy, and Machines BIGIDEA 10 Work, Energy, and Machines BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the Big Idea

More information

Academic Physics! Work and Momentum Summary! Name

Academic Physics! Work and Momentum Summary! Name Academic Physics! Work and Summary! Name 1. A child with a mass of 23kg rides a bike with a mass of 5.5 kg at a velocity of 4.5 m/s to the south. Compare the momentum of the child and the momentum of the

More information

Preview. Momentum and Collisions Section 1. Section 1 Momentum and Impulse. Section 2 Conservation of Momentum

Preview. Momentum and Collisions Section 1. Section 1 Momentum and Impulse. Section 2 Conservation of Momentum Momentum and Collisions Section 1 Preview Section 1 Momentum and Impulse Section 2 Conservation of Momentum Section 3 Elastic and Inelastic Collisions Houghton Mifflin Harcourt Publishing Company Momentum

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

QUICK REVIEW Semester Final Fall

QUICK REVIEW Semester Final Fall Keep in mind that a lot of questions on the final are conceptual and don t necessarily require an equation or numbers just a little (or a lot) of thinking. BE PREPARED. - - - - ANSWERS MAY OR MAY NOT BE

More information

Momentum and Impulse Concept Tests

Momentum and Impulse Concept Tests Momentum and Impulse Concept Tests Question 1 Consider two carts, of masses m and 2m, at rest on an air track. If you push first one cart for 3 s and then the other for the same length of time, exerting

More information

Lesson 4 Momentum and Energy

Lesson 4 Momentum and Energy Lesson 4 Momentum and Energy Introduction: Connecting Your Learning The previous lessons concentrated on the forces that cause objects to change motion. Lesson 4 will introduce momentum and energy, as

More information

LABORATORY VI MOMENTUM

LABORATORY VI MOMENTUM LABORATORY VI MOMENTUM In this lab you will use conservation of momentum to predict the motion of objects motions resulting from collisions. It is often difficult or impossible to obtain enough information

More information

Conceptual Physics Momentum and Impulse Take Home Exam

Conceptual Physics Momentum and Impulse Take Home Exam Conceptual Physics Momentum and Impulse Take Home Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Write notes in the margin explaining your answer 1.

More information

Momentum, Work and Energy Review

Momentum, Work and Energy Review Momentum, Work and Energy Review 1.5 Momentum Be able to: o solve simple momentum and impulse problems o determine impulse from the area under a force-time graph o solve problems involving the impulse-momentum

More information

A ballistic pendulum

A ballistic pendulum A ballistic pendulum A ballistic pendulum is a device used to measure the speed of a bullet. A bullet of mass m is fired at a block of wood (mass M) hanging from a string. The bullet embeds itself in the

More information

KEY NNHS Introductory Physics: MCAS Review Packet #2

KEY NNHS Introductory Physics: MCAS Review Packet #2 2. Conservation of Energy and Momentum Broad Concept: The laws of conservation of energy and momentum provide alternate approaches to predict and describe the movement of objects. 1.) Which of the following

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving Physics 11 (Fall 2012) Chapter 9: Momentum The answers you receive depend upon the questions you ask. Thomas Kuhn Life is a mirror and will reflect back to the thinker what he thinks into it. Ernest Holmes

More information

The important variables for work are distance and force. Yes, work is done because the force and the movement are in the

The important variables for work are distance and force. Yes, work is done because the force and the movement are in the Name: Physics 670 Date: / / Review (Key): Work, Energy, Power Work 1. What are the two important variables for work? (hint: look at the equation!) The important variables for work are distance and force.

More information

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 11 Lecture RANDALL D. KNIGHT Chapter 11 Impulse and Momentum IN THIS CHAPTER, you will learn to use the concepts of impulse and momentum.

More information

Ch 8 Momentum Test Review!

Ch 8 Momentum Test Review! Ch 8 Test Review! Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The momentum of an object is defined as the object's a. mass times its velocity. b. force

More information

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k Name: Class: Date: Exam 2--PHYS 101-F08 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. You put your book on the seat next to you. When the bus stops,

More information

If there is now a constant air resistance force of 35 N, what is the new maximum height the ball attains?

If there is now a constant air resistance force of 35 N, what is the new maximum height the ball attains? A 1kg ball is launched straight up into the air with an initial speed of 64 m/s. Using only energy considerations, determine the maximum height the ball attains assuming there is no air resistance. If

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

Chapter 6 - Linear Momemtum and Collisions

Chapter 6 - Linear Momemtum and Collisions Name Date Chapter 6 - Linear Momemtum and Collisions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the SI unit of momentum? A) N/s B)

More information

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics. Bell Ringer: Define Kinetic Energy, Potential Energy, and Work. What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 1) Linear momentum p = mv (units: kg m / s) 2) Impulse (produces a finite change in momentum) (a) Constant force: J = FΔt From the 2nd law, F = Δ(m v) Δt = Δ p Δt, so J =

More information

Physics Worksheet Work and Energy Section: Name:

Physics Worksheet Work and Energy Section: Name: 1. oncept of Energy a) Energy: quantity that is often understood as the on a physical system. b) We observe only the effects of energy when something is happening. When energy is being, or when energy

More information

This homework is extra credit!

This homework is extra credit! This homework is extra credit! 1 Translate (10 pts) 1. You are told that speed is defined by the relationship s = d /t, where s represents speed, d represents distance, and t represents time. State this

More information

Unit 8 Momentum, Impulse, & Collisions

Unit 8 Momentum, Impulse, & Collisions Unit 8 Momentum, Impulse, & Collisions Essential Fundamentals of Momentum, Impulse, & Collisions 1. Momentum is conserved in both elastic, and inelastic collisions. Early E. C.: / 1 Total HW Points Unit

More information

Physics 8 Friday, September 18, 2015

Physics 8 Friday, September 18, 2015 Physics 8 Friday, September 18, 2015 Turn in HW3. HW4 not due until 2 weeks from today! I ll write it up this weekend and hand it out on Monday. Remember to sign up for laser-cutter time! Finish reading

More information

Collision Theory Challenge Problems

Collision Theory Challenge Problems Collision Theory Challenge Problems Problem 1 Estimate the energy loss in a completely inelastic collision between two identical cars that collide head-on traveling at highway speeds. Problem 2 You just

More information

RELEASED FORM RELEASED. North Carolina Test of Physics

RELEASED FORM RELEASED. North Carolina Test of Physics Name Physics Form North arolina Test of Physics RELESE Public Schools of North arolina www.ncpublicschools.org State oard of Education epartment of Public Instruction ivision of ccountability Services/North

More information

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum. Notes Momentum Momentum and Impulse - The product (multiplication) of an objects mass and velocity is called momentum. Momentum is the energy of motion of an object. Momentum is represented by the letter.

More information