Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay. Midterm

Size: px
Start display at page:

Download "Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay. Midterm"

Transcription

1 Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay Midterm Chicago Booth Honor Code: I pledge my honor that I have not violated the Honor Code during this examination. Signature: Name: UC. ID: Notes: Open notes and books. The exam has eight (8) pages and six (6) pages of output. Write your answer in the blank space provided for each question. Manage your time carefully and answer as many questions as you can. Unless stated otherwise, {a t } is a sequence of iid Gaussian random vectors with mean zero and positive-definite covariance matrix Σ a. This assumption applies to the univariate case too. For simplicity, ALL tests use the 5% significance level. In the exam, Γ i = Cov(z t, z t i ) denotes the lag-i autocovariance matrix of a k-dimensional stationary time series z t. Problem A: (45 points; 3 points per question) Answer briefly the following questions. 1. (For questions 1 to 8). Consider the following k-dimensional linear time series model φ(b)z t = φ 0 + θ(b)a t, where z t = (z 1t,., z kt ), φ(b) = I p i=1 φ i B i and θ(b) = I q i=1 θ i B i are two left-coprime matrix polynomials such that rank[φ p, θ q ] = k and p and q are non-negative integers. Give a sufficient condition for the invertibility of the process z t. 2. Assume that p = 2, z it are I(1) processes for 1 i k, and z t is co-integrated. Write down an Error-Correction form for z t. 1

2 3. Assume that φ 0 = 0, p = 2 and q = 1. Define y t = (z t, z t 1). Write down a VARMA(1,1) model for y t, including the covariance matrix of the innovations. 4. Assume that k = 2, p = 2 and q = 1. What is the implied univariate ARMA model for z 2t? 5. Assume that p = 1 and q = 2. Derive the moment equations for a stationary z t. 6. Assume that p = q = 1 and φ 0 = 0. Let z t = ψ(b)a t be the MA representation of z t. Derive the impulse response function ψ i for i = 1, 2, Assume, again, that p = 1, q = 2 and φ 0 = 0. Describe a method that can obtain consistent estimate of φ 1 via the ordinary least squares method. 8. Assume that k = 2. Describe a necessary and sufficient condition that z 1t serves as an input variable and z 2t as a dependent variable. That is, there exists a transfer function model with z 1t as the input variable. 9. Consider the MA(1) model z t = a t θa t 1. This model can be estimated by either the conditional or the exact likelihood methods. Describe briefly the difference between the two estimation methods. Briefly discuss the advantages and disadvantages of each method. 2

3 10. Give two situations under which VARMA modeling is preferred over the transfer function modeling even if we suspect the existence of the later model. 11. (For questions 11 and 12) Consider the 2-dimensional VARMA(1,1) model [ ] [ ] z t = z t 1 z t 2 [ ] [ ] a t + a t 1 + a t 2, Σ a = Is the model identifiable? Why? [ ]. 12. Let y t = z 2t z 1t. What is the univariate model for y t? 13. (For questions 13 to 15). Suppose that 2-dimensional series z t follows the model z t = [ Show that this model has a unit root. ] z t 1 + a t [ ] a t Show that both z 1t and z 2t are unit-root nonstationary. 15. Obtain a co-integrating vector for the system. 3

4 Problem B. (30 points) Consider a 2-dimensional time series z t = (z 1t, z 2t ) with 296 observations. Some analysis of the series is given in the attached R output. Answer the following questions: 1. (4 points) If VAR models are entertained. What VAR models are selected by the order specification methods discussed in the class? 2. (5 points) A VAR(6) model is estimated and refined. The refinement is to remove simultaneously all parameters with t-ratio less than 1.96 in modulus. Write down the refined model, including the residual covariance matrix. 3. (2 points) Provide a justification that one indeed can simultaneously remove all estimates with t-ratio less than 1.96 in modulus. 4. (3 points) Model checking shows that the refined VAR(6) model is adequate. Based on the model, is there any Granger causality between z 1t and z 2t? Why? 5. (7 points) Write down the transfer function model implied by the refined VAR(6) model. 4

5 6. (2 points) Based on the refined VAR(6) model, obtain an 95% interval forecast of z 2,t+6 at the forecast origin t = (2 points) The extended cross-correlation method is applied to z t. What is the model suggested by the method? 8. (3 points) A VARMA(3,1) model is fitted to the series. Write down the fitted model, including the residual covariance matrix. 9. (2 points) Does the fitted VARMA(3,1) model imply any Granger causality in z t? Why? 5

6 Problem C. (25 points total, 5 points each question) Simple derivation. 1. Consider the white noise series z t = a t. Let Γ 1 be the lag-1 sample cross covariance matrix. Derive the limiting covariance matrix of T vec( Γ 1 ). 2. Consider a k-dimensional VAR(p) model with p 1. Let y t = 1 z t be the sum of z it, where 1 is the k-dimensional vector of 1 s. Show that y t follows an ARMA model and obtain the maximum order of y t. 6

7 3. Consider a stationary and invertible VARMA(2,1) model φ(b)z t = θ(b)a t, Var(a t ) = Σ a > 0, where φ(b) = I k φ 1 B φ 2 B 2 and θ(b) = I k θ 1 B. Define the following vectors y t = z t z t 1 a t where 0 is a k-dimensional vector of zeros., b t = a t 0 a t, (a) Find the coefficient matrix Φ such that y t = Φy t 1 + b t. (b) Using the VAR(1) model of y t, derive an equation that can be used to obtain the auto-covariance matrices Γ l of z t, the given VARMA(2,1) model. 4. Consider the VAR(1) model z t = φ 1 z t 1 + a t. Let φ 1 be the ordinary least squares estimate of φ 1. What is the limiting distribution of T vec( φ 1 ) as the sample size T increases. 7

8 5. Consider the random walk series z t = z t 1 + a t, where a t is a sequence of iid random variables with mean zero, variance σ 2 and finite fourth moment. From the unit-root lecture, we define the partial sum X T (r) = 1 T σ S [T r], 0 r 1, where S t = t i=1 a i. By the Functional Center Limit Theorem and the standard Brownian motion by W (r), we have X T (r) W (r). Therefore, T 1/2 S [T r] σw (r). Consider the statistic T 3/2 T t=1 z t 1, which is approximately T 1/2 z. Show that T 3/2 T t=1 1 z t 1 σ W (r)dr. 0 8

9 R output ***** Problem B ****** > zt=read.table("xxxx.txt") > dim(zt) [1] > source("mts.r") > VARorder(zt) selected order: aic = 6 selected order: bic = 4 selected order: hq = 4 Summary table: p AIC BIC HQ M(p) p-value [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [13,] [14,] > m1=var(zt,6) Constant term: Estimates: Std.Error: AR coefficient matrix AR( 1 )-matrix [1,] [2,] standard error [1,] [2,] AR( 6 )-matrix [1,] [2,] standard error 9

10 [1,] [2,] Residuals cov-mtx: [1,] [2,] det(sse) = AIC = BIC = HQ = > m2=refvar(m1,thres=1.96) Constant term: Estimates: Std.Error: AR coefficient matrix AR( 1 )-matrix [1,] [2,] standard error [1,] [2,] AR( 2 )-matrix [1,] [2,] standard error [1,] [2,] AR( 3 )-matrix [1,] [2,] standard error [1,] [2,] AR( 4 )-matrix [1,] [2,]

11 standard error [1,] [2,] AR( 5 )-matrix [1,] [2,] standard error [1,] [2,] AR( 6 )-matrix [1,] [2,] standard error [1,] [2,] Residuals cov-mtx: [1,] [2,] det(sse) = AIC = BIC = HQ = > MTSdiag(m2,adj=10) [1] "Covariance matrix:" V1 V2 V V CCM at lag: 0 [1,] [2,] Simplified matrix: CCM at lag: 1 CCM at lag: 2 11

12 CCM at lag: 3 CCM at lag: 4 CCM at lag: 5 CCM at lag: 6 CCM at lag: 7 CCM at lag: 8 CCM at lag: 9 CCM at lag: 10 > VARpred(m2,6) orig 296 Forecasts at origin: 296 V1 V2 [1,] [5,] [6,] Standard Errors of predictions: [1,] [5,] [6,] > Eccm(zt,maxp=8,maxq=5) p-values table of Extended Cross-correlation Matrices: Column: MA order Row : AR order

13 > m3=varma(zt,p=3,q=1) Number of parameters: 18 Coefficient(s): Estimate Std. Error t value Pr(> t ) V ** V V < 2e-16 *** V *** V e-09 *** V *** V * V ** V e-05 *** V < 2e-16 *** V e-06 *** V < 2e-16 *** V e-05 *** V e-07 *** *** e-05 *** e-07 *** --- Estimates in matrix form: Constant term: Estimates: AR coefficient matrix AR( 1 )-matrix [1,] [2,] AR( 2 )-matrix [1,] [2,] AR( 3 )-matrix 13

14 [1,] [2,] MA coefficient matrix MA( 1 )-matrix [1,] [2,] Residuals cov-matrix: [1,] [2,] aic= bic= > MTSdiag(m3) [1] "Covariance matrix:" V1 V2 V V Simplified matrix: CCM at lag: 1 CCM at lag: 2 CCM at lag: 3 CCM at lag: 4 CCM at lag: 5 CCM at lag: 6 CCM at lag: 7 CCM at lag: 8 14

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm Chicago Booth Honor Code: I pledge my honor that I have not violated the Honor Code during

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 017, Mr Ruey S Tsay Solutions to Midterm Problem A: (51 points; 3 points per question) Answer briefly the following questions

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Booth School of Business Business 494, Spring Quarter 03, Mr. Ruey S. Tsay Unit-Root Nonstationary VARMA Models Unit root plays an important role both in theory and applications

More information

ARMA (and ARIMA) models are often expressed in backshift notation.

ARMA (and ARIMA) models are often expressed in backshift notation. Backshift Notation ARMA (and ARIMA) models are often expressed in backshift notation. B is the backshift operator (also called the lag operator ). It operates on time series, and means back up by one time

More information

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8]

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] 1 Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] Insights: Price movements in one market can spread easily and instantly to another market [economic globalization and internet

More information

2. Multivariate ARMA

2. Multivariate ARMA 2. Multivariate ARMA JEM 140: Quantitative Multivariate Finance IES, Charles University, Prague Summer 2018 JEM 140 () 2. Multivariate ARMA Summer 2018 1 / 19 Multivariate AR I Let r t = (r 1t,..., r kt

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Vector Auto-Regressive Models

Vector Auto-Regressive Models Vector Auto-Regressive Models Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 IX. Vector Time Series Models VARMA Models A. 1. Motivation: The vector

More information

VAR Models and Applications

VAR Models and Applications VAR Models and Applications Laurent Ferrara 1 1 University of Paris West M2 EIPMC Oct. 2016 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Multivariate Time Series: VAR(p) Processes and Models

Multivariate Time Series: VAR(p) Processes and Models Multivariate Time Series: VAR(p) Processes and Models A VAR(p) model, for p > 0 is X t = φ 0 + Φ 1 X t 1 + + Φ p X t p + A t, where X t, φ 0, and X t i are k-vectors, Φ 1,..., Φ p are k k matrices, with

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

Robust Testing and Variable Selection for High-Dimensional Time Series

Robust Testing and Variable Selection for High-Dimensional Time Series Robust Testing and Variable Selection for High-Dimensional Time Series Ruey S. Tsay Booth School of Business, University of Chicago May, 2017 Ruey S. Tsay HTS 1 / 36 Outline 1 Focus on high-dimensional

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Cointegrated VARIMA models: specification and. simulation

Cointegrated VARIMA models: specification and. simulation Cointegrated VARIMA models: specification and simulation José L. Gallego and Carlos Díaz Universidad de Cantabria. Abstract In this note we show how specify cointegrated vector autoregressive-moving average

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT DYNAMIC REGRESSION IN ARIMA MODELING Ross Bettinger, Analytical Consultant, Seattle, WA Box-Jenkins time series models that contain exogenous predictor variables are called dynamic regression

More information

TMA4285 Time Series Models Exam December

TMA4285 Time Series Models Exam December Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA485 Time Series Models Solution Oppgave a) A process {z t } is invertible if it can be represented as an A( ) process, z

More information

7. Forecasting with ARIMA models

7. Forecasting with ARIMA models 7. Forecasting with ARIMA models 309 Outline: Introduction The prediction equation of an ARIMA model Interpreting the predictions Variance of the predictions Forecast updating Measuring predictability

More information

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006.

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. 9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Introduction to Time Series and Forecasting. P.J. Brockwell and R. A. Davis, Springer Texts

More information

Heteroskedasticity; Step Changes; VARMA models; Likelihood ratio test statistic; Cusum statistic.

Heteroskedasticity; Step Changes; VARMA models; Likelihood ratio test statistic; Cusum statistic. 47 3!,57 Statistics and Econometrics Series 5 Febrary 24 Departamento de Estadística y Econometría Universidad Carlos III de Madrid Calle Madrid, 126 2893 Getafe (Spain) Fax (34) 91 624-98-49 VARIANCE

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

4.1 Order Specification

4.1 Order Specification THE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2009, Mr Ruey S Tsay Lecture 7: Structural Specification of VARMA Models continued 41 Order Specification Turn to data

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each)

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) The maximum number of points on this exam is

More information

New Introduction to Multiple Time Series Analysis

New Introduction to Multiple Time Series Analysis Helmut Lütkepohl New Introduction to Multiple Time Series Analysis With 49 Figures and 36 Tables Springer Contents 1 Introduction 1 1.1 Objectives of Analyzing Multiple Time Series 1 1.2 Some Basics 2

More information

Vector autoregressions, VAR

Vector autoregressions, VAR 1 / 45 Vector autoregressions, VAR Chapter 2 Financial Econometrics Michael Hauser WS17/18 2 / 45 Content Cross-correlations VAR model in standard/reduced form Properties of VAR(1), VAR(p) Structural VAR,

More information

Examination paper for Solution: TMA4285 Time series models

Examination paper for Solution: TMA4285 Time series models Department of Mathematical Sciences Examination paper for Solution: TMA4285 Time series models Academic contact during examination: Håkon Tjelmeland Phone: 4822 1896 Examination date: December 7th 2013

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

End-Semester Examination MA 373 : Statistical Analysis on Financial Data

End-Semester Examination MA 373 : Statistical Analysis on Financial Data End-Semester Examination MA 373 : Statistical Analysis on Financial Data Instructor: Dr. Arabin Kumar Dey, Department of Mathematics, IIT Guwahati Note: Use the results in Section- III: Data Analysis using

More information

Econ 423 Lecture Notes: Additional Topics in Time Series 1

Econ 423 Lecture Notes: Additional Topics in Time Series 1 Econ 423 Lecture Notes: Additional Topics in Time Series 1 John C. Chao April 25, 2017 1 These notes are based in large part on Chapter 16 of Stock and Watson (2011). They are for instructional purposes

More information

7. MULTIVARATE STATIONARY PROCESSES

7. MULTIVARATE STATIONARY PROCESSES 7. MULTIVARATE STATIONARY PROCESSES 1 1 Some Preliminary Definitions and Concepts Random Vector: A vector X = (X 1,..., X n ) whose components are scalar-valued random variables on the same probability

More information

Vector autoregressive Moving Average Process. Presented by Muhammad Iqbal, Amjad Naveed and Muhammad Nadeem

Vector autoregressive Moving Average Process. Presented by Muhammad Iqbal, Amjad Naveed and Muhammad Nadeem Vector autoregressive Moving Average Process Presented by Muhammad Iqbal, Amjad Naveed and Muhammad Nadeem Road Map 1. Introduction 2. Properties of MA Finite Process 3. Stationarity of MA Process 4. VARMA

More information

Multivariate forecasting with VAR models

Multivariate forecasting with VAR models Multivariate forecasting with VAR models Franz Eigner University of Vienna UK Econometric Forecasting Prof. Robert Kunst 16th June 2009 Overview Vector autoregressive model univariate forecasting multivariate

More information

FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE -MODULE2 Midterm Exam Solutions - March 2015

FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE -MODULE2 Midterm Exam Solutions - March 2015 FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE -MODULE2 Midterm Exam Solutions - March 205 Time Allowed: 60 minutes Family Name (Surname) First Name Student Number (Matr.) Please answer all questions by

More information

Notes on Time Series Modeling

Notes on Time Series Modeling Notes on Time Series Modeling Garey Ramey University of California, San Diego January 17 1 Stationary processes De nition A stochastic process is any set of random variables y t indexed by t T : fy t g

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41202, Spring Quarter 2003, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41202, Spring Quarter 2003, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41202, Spring Quarter 2003, Mr. Ruey S. Tsay Solutions to Homework Assignment #4 May 9, 2003 Each HW problem is 10 points throughout this

More information

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41912, Spring Quarter 2016, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41912, Spring Quarter 2016, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Booth School of Business Business 41912, Spring Quarter 2016, Mr. Ruey S. Tsay Lecture 5: Multivariate Multiple Linear Regression The model is Y n m = Z n (r+1) β (r+1) m + ɛ

More information

Chapter 2: Unit Roots

Chapter 2: Unit Roots Chapter 2: Unit Roots 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and undeconometrics II. Unit Roots... 3 II.1 Integration Level... 3 II.2 Nonstationarity

More information

Lecture 2: ARMA(p,q) models (part 2)

Lecture 2: ARMA(p,q) models (part 2) Lecture 2: ARMA(p,q) models (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC) Univariate time series Sept.

More information

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA Applied Time Series Analysis Wayne A. Woodward Southern Methodist University Dallas, Texas, USA Henry L. Gray Southern Methodist University Dallas, Texas, USA Alan C. Elliott University of Texas Southwestern

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

1 Introduction to Generalized Least Squares

1 Introduction to Generalized Least Squares ECONOMICS 7344, Spring 2017 Bent E. Sørensen April 12, 2017 1 Introduction to Generalized Least Squares Consider the model Y = Xβ + ɛ, where the N K matrix of regressors X is fixed, independent of the

More information

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27 ARIMA Models Jamie Monogan University of Georgia January 16, 2018 Jamie Monogan (UGA) ARIMA Models January 16, 2018 1 / 27 Objectives By the end of this meeting, participants should be able to: Argue why

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Standard Univariate Models ECON/FIN

More information

5: MULTIVARATE STATIONARY PROCESSES

5: MULTIVARATE STATIONARY PROCESSES 5: MULTIVARATE STATIONARY PROCESSES 1 1 Some Preliminary Definitions and Concepts Random Vector: A vector X = (X 1,..., X n ) whose components are scalarvalued random variables on the same probability

More information

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 214, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X, doi:1.5251/ajsir.214.5.6.185.194 Time Series Forecasting: A Tool for Out - Sample Model

More information

Lecture Note of Bus 41202, Spring 2006: Multivariate Time Series Analysis. x 1t x 2t. X t = Cov(X t, X t j ) = Γ j

Lecture Note of Bus 41202, Spring 2006: Multivariate Time Series Analysis. x 1t x 2t. X t = Cov(X t, X t j ) = Γ j Lecture Note of Bus 41202, Spring 2006: Multivariate Time Series Analysis Forcus on two series (Bivariate) Time series: Data: x 1, x 2,, x T. Weak stationarity: X t = x 1t x 2t. E(X t ) = µ Cov(X t, X

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Lecture Notes of Bus 41202 (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Simple AR models: (Regression with lagged variables.) Motivating example: The growth rate of U.S. quarterly real

More information

ARIMA Models. Jamie Monogan. January 25, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 25, / 38

ARIMA Models. Jamie Monogan. January 25, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 25, / 38 ARIMA Models Jamie Monogan University of Georgia January 25, 2012 Jamie Monogan (UGA) ARIMA Models January 25, 2012 1 / 38 Objectives By the end of this meeting, participants should be able to: Describe

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 )

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 ) Covariance Stationary Time Series Stochastic Process: sequence of rv s ordered by time {Y t } {...,Y 1,Y 0,Y 1,...} Defn: {Y t } is covariance stationary if E[Y t ]μ for all t cov(y t,y t j )E[(Y t μ)(y

More information

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2015, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2015, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2015, Mr. Ruey S. Tsay Lecture 8: Seasonal Model, Principal Component Analysis and Factor Models Reference: Chapter 6 of

More information

MULTIVARIATE TIME SERIES ANALYSIS LECTURE NOTES. Version without figures. 9 August 2018

MULTIVARIATE TIME SERIES ANALYSIS LECTURE NOTES. Version without figures. 9 August 2018 MULTIVARIATE TIME SERIES ANALYSIS LECTURE NOTES Version without figures. 9 August 2018 Joseph George Caldwell, PhD (Statistics) 1432 N Camino Mateo, Tucson, AZ 85745-3311 USA Tel. (001)(520)222-3446, E-mail

More information

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 6: State Space Model and Kalman Filter Bus 490, Time Series Analysis, Mr R Tsay A state space model consists of two equations: S t+ F S t + Ge t+, () Z t HS t + ɛ t (2) where S t is a state vector

More information

MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE)

MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE) MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE) 15 April 2016 (180 minutes) Professor: R. Kulik Student Number: Name: This is closed book exam. You are allowed to use one double-sided A4 sheet of notes. Only

More information

Dynamic Time Series Regression: A Panacea for Spurious Correlations

Dynamic Time Series Regression: A Panacea for Spurious Correlations International Journal of Scientific and Research Publications, Volume 6, Issue 10, October 2016 337 Dynamic Time Series Regression: A Panacea for Spurious Correlations Emmanuel Alphonsus Akpan *, Imoh

More information

Lesson 15: Building ARMA models. Examples

Lesson 15: Building ARMA models. Examples Lesson 15: Building ARMA models. Examples Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Examples In this lesson, in order to illustrate

More information

Class 1: Stationary Time Series Analysis

Class 1: Stationary Time Series Analysis Class 1: Stationary Time Series Analysis Macroeconometrics - Fall 2009 Jacek Suda, BdF and PSE February 28, 2011 Outline Outline: 1 Covariance-Stationary Processes 2 Wold Decomposition Theorem 3 ARMA Models

More information

Univariate Nonstationary Time Series 1

Univariate Nonstationary Time Series 1 Univariate Nonstationary Time Series 1 Sebastian Fossati University of Alberta 1 These slides are based on Eric Zivot s time series notes available at: http://faculty.washington.edu/ezivot Introduction

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 24 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

Title. Description. var intro Introduction to vector autoregressive models

Title. Description. var intro Introduction to vector autoregressive models Title var intro Introduction to vector autoregressive models Description Stata has a suite of commands for fitting, forecasting, interpreting, and performing inference on vector autoregressive (VAR) models

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION 2012-2013 MAS451/MTH451 Time Series Analysis May 2013 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains FOUR (4)

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

Comprehensive Examination Quantitative Methods Spring, 2018

Comprehensive Examination Quantitative Methods Spring, 2018 Comprehensive Examination Quantitative Methods Spring, 2018 Instruction: This exam consists of three parts. You are required to answer all the questions in all the parts. 1 Grading policy: 1. Each part

More information

3. ARMA Modeling. Now: Important class of stationary processes

3. ARMA Modeling. Now: Important class of stationary processes 3. ARMA Modeling Now: Important class of stationary processes Definition 3.1: (ARMA(p, q) process) Let {ɛ t } t Z WN(0, σ 2 ) be a white noise process. The process {X t } t Z is called AutoRegressive-Moving-Average

More information

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University Topic 4 Unit Roots Gerald P. Dwyer Clemson University February 2016 Outline 1 Unit Roots Introduction Trend and Difference Stationary Autocorrelations of Series That Have Deterministic or Stochastic Trends

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Emmanuel Alphonsus Akpan Imoh Udo Moffat Department of Mathematics and Statistics University of Uyo, Nigeria Ntiedo Bassey Ekpo Department of

More information

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41912, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Final Exam

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41912, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Final Exam THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41912, Spring Quarter 2014, Mr. Ruey S. Tsay Solutions to Final Exam 1. City crime: The distance matrix is 694 915 1073 528 716 881 972 464

More information

You must continuously work on this project over the course of four weeks.

You must continuously work on this project over the course of four weeks. The project Five project topics are described below. You should choose one the projects. Maximum of two people per project is allowed. If two people are working on a topic they are expected to do double

More information

Lecture 1: Fundamental concepts in Time Series Analysis (part 2)

Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC)

More information

MFE Financial Econometrics 2018 Final Exam Model Solutions

MFE Financial Econometrics 2018 Final Exam Model Solutions MFE Financial Econometrics 2018 Final Exam Model Solutions Tuesday 12 th March, 2019 1. If (X, ε) N (0, I 2 ) what is the distribution of Y = µ + β X + ε? Y N ( µ, β 2 + 1 ) 2. What is the Cramer-Rao lower

More information

STA 6857 VAR, VARMA, VARMAX ( 5.7)

STA 6857 VAR, VARMA, VARMAX ( 5.7) STA 6857 VAR, VARMA, VARMAX ( 5.7) Outline 1 Multivariate Time Series Modeling 2 VAR 3 VARIMA/VARMAX Arthur Berg STA 6857 VAR, VARMA, VARMAX ( 5.7) 2/ 16 Outline 1 Multivariate Time Series Modeling 2 VAR

More information

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis Gregory C. Reinsel Elements of Multivariate Time Series Analysis Second Edition With 14 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1. Vector Time Series

More information

Financial Times Series. Lecture 12

Financial Times Series. Lecture 12 Financial Times Series Lecture 12 Multivariate Volatility Models Here our aim is to generalize the previously presented univariate volatility models to their multivariate counterparts We assume that returns

More information

Introduction to Time Series Analysis. Lecture 11.

Introduction to Time Series Analysis. Lecture 11. Introduction to Time Series Analysis. Lecture 11. Peter Bartlett 1. Review: Time series modelling and forecasting 2. Parameter estimation 3. Maximum likelihood estimator 4. Yule-Walker estimation 5. Yule-Walker

More information

Residuals in Time Series Models

Residuals in Time Series Models Residuals in Time Series Models José Alberto Mauricio Universidad Complutense de Madrid, Facultad de Económicas, Campus de Somosaguas, 83 Madrid, Spain. (E-mail: jamauri@ccee.ucm.es.) Summary: Three types

More information

Multivariate Time Series

Multivariate Time Series Multivariate Time Series Notation: I do not use boldface (or anything else) to distinguish vectors from scalars. Tsay (and many other writers) do. I denote a multivariate stochastic process in the form

More information

Time Series Analysis Fall 2008

Time Series Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 14.384 Time Series Analysis Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Introduction 1 14.384 Time

More information

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS)

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) 15 April 2016 (180 minutes) Professor: R. Kulik Student Number: Name: This is closed book exam. You are allowed to use one double-sided A4 sheet of notes.

More information

Econ 427, Spring Problem Set 3 suggested answers (with minor corrections) Ch 6. Problems and Complements:

Econ 427, Spring Problem Set 3 suggested answers (with minor corrections) Ch 6. Problems and Complements: Econ 427, Spring 2010 Problem Set 3 suggested answers (with minor corrections) Ch 6. Problems and Complements: 1. (page 132) In each case, the idea is to write these out in general form (without the lag

More information

Permanent Income Hypothesis (PIH) Instructor: Dmytro Hryshko

Permanent Income Hypothesis (PIH) Instructor: Dmytro Hryshko Permanent Income Hypothesis (PIH) Instructor: Dmytro Hryshko 1 / 36 The PIH Utility function is quadratic, u(c t ) = 1 2 (c t c) 2 ; borrowing/saving is allowed using only the risk-free bond; β(1 + r)

More information

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45 ESSE 4020 3.0 - Mid-Term Test 207 Tuesday 7 October 207. 08:30-09:45 Symbols have their usual meanings. All questions are worth 0 marks, although some are more difficult than others. Answer as many questions

More information

Diagnostic Checking, Time Series and Regression

Diagnostic Checking, Time Series and Regression Western University Scholarship@Western Electronic Thesis and Dissertation Repository August 2011 Diagnostic Checking, Time Series and Regression Esam Mahdi The University of Western Ontario Supervisor

More information