Time Series Analysis

Size: px
Start display at page:

Download "Time Series Analysis"

Transcription

1 Time Series Analysis Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1

2 Outline of the lecture Input-Output systems The z-transform important issues from Sec. 4.4 Cross Correlation Functions from Sec Transfer function models; identification, estimation, validation, prediction, Chap. 8 2

3 The z-transform A way to describe dynamical systems in discrete time Z({x t }) = X(z) = t= x t z t (z complex) The z-transform of a time delay: Z({x t τ }) = z τ X(z) The transfer function of the system is called H(z) = h t z t t= y t = k= h k x t k Y (z) = H(z)X(z) Relation to the frequency response function: H(ω) = H(e iω ) 3

4 Cross covariance and cross correlation functions Estimate of the cross covariance function: C XY (k) = C XY ( k) = 1 N 1 N (X t X)(Y t+k Y ) N k t=1 (X t+k X)(Y t Y ) N k t=1 Estimate of the cross correlation function: ρ XY (k) = C XY (k)/ C XX (0)C Y Y (0) If at least one of the processes is white noise and if the processes are uncorrelated then ρ XY (k) is approximately normally distributed with mean 0 and variance 1/N 4

5 Systems without measurement noise Xt Y t System input output Y t = h i X t i i= Given γ XX and the system description we obtain γ Y Y (k) = γ XY (k) = h i h j γ XX (k j + i) (1) i= j= i= h i γ XX (k i). (2) 5

6 Systems with measurement noise N t X t input System Σ Y t output Y t = i= h i X t i + N t. 6

7 Time domain relations Given γ XX and γ NN we obtain γ Y Y (k) = γ XY (k) = h i h j γ XX (k j + i) + γ NN (k) (3) i= j= i= h i γ XX (k i). (4) IMPORTANT ASSUMPTION: No feedback in the system. 7

8 Spectral relations f Y Y (ω) = H(e iω )H(e iω )f XX (ω) + f NN (ω) = G 2 (ω)f XX (ω) + f NN (ω), f XY (ω) = H(e iω )f XX (ω) = H(ω)f XX (ω). The frequency response function, which is a complex function, is usually split into a modulus and argument H(ω) = H(ω) e iarg{h(ω)} = G(ω)e iφ(ω), where G(ω) and φ(ω) are the gain and phase, respectively, of the system at the frequency ω from the input {X t } to the output {Y t }. 8

9 Estimating the impulse response The poles and zeros characterize the impulse response (Appendix A and Chapter 8) If we can estimate the impulse response from recordings of input an output we can get information that allows us to suggest a structure for the transfer function True Impulse Response Lag SCCF Lag SCCF after pre whitening Lag 9

10 Estimating the impulse response On the previous slide we saw that we got a good picture of the true impulse response when pre-whitening the data The reason is γ XY (k) = i= h i γ XX (k i) and only if {X t } is white noise we get γ XY (k) = h k σ 2 X Therefore if {X t } is white noise the SCCF ˆρ XY (k) is proportional to ĥk Normally {X t } is not white noise we fix this using pre-whitening 10

11 Pre-whitening a) A suitable ARMA-model is applied to the input series: ϕ(b)x t = θ(b)α t. b) We perform a prewhitening of the input series α t = θ(b) 1 ϕ(b)x t c) The output series {Y t } is filtered with the same model, i.e. β t = θ(b) 1 ϕ(b)y t. d) Now the impulse response function is estimated by ĥ k = C αβ (k)/c αα (0) = C αβ (k)/sα. 2 11

12 Example using S-PLUS ## ARMA structure for x; AR(1) x.struct <- list(order=c(1,0,0)) ## Estimate the model (check for convergence): x.fit <- arima.mle(x - mean(x), model=x.struct) ## Extract the model: x.mod <- x.fit$model ## Filter x: x.start <- rep(mean(x), 1000) x.filt <- arima.sim(model=list(ma=x.mod$ar), innov=x, start.innov = x.start) ## Filter y: y.start <- rep(mean(y), 1000) y.filt <- arima.sim(model=list(ma=x.mod$ar), innov=y, start.innov = y.start) ## Estimate SCCF for the filtered series: acf(cbind(y.filt, x.filt)) 12

13 Graphical output Multivariate Series : cbind(y.filt, x.filt) y.filt y.filt and x.filt ACF x.filt and y.filt x.filt ACF Lag Lag 13

14 Systems with measurement noise N t X t input System Σ Y t output Y t = i= h i X t i + N t. γ XY (k) = i= h i γ XX (k i) 14

15 Transfer function models ε t θ(b) B b ϕ(b) N t Xt b ω(b) B δ(b) Σ Y t Y t = ω(b) δ(b) Bb X t + θ(b) ϕ(b) ε t Also called Box-Jenkins models Can be extended to include more inputs see the book. 15

16 Some names FIR: Finite Impulse Response ARX: Auto Regressive with external input ARMAX/CARMA: Auto Regressive Moving Average with external input / Controlled ARMA OE: Output Error Regression models with ARMA noise 16

17 Identification of transfer function models h(b) = ω(b)bb δ(b) = h 0 + h 1 B + h 2 B 2 + h 3 B 3 + h 4 B Using pre-whitening we estimate the impulse response and guess an appropriate structure of h(b) based on this (see page 197 for examples). It is a good idea to experiment with some structures. Matlab (use q 1 instead of B): A = 1; B = 1; C = 1; D = 1; F = [ ]; mod = idpoly(a, B, C, D, F, 1, 1) impulse(mod) PEZdemo (complex poles/zeros should be in pairs): 17

18 2 exponential 2 1.8B 1 1.8B+0.81B 2 Zeros Poles Im Im Re Re Impulse Response Step Response Lag Lag 18

19 2 real poles B+0.72B 2 Zeros Poles No Zeros Im Im Re Re Impulse Response Step Response Lag Lag 19

20 2 complex B+0.81B 2 Zeros Poles No Zeros Im Im Re Re Impulse Response Step Response Lag Lag 20

21 1 exp + 2 comp Zeros B+0.69B B+2.02B B 3 Poles Im Im Re Re Impulse Response Step Response Lag Lag 21

22 Identification of the transfer function for the noise After selection of the structure of the transfer function of the input we estimate the parameters of the model Y t = ω(b) δ(b) Bb X t + N t We extract the residuals {N t } and identifies a structure for an ARMA model of this series N t = θ(b) ϕ(b) ε t ϕ(b)n t = θ(b)ε t We then have the full structure of the model and we estimate all parameters simultaneously 22

23 Estimation Form 1-step predictions, treating the input {X t } as known in the future (if {X t } is really stochastic we condition on the observed values) Select the parameters so that the sum of squares of these errors is as small as possible If {ε t } is normal then the ML estimates are obtained For FIR and ARX models we can write the model as Y t = X T t θ + ε t and use LS-estimates Moment estimates: Based on the structure of the transfer function we find the theoretical impulse response and we make a match with the lowest lags in the estimated impulse response Output error estimates... 23

24 Model validation As for ARMA models with the additions: Test for cross correlation between the residuals and the input ˆρ εx (k) Norm(0,1/N) which is (approximately) correct when {ε t } is white noise and when there is no correlation between the input and the residuals A Portmanteau test can also be performed 24

25 Prediction Ŷt+k t We must consider two situations The input is controllable, i.e. we can decide it and we can predict under different input-scenarios. In this case the prediction error variance is originating from the ARMA-part only (N t ). The input is only known until the present time point t and to predict the output we must predict the input. In this case the prediction error variance depend also on the autocovariance of the input process. In the book the case where the input can be modelled as an ARMA-process is considered. 25

26 Prediction (cont nd) Ŷ t+k t = k 1 i=0 h i X t+k i t + h i X t+k i + N t+k t. i=k Y t+k Ŷt+k t = k 1 i=0 h i (X t+k i X t+k i t ) + N t+k N t+k t If the input is controllable then X t+k i t = X t+k i The book also considers the case where output is known until time t and input until time t + j 26

27 Prediction (cont nd) We have N t = ψ i ε t i i=0 And if we model the input as an ARMA-process we have X t = ψ i η t i i=0 An thereby we get: V [Y t+k Ŷt+k t] = σ 2 η k 1 l=0 i 1 +i 2 =l h i1 ψ i2 2 + σ 2 ε k 1 ψi 2 i=0 27

28 Y t = B X t ε t, σ 2 ε = y x h xf N y x h xf N NA NA NA NA To forecast y (9,10) we must filter x as in xf, calc. N for the historic data, forecast N and add that to xf (future values) > Nfc <- arima.forecast(n[1:8], model=list(ar=0.4), sigma2=0.036, n=2) > Nfc$mean: [1]

29 Intervention models I t = { 1 t = t0 0 t t 0 Y t = ω(b) δ(b) I t + θ(b) φ(b) ε t See a real life example in the book. 29

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Time Series Analysis

Time Series Analysis Time Series Analysis Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of todays lecture Descriptions of (deterministic) linear systems. Chapter 4: Linear

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT DYNAMIC REGRESSION IN ARIMA MODELING Ross Bettinger, Analytical Consultant, Seattle, WA Box-Jenkins time series models that contain exogenous predictor variables are called dynamic regression

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture State space models, 1st part: Model: Sec. 10.1 The

More information

Time Series Analysis. Solutions to problems in Chapter 5 IMM

Time Series Analysis. Solutions to problems in Chapter 5 IMM Time Series Analysis Solutions to problems in Chapter 5 IMM Solution 5.1 Question 1. [ ] V [X t ] = V [ǫ t + c(ǫ t 1 + ǫ t + )] = 1 + c 1 σǫ = The variance of {X t } is not limited and therefore {X t }

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Regression based methods, 1st part: Introduction (Sec.

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

Dynamic Time Series Regression: A Panacea for Spurious Correlations

Dynamic Time Series Regression: A Panacea for Spurious Correlations International Journal of Scientific and Research Publications, Volume 6, Issue 10, October 2016 337 Dynamic Time Series Regression: A Panacea for Spurious Correlations Emmanuel Alphonsus Akpan *, Imoh

More information

Time Series Outlier Detection

Time Series Outlier Detection Time Series Outlier Detection Tingyi Zhu July 28, 2016 Tingyi Zhu Time Series Outlier Detection July 28, 2016 1 / 42 Outline Time Series Basics Outliers Detection in Single Time Series Outlier Series Detection

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Generalised AR and MA Models and Applications

Generalised AR and MA Models and Applications Chapter 3 Generalised AR and MA Models and Applications 3.1 Generalised Autoregressive Processes Consider an AR1) process given by 1 αb)x t = Z t ; α < 1. In this case, the acf is, ρ k = α k for k 0 and

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

Introduction to Signal Processing

Introduction to Signal Processing to Signal Processing Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Intelligent Systems for Pattern Recognition Signals = Time series Definitions Motivations A sequence

More information

Lecture 1: Fundamental concepts in Time Series Analysis (part 2)

Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC)

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification

Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification 1. Consider the time series x(k) = β 1 + β 2 k + w(k) where β 1 and β 2 are known constants

More information

IDENTIFICATION OF ARMA MODELS

IDENTIFICATION OF ARMA MODELS IDENTIFICATION OF ARMA MODELS A stationary stochastic process can be characterised, equivalently, by its autocovariance function or its partial autocovariance function. It can also be characterised by

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Model selection Mean square error

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

16.584: Random (Stochastic) Processes

16.584: Random (Stochastic) Processes 1 16.584: Random (Stochastic) Processes X(t): X : RV : Continuous function of the independent variable t (time, space etc.) Random process : Collection of X(t, ζ) : Indexed on another independent variable

More information

Modelling using ARMA processes

Modelling using ARMA processes Modelling using ARMA processes Step 1. ARMA model identification; Step 2. ARMA parameter estimation Step 3. ARMA model selection ; Step 4. ARMA model checking; Step 5. forecasting from ARMA models. 33

More information

5 Transfer function modelling

5 Transfer function modelling MSc Further Time Series Analysis 5 Transfer function modelling 5.1 The model Consider the construction of a model for a time series (Y t ) whose values are influenced by the earlier values of a series

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay. Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay. Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay Midterm Chicago Booth Honor Code: I pledge my honor that I have not violated the Honor Code during

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Case study -3: Monthly streamflows

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0 MODULE 9: STATIONARY PROCESSES 7 Lecture 2 Autoregressive Processes 1 Moving Average Process Pure Random process Pure Random Process or White Noise Process: is a random process X t, t 0} which has: E[X

More information

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Forecasting 1. Let X and Y be two random variables such that E(X 2 ) < and E(Y 2 )

More information

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems EL1820 Modeling of Dynamical Systems Lecture 9 - Parameter estimation in linear models Model structures Parameter estimation via prediction error minimization Properties of the estimate: bias and variance

More information

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Tessa L. Childers-Day February 8, 2013 1 Introduction Today s section will deal with topics such as: the mean function, the auto- and cross-covariance

More information

Multivariate Time Series

Multivariate Time Series Multivariate Time Series Notation: I do not use boldface (or anything else) to distinguish vectors from scalars. Tsay (and many other writers) do. I denote a multivariate stochastic process in the form

More information

STAT 248: EDA & Stationarity Handout 3

STAT 248: EDA & Stationarity Handout 3 STAT 248: EDA & Stationarity Handout 3 GSI: Gido van de Ven September 17th, 2010 1 Introduction Today s section we will deal with the following topics: the mean function, the auto- and crosscovariance

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

Model structure. Lecture Note #3 (Chap.6) Identification of time series model. ARMAX Models and Difference Equations

Model structure. Lecture Note #3 (Chap.6) Identification of time series model. ARMAX Models and Difference Equations System Modeling and Identification Lecture ote #3 (Chap.6) CHBE 70 Korea University Prof. Dae Ryoo Yang Model structure ime series Multivariable time series x [ ] x x xm Multidimensional time series (temporal+spatial)

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY 1 BME 50500: Image and Signal Processing in Biomedicine Lecture 5: Correlation and Power-Spectrum Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

Examination paper for Solution: TMA4285 Time series models

Examination paper for Solution: TMA4285 Time series models Department of Mathematical Sciences Examination paper for Solution: TMA4285 Time series models Academic contact during examination: Håkon Tjelmeland Phone: 4822 1896 Examination date: December 7th 2013

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

Econ 623 Econometrics II Topic 2: Stationary Time Series

Econ 623 Econometrics II Topic 2: Stationary Time Series 1 Introduction Econ 623 Econometrics II Topic 2: Stationary Time Series In the regression model we can model the error term as an autoregression AR(1) process. That is, we can use the past value of the

More information

Computer Exercise 1 Estimation and Model Validation

Computer Exercise 1 Estimation and Model Validation Lund University Time Series Analysis Mathematical Statistics Fall 2018 Centre for Mathematical Sciences Computer Exercise 1 Estimation and Model Validation This computer exercise treats identification,

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

New Introduction to Multiple Time Series Analysis

New Introduction to Multiple Time Series Analysis Helmut Lütkepohl New Introduction to Multiple Time Series Analysis With 49 Figures and 36 Tables Springer Contents 1 Introduction 1 1.1 Objectives of Analyzing Multiple Time Series 1 1.2 Some Basics 2

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

Principles of forecasting

Principles of forecasting 2.5 Forecasting Principles of forecasting Forecast based on conditional expectations Suppose we are interested in forecasting the value of y t+1 based on a set of variables X t (m 1 vector). Let y t+1

More information

Stationary or Non-Stationary Random Excitation for Vibration-Based Structural Damage Detection? An exploratory study

Stationary or Non-Stationary Random Excitation for Vibration-Based Structural Damage Detection? An exploratory study Stationary or Non-Stationary Random Excitation for Vibration-Based Structural Damage Detection? An exploratory study Andriana S. GEORGANTOPOULOU & Spilios D. FASSOIS Stochastic Mechanical Systems & Automation

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Identification of ARX, OE, FIR models with the least squares method

Identification of ARX, OE, FIR models with the least squares method Identification of ARX, OE, FIR models with the least squares method CHEM-E7145 Advanced Process Control Methods Lecture 2 Contents Identification of ARX model with the least squares minimizing the equation

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Regression on Principal components

More information

Akaike criterion: Kullback-Leibler discrepancy

Akaike criterion: Kullback-Leibler discrepancy Model choice. Akaike s criterion Akaike criterion: Kullback-Leibler discrepancy Given a family of probability densities {f ( ; ψ), ψ Ψ}, Kullback-Leibler s index of f ( ; ψ) relative to f ( ; θ) is (ψ

More information

Econometrics I: Univariate Time Series Econometrics (1)

Econometrics I: Univariate Time Series Econometrics (1) Econometrics I: Dipartimento di Economia Politica e Metodi Quantitativi University of Pavia Overview of the Lecture 1 st EViews Session VI: Some Theoretical Premises 2 Overview of the Lecture 1 st EViews

More information

Nonlinear Time Series Modeling

Nonlinear Time Series Modeling Nonlinear Time Series Modeling Part II: Time Series Models in Finance Richard A. Davis Colorado State University (http://www.stat.colostate.edu/~rdavis/lectures) MaPhySto Workshop Copenhagen September

More information

Stochastic Processes. A stochastic process is a function of two variables:

Stochastic Processes. A stochastic process is a function of two variables: Stochastic Processes Stochastic: from Greek stochastikos, proceeding by guesswork, literally, skillful in aiming. A stochastic process is simply a collection of random variables labelled by some parameter:

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Centre for Mathematical Sciences HT 2017 Mathematical Statistics

Centre for Mathematical Sciences HT 2017 Mathematical Statistics Lund University Stationary stochastic processes Centre for Mathematical Sciences HT 2017 Mathematical Statistics Computer exercise 3 in Stationary stochastic processes, HT 17. The purpose of this exercise

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

Lecture 5: Estimation of time series

Lecture 5: Estimation of time series Lecture 5, page 1 Lecture 5: Estimation of time series Outline of lesson 5 (chapter 4) (Extended version of the book): a.) Model formulation Explorative analyses Model formulation b.) Model estimation

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

Lesson 2: Analysis of time series

Lesson 2: Analysis of time series Lesson 2: Analysis of time series Time series Main aims of time series analysis choosing right model statistical testing forecast driving and optimalisation Problems in analysis of time series time problems

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes (cont d)

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes (cont d) Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes (cont d) Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Estimation methods Review of last class Restrict to basically linear estimation problems (also non-linear problems that are nearly linear) Restrict to parametric,

More information

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems EL1820 Modeling of Dynamical Systems Lecture 10 - System identification as a model building tool Experiment design Examination and prefiltering of data Model structure selection Model validation Lecture

More information

Definition of a Stochastic Process

Definition of a Stochastic Process Definition of a Stochastic Process Balu Santhanam Dept. of E.C.E., University of New Mexico Fax: 505 277 8298 bsanthan@unm.edu August 26, 2018 Balu Santhanam (UNM) August 26, 2018 1 / 20 Overview 1 Stochastic

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

ECON 4160, Spring term Lecture 12

ECON 4160, Spring term Lecture 12 ECON 4160, Spring term 2013. Lecture 12 Non-stationarity and co-integration 2/2 Ragnar Nymoen Department of Economics 13 Nov 2013 1 / 53 Introduction I So far we have considered: Stationary VAR, with deterministic

More information

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before.

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before. ACF and PACF of an AR(p) We will only present the general ideas on how to obtain the ACF and PACF of an AR(p) model since the details follow closely the AR(1) and AR(2) cases presented before. Recall that

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

STA 6857 VAR, VARMA, VARMAX ( 5.7)

STA 6857 VAR, VARMA, VARMAX ( 5.7) STA 6857 VAR, VARMA, VARMAX ( 5.7) Outline 1 Multivariate Time Series Modeling 2 VAR 3 VARIMA/VARMAX Arthur Berg STA 6857 VAR, VARMA, VARMAX ( 5.7) 2/ 16 Outline 1 Multivariate Time Series Modeling 2 VAR

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

Vector autoregressions, VAR

Vector autoregressions, VAR 1 / 45 Vector autoregressions, VAR Chapter 2 Financial Econometrics Michael Hauser WS17/18 2 / 45 Content Cross-correlations VAR model in standard/reduced form Properties of VAR(1), VAR(p) Structural VAR,

More information

IV. Covariance Analysis

IV. Covariance Analysis IV. Covariance Analysis Autocovariance Remember that when a stochastic process has time values that are interdependent, then we can characterize that interdependency by computing the autocovariance function.

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

6 NONSEASONAL BOX-JENKINS MODELS

6 NONSEASONAL BOX-JENKINS MODELS 6 NONSEASONAL BOX-JENKINS MODELS In this section, we will discuss a class of models for describing time series commonly referred to as Box-Jenkins models. There are two types of Box-Jenkins models, seasonal

More information

f-domain expression for the limit model Combine: 5.12 Approximate Modelling What can be said about H(q, θ) G(q, θ ) H(q, θ ) with

f-domain expression for the limit model Combine: 5.12 Approximate Modelling What can be said about H(q, θ) G(q, θ ) H(q, θ ) with 5.2 Approximate Modelling What can be said about if S / M, and even G / G? G(q, ) H(q, ) f-domain expression for the limit model Combine: with ε(t, ) =H(q, ) [y(t) G(q, )u(t)] y(t) =G (q)u(t) v(t) We know

More information

Basics on 2-D 2 D Random Signal

Basics on 2-D 2 D Random Signal Basics on -D D Random Signal Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Time: Fourier Analysis for -D signals Image enhancement via spatial filtering

More information

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 )

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 ) Covariance Stationary Time Series Stochastic Process: sequence of rv s ordered by time {Y t } {...,Y 1,Y 0,Y 1,...} Defn: {Y t } is covariance stationary if E[Y t ]μ for all t cov(y t,y t j )E[(Y t μ)(y

More information

Vector Auto-Regressive Models

Vector Auto-Regressive Models Vector Auto-Regressive Models Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Cast of Characters. Some Symbols, Functions, and Variables Used in the Book

Cast of Characters. Some Symbols, Functions, and Variables Used in the Book Page 1 of 6 Cast of Characters Some s, Functions, and Variables Used in the Book Digital Signal Processing and the Microcontroller by Dale Grover and John R. Deller ISBN 0-13-081348-6 Prentice Hall, 1998

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

Closed-Loop Disturbance Identification and Controller Tuning for Discrete Manufacturing Processes. Overview

Closed-Loop Disturbance Identification and Controller Tuning for Discrete Manufacturing Processes. Overview Closed-Loop Disturbance Identification and Controller Tuning for Discrete Manufacturing Processes Enrique del Castillo Department of Industrial & Manufacturing Engineering The Pennsylvania State University

More information

Lecture 4 - Spectral Estimation

Lecture 4 - Spectral Estimation Lecture 4 - Spectral Estimation The Discrete Fourier Transform The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier Transform for signals known only at N instants separated

More information

VAR Models and Applications

VAR Models and Applications VAR Models and Applications Laurent Ferrara 1 1 University of Paris West M2 EIPMC Oct. 2016 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Lecture # 37. Prof. John W. Sutherland. Nov. 28, 2005

Lecture # 37. Prof. John W. Sutherland. Nov. 28, 2005 Lecture # 37 Prof. John W. Sutherland Nov. 28, 2005 Linear Regression 8 y 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 x Modeling To describe the data above, propose the model: y = B 0 + B 1 x + ε Fitted model will

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

Notes on Random Processes

Notes on Random Processes otes on Random Processes Brian Borchers and Rick Aster October 27, 2008 A Brief Review of Probability In this section of the course, we will work with random variables which are denoted by capital letters,

More information

System Identification & Parameter Estimation

System Identification & Parameter Estimation System Identification & Parameter Estimation Wb3: SIPE lecture Correlation functions in time & frequency domain Alfred C. Schouten, Dept. of Biomechanical Engineering (BMechE), Fac. 3mE // Delft University

More information

1 Teaching notes on structural VARs.

1 Teaching notes on structural VARs. Bent E. Sørensen February 22, 2007 1 Teaching notes on structural VARs. 1.1 Vector MA models: 1.1.1 Probability theory The simplest (to analyze, estimation is a different matter) time series models are

More information

Online Appendix. j=1. φ T (ω j ) vec (EI T (ω j ) f θ0 (ω j )). vec (EI T (ω) f θ0 (ω)) = O T β+1/2) = o(1), M 1. M T (s) exp ( isω)

Online Appendix. j=1. φ T (ω j ) vec (EI T (ω j ) f θ0 (ω j )). vec (EI T (ω) f θ0 (ω)) = O T β+1/2) = o(1), M 1. M T (s) exp ( isω) Online Appendix Proof of Lemma A.. he proof uses similar arguments as in Dunsmuir 979), but allowing for weak identification and selecting a subset of frequencies using W ω). It consists of two steps.

More information