Physics Worksheet Work and Energy Section: Name:

Size: px
Start display at page:

Download "Physics Worksheet Work and Energy Section: Name:"

Transcription

1 1. oncept of Energy a) Energy: quantity that is often understood as the on a physical system. b) We observe only the effects of energy when something is happening. When energy is being, or when energy is being. g) Exercise: box rests on a horizontal, frictionless surface. girl pushes on the box with a force of 18 N to the right and a boy pushes on the box with a force of 12 N to the left. The box moves 4.0 m to the right. Find the work done by (a) the girl, (b) the boy, and (c) the net force. 2. Work a) Definition of Work: Work = x, Formula:. Unit of work: or ( ). 1 kj = J, 1 J = J. b) Work is a quantity and it is independent of. c) Two ways to do work: 3. Work and Impulse omparison a) Impulse (J) = x. Impulse changes the of a system. Unit of impulse: b) Work (W) = x. Work changes the of a system. Unit of work: or. c) Work and Force with an ngle: (1) (2) d) Example: n 80 N force has been applied to a block and move it 20 m along the direction of the force. How much work has been done to the block? Work (W) =. d) Exercise: If 100 N force has 30 o angle pulling on 15 kg block for 5 m. What s the work? e) Exercise: alculate the work done when a 20-N force pushes a cart 3.5 m. f) Exercise: How much work is required to lift a 360 kilogram piano to a window whose height is 10 meters from the ground? e) Positive or Negative Work: an does work by lifting a box. an does work by lowering a box. Earth does work when the box is lowered. Earth does work when the box is raised. r. Lin 1

2 4. Power a) Definition of Power: h) Example: 500N force is applied to an object. If the object travels with a constant velocity of 20 meters per second, calculate the power expended on the object. Power = /, Formula:. Unit of power: or ( ). 1 kw = W, 1 W = W. i) Exercise: n elevator must lift 1000 kg a distance of 100 m at a velocity of 4 m/s. What is the average power the elevator exerts during this trip? b) When W is in the equation, it means ; when W is in the unit, W means. c) In metric system of units, automobiles are rated in kilowatts; in the US, we rate engines in units of horsepower (hp). d) 1 hp = kw, or 134 hp = kw e) Example: alculate the power expended when a 500 N barbell is lifted 2.2 m in 2 s. 5. echanical Energy a) Two most common forms of mechanical energy: (1) ( ) (2) ( ) echanical energy can be in the form of either one, or the sum of the two. 6. Potential Energy a) Definition of potential energy: f) Exercise: n escalator is used to move 20 passengers every minute from the first floor of a department store to the second. The second floor is located 5-meters above the first floor. The average passenger's mass is 60 kg. Determine the power requirement of the escalator in order to move this number of passengers in this amount of time b) Examples of potential energy: c) Gravitational Potential Energy ( ): g) lternative Definition of Power: Power = x, Formula:. Proof: d) The amount of gravitational potential energy possessed by an elevated object is equal to Gravitational Potential Energy = x GPE (or PE) = = r. Lin 2

3 e) The gravitation potential energy does not depends on. f) Unit of GPE: = ( ). g) Example: The floor of the basement of a house is 3.0 m below ground level, and the floor of the attic is 5.0 m above ground level. What is the change in potential energy if an 2.0 kg object in the attic is brought to the basement? c) Exercise: It requires a force of N to stretch a certain linear spring 0.15 m. What is the constant for this spring? d) Spring Potential Energy ( ) h) Exercise: box has a mass of 5.8kg. The box is lifted from the garage floor and placed on a shelf. If the box gains 145J of Potential Energy (PE), how high is the shelf? Formula: Proof: i) Exercise: man climbs on to a wall that is 3.6m high and gains 2268J of potential energy. What is the mass of the man? e) Example: Vincent's mountain bike has a spring with a constant of 64 N/m in the front-wheel suspension, and it compressed 0.17m when she hit a bump. How much energy does the front spring now store? 7. Spring Potential Energy a) Hooke s Law: f) Exercise: spring has a potential energy of J and a constant of N/m. How far has it been stretched? Formula: k x b) Example: linear spring has a constant of N/m. How much force is necessary to stretch it 0.39 m? 8. Kinetic Energy a) Definition of potential energy ( ) b) The kinetic energy of an object depends on the and of the object. KE = r. Lin 3

4 Proof: b) Example: skater of mass 60 kg has an initial velocity of 12 m/s. He slides on ice where the frictional force is 36 N. How far will the skater slide before he stops? c) Unit of KE: = ( ). d) Example: 3 kg ball is rolling 2 m/s. How much kinetic energy does it have? c) Exercise: When a small brass ball is dropped into soft clay, it makes a dent. If the ball hits with twice the speed, what the dent of the clay will be? e) Exercise: Determine the kinetic energy of a 500- kg roller coaster car that is moving with a speed of 20 m/s. If the roller coaster car were moving with twice the speed, then what would be its new kinetic energy? d) Exercise: When a small brass ball is dropped into soft clay, it makes a dent. If the ball hits with twice the speed, what the dent of the clay will be? f) Exercise: issy Diwater, the former platform diver for the Ringling rother's ircus, had a kinetic energy of J just prior to hitting the bucket of water. If issy's mass is 40 kg, then what is her speed? 10. onservation of Energy a) Law of conservation of energy: g) Exercise: If the speed of an object is doubled, its kinetic energy is. It takes the work to double the speed. It takes of work to stop a double-speed object. 9. Work-Energy Theorem: a) Definition: b) Total Energy at point = Total Energy at point + = + + = + c) Exercise: diver of mass m drops from a board 10.0 m above the water surface. Find his speed 5.00 m above the water surface Formula: r. Lin 4

5 d) Exercise: diver of mass m drops from a board 10.0 m above the water surface. Find his speed right above the water surface e) Exercise: skier slides down the frictionless slope as shown. What is the skier s speed at the bottom? h) mass,, is hung from a spring and reaches equilibrium at position. The mass is then raised to position and released. The mass oscillates between positions and. (a) t which position (,, or ) is mass located when the kinetic energy of the system is at a maximum? Explain it. (b) t which position is mass located when the gravitational potential energy of the system is at a maximum? Explain it. (c) t which position is mass located when the elastic potential energy of the system is at a maximum? Explain it. f) Exercise: Three identical balls are thrown from the top of a building with the same initial speed. Initially, all 1 moves horizontally. all 2 moves upward. all 3 moves downward. Neglecting air resistance, which ball has the fastest speed when it hits the ground? i) rollercoaster cart leaves point at a speed of 4 m/s, passes through point on the ground, and reaches point at a speed of 6 m/s. The total mass of the cart assembly and the passengers are 300 kg, (a) What is the speed of the cart at point? (b) What is the height of point? 4 m/s 6 m/s 4 m g) Exercise: Tarzan swings from a vine whose length is 12 m. If Tarzan starts at an angle of 30 degrees with respect to the vertical and has no initial speed, what is his speed at the bottom of the arc? j) The length of the ropes on a playground swing is 2.0 m. (a) What is the maximum speed attainable on the swing if the maximum value of θ is 60 o? (b) If a 50-kg person is playing the swing, what is the maximum kinetic energy he can attain? θ 2 m r. Lin 5

6 Show all work for the following questions, including the equation and substitution with units. 1. n 80 N force has been applied to a block and move it 20 m along the direction of the force. How much work has been done to the block? 10. The floor of the basement of a house is 3.0 m below ground level, and the floor of the attic is 5.0 m above ground level. What is the change in potential energy if a 2.0 kg object in the attic is brought to the basement? 2. alculate the work done when a 20-N force pushes a cart 3.5 m? 3. How much work is required to lift a 360 kilogram piano to a window whose height is 10 meters from the ground? 4. box rests on a horizontal, frictionless surface. girl pushes on the box with a force of 18 N to the right and a boy pushes on the box with a force of 12 N to the left. The box moves 4.0 m to the right. Find the work done by (a) the girl, (b) the boy, and (c) the net force. 11. box has a mass of 5.8kg. The box is lifted from the garage floor and placed on a shelf. If the box gains 145J of Potential Energy (PE), how high is the shelf? 12. man climbs on to a wall that is 3.6m high and gains 2268J of potential energy. What is the mass of the man? 13. linear spring has a constant of N/m. How much force is necessary to stretch it 0.39 m? 14. It requires a force of N to stretch a certain linear spring 0.15 m. What is the constant for this spring? 5. If 100 N force has 30 o angle pulling on 15 kg block for 5 m. What s the work? 6. alculate the power expended when a 500 N barbell is lifted 2.2 m in 2 s. 15. Vincent's mountain bike has a spring with a constant of 64 N/m in the front-wheel suspension, and it compressed 0.17m when she hit a bump. How much energy does the front spring now store? 7. n escalator is used to move 20 passengers every minute from the first floor of a department store to the second. The second floor is located 5-meters above the first floor. The average passenger's mass is 60 kg. Determine the power requirement of the escalator in order to move this number of passengers in this amount of time. 16. spring has a potential energy of J and a constant of N/m. How far has it been stretched? kg ball is rolling 2 m/s. How much kinetic energy does it have? N force is applied to an object. If the object travels with a constant velocity of 20 meters per second, calculate the power expended on the object. 18. (a) Determine the kinetic energy of a 500-kg roller coaster car that is moving with a speed of 20 m/s. (b) If the roller coaster car were moving with twice the speed, then what would be its new kinetic energy? 9. n elevator must lift 1000 kg a distance of 100 m at a velocity of 4 m/s. What is the average power the elevator exerts during this trip? 19. issy Diwater, the former platform diver for the Ringling rother's ircus, had a kinetic energy of J just prior to hitting the bucket of water. If issy's mass is 40 kg, then what is her speed? r. Lin 6

7 20. skater of mass 60 kg has an initial velocity of 12 m/s N force is applied to a 100-kg cart at rest for 5 He slides on ice where the frictional force is 36 N. How seconds on a frictionless surface. (a) What s the far will the skater slide before he stops? momentum change of the cart? (b) How much work has been done to the cart? (c) What s the average power in the first 20 seconds? (d) What s the kinetic energy of the cart after 20 seconds? 60 N 100 kg 21. diver of mass m drops from a board 10.0 m above the water surface. Find his speed 5.00 m above the water surface. 22. diver of mass m drops from a board 10.0 m above the water surface. Find his speed right above the water surface. 28. mass,, is hung from a spring and reaches equilibrium at position. The mass is then raised to position and released. The mass oscillates between positions and. (a) t which position (,, or ) is mass located when the kinetic energy of the system is at a maximum? Explain it. (b) t which position is mass located when the gravitational potential energy of the system is at a maximum? Explain it. (c) t which position is mass located when the elastic potential energy of the system is at a maximum? Explain it. 23. skier slides down the frictionless slope as shown. What is the skier s speed at the bottom? 24. Three identical balls are thrown from the top of a building with the same initial speed. Initially, all 1 moves horizontally all 2 moves upward. all 3 moves downward. Neglecting air resistance, which ball has the fastest speed when it hits the ground? 25. Tarzan swings from a vine whose length is 12 m. If Tarzan starts at an angle of 30 degrees with respect to the vertical and has no initial speed, what is his speed at the bottom of the arc? 26. certain car can go from 0 to 100 km/h in 10 s. If the engine delivered four-times the power to the wheel, how many seconds would it take? 29. rollercoaster cart leaves point at a speed of 4 m/s, passes through point on the ground, and reaches point at a speed of 6 m/s. The total mass of the cart assembly and the passengers are 300 kg, (a) What is the speed of the cart at point? (b) What is the height of point? 4 m/s 30. The length of the ropes on a playground swing is 2.0 m. (a) What is the maximum speed attainable on the swing if the maximum value of θ is 60 o? (b) If a 50-kg person is playing the swing, what is the maximum kinetic energy he can attain? 6 m/s 4 m θ 2 m r. Lin 7

Conservation of Energy Review

Conservation of Energy Review onservation of Energy Review Name: ate: 1. An electrostatic force exists between two +3.20 10 19 -coulomb point charges separated by a distance of 0.030 meter. As the distance between the two point charges

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 6 Last Lecture: Gravity Normal forces Strings, ropes and Pulleys Today: Friction Work and Kinetic Energy Potential Energy Conservation of Energy Frictional Forces

More information

a. Change of object s motion is related to both force and how long the force acts.

a. Change of object s motion is related to both force and how long the force acts. 0. Concept of Energy 1. Work. Power a. Energy is the most central concept underlying all sciences. Concept of energy is unknown to Isaac Newton. Its existence was still debated in the 1850s. Concept of

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

AP Physics 1 Work Energy and Power Practice Test Name

AP Physics 1 Work Energy and Power Practice Test Name AP Physics 1 Work Energy and Power Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two objects, one of mass m and the other

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Name 09-MAR-04. Work Power and Energy

Name 09-MAR-04. Work Power and Energy Page 1 of 16 Work Power and Energy Name 09-MAR-04 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? 1. 2.4 J 3. 12

More information

Energy Whiteboard Problems

Energy Whiteboard Problems Energy Whiteboard Problems 1. (a) Consider an object that is thrown vertically up into the air. Draw a graph of gravitational force vs. height for that object. (b) Based on your experience with the formula

More information

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? Page of 3 Work Power And Energy TEACHER ANSWER KEY March 09, 200. A spring has a spring constant of 20 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?. 2.

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Work Energy Review. 1. Base your answer to the following question on the information and diagram below and on your knowledge of physics.

Work Energy Review. 1. Base your answer to the following question on the information and diagram below and on your knowledge of physics. Name: ate: 1. ase your answer to the following question on the information and diagram below and on your knowledge of physics. student pushes a box, weighing 50. newtons, 6.0 meters up an incline at a

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

CPS lesson Work and Energy ANSWER KEY

CPS lesson Work and Energy ANSWER KEY CPS lesson Work and Energy ANSWER KEY 1. A ball feeder slowly pushes a bowling ball up a 1-m ramp to a height of 0.5 m above the floor. Neglecting friction, what constant force must be exerted on the 5-kg

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

23. A snowmobile pulls a trailer with a force of 450 N while moving at a constant velocity of 15 m/s. How much work is done by the snowmobile in 28 s?

23. A snowmobile pulls a trailer with a force of 450 N while moving at a constant velocity of 15 m/s. How much work is done by the snowmobile in 28 s? Physics 04 Unit Review (June 013) 1. Which represents the rate of work done? (A) efficiency (B) force (C) power (D) work. In which situation is work done on a box? (A) The box is at rest on a table. (B)

More information

Chapter 9 Conceptual Physics Study Guide

Chapter 9 Conceptual Physics Study Guide Name : Date: Period: Chapter 9 Conceptual Physics Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In physics, work is defined as a. force times

More information

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy *** Work-Energy Theorem and Energy Conservation *** The function of work is to change energy *** 2 possibilities 1.) Work is done and... or 2.) Work is done and... 1 EX: A 100 N box is 10 m above the ground

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero CHAPTER 6 REVIEW NAME 1) Can work be done on a system if there is no motion? A) Yes, if an outside force is provided. B) Yes, since motion is only relative. C) No, since a system which is not moving has

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

Physics 23 Exam 2 March 3, 2009

Physics 23 Exam 2 March 3, 2009 Use the following to answer question 1: A stationary 4-kg shell explodes into three pieces. Two of the fragments have a mass of 1 kg each and move along the paths shown with a speed of 10 m/s. The third

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE

CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE 6.1 Work and Energy In science, work is done when a force acts over a displacement; energy is transferred.

More information

PH7_UnitPacketCompleteKey

PH7_UnitPacketCompleteKey Page 1 of 45 Page 2 of 45 Unit Packet Contents 1. Unit Objectives 2. Notes: Potential / Kinetic Energy 3. Guided Practice: Potential and Kinetic Energy 4. Independent Practice Potential and Kinetic Energy

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Add more here! Equation Sandbox In Unit 7, some of the following equations will be used. Practice isolating variables to prepare for it.

Add more here! Equation Sandbox In Unit 7, some of the following equations will be used. Practice isolating variables to prepare for it. Unit 7 Work, Energy, Conservation of Energy, Power Essential Fundamentals of Work, Energy, Power 1. Energy is transferred between systems in different ways. Early E. C.: / 1 Total HW Points Unit 7: / 32

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

Physics 20 Practice Problems for Exam 1 Fall 2014

Physics 20 Practice Problems for Exam 1 Fall 2014 Physics 20 Practice Problems for Exam 1 Fall 2014 Multiple Choice Short Questions (1 pt ea.) Circle the best answer. 1. An apple falls from a tree and hits the ground 5 meters below. It hits the ground

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER MIDTERM REVIEW AP Physics 1 McNutt Name: Date: Period: AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER 1.) A car starts from rest and uniformly accelerates

More information

- Conservation of Energy Notes Teacher Key -

- Conservation of Energy Notes Teacher Key - NAME: DATE: PERIOD: PHYSICS - Conservation of Energy Notes Teacher Key - - Is Energy Conserved? - Determine the max height that a 5kg cannonball will reach if fired vertically with an initial velocity

More information

Chapter 10-Work, Energy & Power

Chapter 10-Work, Energy & Power DULLES HIGH SCHOOL Chapter 10-Work, Energy & Power Energy Transformations Judy Matney 1/12/2016 In this chapter, we will study the concepts of force and work; we will understand the transformations of

More information

Name. Honors Physics AND POTENTIAL KINETIC

Name. Honors Physics AND POTENTIAL KINETIC KINETIC Name Honors Physics AND POTENTIAL Name Period Work and Energy Intro questions Read chapter 9 pages 144 146 (Section 9.1) 1. Define work in terms of physics? 2. In order to do work on an object,

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Multiple Choice Practice

Multiple Choice Practice Class: Date: Multiple Choice Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An ice skater moving at 10.0 m/s coasts to a halt in 1.0 10 2 m on

More information

Question 8.1 Sign of the Energy II

Question 8.1 Sign of the Energy II Question 8. Sign of the Energy II Is it possible for the gravitational potential energy of an object to be negative? a) yes b) no Question 8. Sign of the Energy II Is it possible for the gravitational

More information

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #. Ph Introductory Physics, Sp-0 Page of -A. A 7 kg block moves in a straight line under the influence of a force that varies with position as shown in the figure at the right. If the force is

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

KINETIC ENERGY AND WORK

KINETIC ENERGY AND WORK Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

More information

Efficiency = power out x 100% power in

Efficiency = power out x 100% power in Work, Energy and Power Review Package 1) Work: change in energy. Measured in Joules, J. W = Fd W = ΔE Work is scalar, but can be negative. To remember this, ask yourself either: Is the object is losing

More information

Physics 116A, Section 2, Second Exam Version B, February 26, Name (Please print)

Physics 116A, Section 2, Second Exam Version B, February 26, Name (Please print) Physics 116A, Section 2, Second Exam Version B, February 26, 2008 Name (Please print) Mulitiple choice questions are worth 3 points each. Mark your answers in the space provided at the right, and on the

More information

Physics 116A, Section 2, Second Exam A, February 26, Name (Please print)

Physics 116A, Section 2, Second Exam A, February 26, Name (Please print) Physics 116A, Section 2, Second Exam A, February 26, 2008 Name (Please print) Mulitiple choice questions are worth 3 points each. Mark your answers in the space provided at the right, and on the OPSCAN

More information

Old Exam. Question Chapter 7 072

Old Exam. Question Chapter 7 072 Old Exam. Question Chapter 7 072 Q1.Fig 1 shows a simple pendulum, consisting of a ball of mass M = 0.50 kg, attached to one end of a massless string of length L = 1.5 m. The other end is fixed. If the

More information

Physics Test Review: Mechanics Session: Name:

Physics Test Review: Mechanics Session: Name: Directions: For each statement or question, write in the answer box, the number of the word or expression that, of those given, best completes the statement or answers the question. 1. The diagram below

More information

CHAPTER 6 TEST REVIEW -- MARKSCHEME

CHAPTER 6 TEST REVIEW -- MARKSCHEME Force (N) AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER

More information

RELEASED FORM RELEASED. North Carolina Test of Physics

RELEASED FORM RELEASED. North Carolina Test of Physics Name Physics Form North arolina Test of Physics RELESE Public Schools of North arolina www.ncpublicschools.org State oard of Education epartment of Public Instruction ivision of ccountability Services/North

More information

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105 Coordinator: Dr. W. L-Basheer Monday, March 16, 2015 Page: 1 Q1. 70 N block and a 35 N block are connected by a massless inextendable string which is wrapped over a frictionless pulley as shown in Figure

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

Work done on an object = energy gained by the object Work done by an object = energy lost by the object

Work done on an object = energy gained by the object Work done by an object = energy lost by the object Energy Energy can be defined as the capacity for doing work, or the property of a system that diminishes when the system does work on any other system by an amount equal to the work done. 1) When work

More information

S15--AP Q1 Work and Energy PRACTICE

S15--AP Q1 Work and Energy PRACTICE Name: Class: Date: S15--AP Q1 Work and Energy PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Rupel pushes a box 5.00 m by applying a 25.0-N horizontal

More information

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time Momentum continued from last time If the earth collided with a meteor that slowed it down in its orbit, what would happen: A: It would maintain the same distance from the sun. B: It would fall closer in

More information

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014 In this section use the following equations for velocity and displacement to solve: 1. In a drill during basketball practice, a player runs the length of the 30.meter court and back. The player does this

More information

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart.

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart. 1. The diagram below shows a worker using a rope to pull a cart. 6. The graph below represents the relationship between gravitational force and mass for objects near the surface of Earth. The worker s

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

As the mass travels along the track, the maximum height it will reach above point E will be closest to A) 10. m B) 20. m C) 30. m D) 40.

As the mass travels along the track, the maximum height it will reach above point E will be closest to A) 10. m B) 20. m C) 30. m D) 40. 1. As a pendulum swings from position A to position B as shown in the diagram, its total mechanical energy (neglecting friction) A) decreases B) increases C) remains the same 2. Base your answer to the

More information

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name:

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name: Test ooklet Subject: S, Grade: HS 2008 Grade High School Physics Student name: uthor: North arolina istrict: North arolina Released Tests Printed: Monday July 09, 2012 1 n object is launched across a room.

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

Energy Storage and Transfer Model: Review Sheet

Energy Storage and Transfer Model: Review Sheet Name Energy Storage and Transfer Model: Review Sheet Date Pd 1. A softball (m = 180 g) traveling at 22.3 m/s moves a fielder's glove backward 25 cm when the ball is caught. a. Construct an energy bar graph

More information

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass, what time would be required to stop a car of mass m traveling

More information

Work and Energy Chapter Questions. 2. Contrast the effects of external forces and internal forces on the total energy of a system.

Work and Energy Chapter Questions. 2. Contrast the effects of external forces and internal forces on the total energy of a system. PSI AP Physics I Work and Energy Chapter Questions 1. Define a system, the environment and the system boundary. 2. Contrast the effects of external forces and internal forces on the total energy of a system.

More information

Physics 11 Comprehensive Exam Preparation

Physics 11 Comprehensive Exam Preparation Physics 11 Comprehensive Exam Preparation Kinematics 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

Mechanical Energy I. Name: Date: Section C D F. Mr. Alex Rawson Physics

Mechanical Energy I. Name: Date: Section C D F. Mr. Alex Rawson Physics Name: Date: Section C D F Mechanical Energy I Mr. Alex Rawson Physics 1. One of the two Olympic weightlifting events is called the Clean and Jerk, shown below. As of Athens 2004, the record for Clean and

More information

PHYSICS GUIDESHEET UNIT 5. - ENERGY SUBUNIT - ENERGY CONVERSIONS POTENTIAL AND KINETIC ENERGY ACTIVITY LESSON DESCRIPTION SCORE/POINTS

PHYSICS GUIDESHEET UNIT 5. - ENERGY SUBUNIT - ENERGY CONVERSIONS POTENTIAL AND KINETIC ENERGY ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1 NAME PERIOD PHYSICS GUIDESHEET UNIT 5. - ENERGY SUBUNIT - ENERGY CONVERSIONS POTENTIAL AND KINETIC ENERGY ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT CLASS OVERHEAD NOTES (5 pts/page) /20 (Plus 5

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

Name Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units

Name Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units Example Problems 8.4 Conservation of Energy E1. A monkey does 0.45 joule of work compressing the spring in a pop-up toy. If the mass of the toy is 0.00 kilogram, calculate the maximum vertical height that

More information

Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion

Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion 1. A baseball player slides into home base with an initial speed of 7.90 m/s. If the coefficient of kinetic friction between the

More information

Work, Power and Energy Worksheet. 2. Calculate the work done by a 47 N force pushing a kg pencil 0.25 m against a force of 23 N.

Work, Power and Energy Worksheet. 2. Calculate the work done by a 47 N force pushing a kg pencil 0.25 m against a force of 23 N. Work, Power and Energy Worksheet Work and Power 1. Calculate the work done by a 47 N force pushing a pencil 0.26 m. 2. Calculate the work done by a 47 N force pushing a 0.025 kg pencil 0.25 m against a

More information

Practice - Work. b. Explain the results obtained in part (a).

Practice - Work. b. Explain the results obtained in part (a). Practice - Work 1. A weight lifter, Paul Anderson, used a circular platform attached to a harness to lift a class of 30 children and their teacher. While the children and teacher sat on the platform, Paul

More information

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

More information

2) A car accelerates from 5.0 m/s to 21 m/s at a rate of 3.0 m/s 2. How far does it travel while accelerating? A) 207 m B) 117 m C) 41 m D) 69 m

2) A car accelerates from 5.0 m/s to 21 m/s at a rate of 3.0 m/s 2. How far does it travel while accelerating? A) 207 m B) 117 m C) 41 m D) 69 m Name VECTORS 1) An airplane undergoes the following displacements: First, it flies 59 km in a direction 30 east of north. Next, it flies 58 km due south. Finally, it flies 100 km 30 north of west. Using

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

9.2 Work & Energy Homework - KINETIC, GRAVITATIONAL & SPRING ENERGY

9.2 Work & Energy Homework - KINETIC, GRAVITATIONAL & SPRING ENERGY 9. Work & Energy Homework - KINETIC, GRAVITATIONAL & SPRING ENERGY KINETIC ENERGY QUESTIONS 9.H Energy.doc 1. A 500 kilogram car is driving at 15 meters/second. Calculate its kinetic energy? How much does

More information

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is 34 m 30. m 17 m 24 m 2) The graph below represents the motion of a body that is moving with 6) Which

More information

Mechanical Energy. Unit 4

Mechanical Energy. Unit 4 Mechanical Energy Unit 4 Expectations Cell phones put away, or upside down on your desk No talking during notes Raise your hand to ask a question Everyone will follow along and copy into their own notes

More information

KEY NNHS Introductory Physics: MCAS Review Packet #2

KEY NNHS Introductory Physics: MCAS Review Packet #2 2. Conservation of Energy and Momentum Broad Concept: The laws of conservation of energy and momentum provide alternate approaches to predict and describe the movement of objects. 1.) Which of the following

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

Pre-Comp Review Questions- 8 th Grade

Pre-Comp Review Questions- 8 th Grade Pre-Comp Review Questions- 8 th Grade Section 1- Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s. Temperature K Fahrenheit Length

More information

Sometimes (like on AP test) you will see the equation like this:

Sometimes (like on AP test) you will see the equation like this: Work, Energy & Momentum Notes Chapter 5 & 6 The two types of energy we will be working with in this unit are: (K in book KE): Energy associated with of an object. (U in book PE): Energy associated with

More information

Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena.

Energy is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena. Energy Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena." David Rose What is energy? Energy makes changes;

More information

Kinetic and Potential Energy Old Exam Qs

Kinetic and Potential Energy Old Exam Qs Kinetic and Potential Energy Old Exam Qs Q. A firework rocket is fired vertically into the air and explodes at its highest point. What are the changes to the total kinetic energy of the rocket and the

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

1. In part (a) of the figure, an air track cart attached to a spring rests on the track at the position x equilibrium and the spring is relaxed.

1. In part (a) of the figure, an air track cart attached to a spring rests on the track at the position x equilibrium and the spring is relaxed. 1. In part (a) of the figure, an air track cart attached to a spring rests on the track at the position x equilibrium and the spring is relaxed. In (b), the cart is pulled to the position x start and released.

More information

Motion and Forces study Guide

Motion and Forces study Guide Motion and Forces study Guide Completion Complete each statement. 1. The motion of an object looks different to observers in different. 2. The SI unit for measuring is the meter. 3. The direction and length

More information

Lecture 9. > Potential Energy. > Conservation of Energy. > Power. (Source: Serway; Giancoli) Villacorta--DLSUM-BIOPHY1-L Term01

Lecture 9. > Potential Energy. > Conservation of Energy. > Power. (Source: Serway; Giancoli) Villacorta--DLSUM-BIOPHY1-L Term01 Lecture 9 > Potential Energy > Conservation of Energy > Power (Source: Serway; Giancoli) 1 Conservative & Nonconservative Forces > The various ways work and energy appear in some processes lead to two

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

Practice Exam 2. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Exam 2. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Date: _ Practice Exam 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A roller-coaster car has a mass of 500 kg when fully loaded with passengers.

More information

PSI AP Physics I Work and Energy

PSI AP Physics I Work and Energy PSI AP Physics I Work and Energy Multiple-Choice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate

More information

Potential Energy and Conservation of Energy Chap. 7 & 8

Potential Energy and Conservation of Energy Chap. 7 & 8 Level : AP Physics Potential Energy and Conservation of Energy Chap. 7 & 8 Potential Energy of a System see p.191 in the textbook - Potential energy is the energy associated with the arrangement of a system

More information