F.L. Lewis, NAI. Talk available online at Supported by : NSF AFOSR Europe ONR Marc Steinberg US TARDEC

Size: px
Start display at page:

Download "F.L. Lewis, NAI. Talk available online at Supported by : NSF AFOSR Europe ONR Marc Steinberg US TARDEC"

Transcription

1

2 F.L. Lewis, NAI Moncrief-O Donnell Chair, UTA Research Institute (UTARI) The University of Texas at Arlington, USA and Qian Ren Consulting Professor, State Key Laboratory of Synthetical Automation for Process Industries Northeastern University, Shenyang, China Assistive Human-Robot Interaction (HRI) With Dan Popa, UTA Research Institute Lead Roboticist and Isura Ranatunga, Reza Modares, Bakur AlQaudi Supported by : NSF AFOSR Europe ONR Marc Steinberg US TARDEC Supported by : China NNSF China Project 111 Talk available online at

3

4 Invited by Yunhui Liu

5 PR2 meets Isura

6 Robot dynamics Error system Control torque depends on Impedance model parameters

7 Human Performance Factors Studies Human task learning has 2 components: 1. Human learns a robot dynamics model to compensate for robot nonlinearities 2. Human learns a task model to properly perform a task Inner Robot Specific Control Loop INDEPENDENT OF TASK Outer Task Specific Control Loop INDEPENDENT OF ROBOT DETAILS

8 Two-loop HRI Design- Robot Control versus Task Control 1. Inner Robot-Specific Control Loop 2. Outer Task-Specific Control Loop 2A. Adaptive Inverse Filter Task Design 2B. Model Reference Adaptive Control Task Design 2C. Reinforcement Learning Task Control for Minimum Human Effort 3. Experiments

9 Task control outer loop Robot control inner loop

10 1. Inner Loop Robot Specific Controller Model reference Neuro adaptive Control There is NO prescribed trajectory in the robot control loop design

11 A Novel Control Objective Using Neuro adaptive Control Techniques F.L. Lewis, S. Jagannathan, and A. Yesildirek, Neural Network Control of Robot Manipulators and Nonlinear Systems, Taylor and Francis, London, F.L. Lewis, D.M. Dawson, and C.T. Abdallah, Robot Manipulator Control: Theory and Practice, 2 nd edition, Revised and Expanded, CRC Press, Boca Raton, 2006.

12 Model following error formulation Robot dynamics M ( qx ) Vqqx (, ) Fq ( ) Gq ( ) f = f f d c h Control torque T = J ( q) f c Prescribed robot impedance model M x D x K x = f m m m m m m h Model following error e= x m x Sliding mode error r = e e Error dynamics There is NO task trajectory here M ( qr ) = Vqqr (, ) f( ) fd fc fh Unknown robot nonlinear function f( )= M( q)( x e ) V( q, q )( x e) F( q ) G( q) m T T T T T T T = e e xm x m xm q q T m

13 Dynamics Robot M ( qx ) Vqqx (, ) Fq ( ) Gq ( ) f = f f d c h Error M ( qr ) = Vqqr (, ) f( ) fd fc fh Unknown nonlinearities parameterized in terms of a function approximator T T f( )= W ( V ) W, V unknown parameters Controller approximation based f = fˆ ( ) K rv( t) f c v h Estimate for unknown nonlinearities ˆ( )= ˆ T ( ˆT f W V ) WV ˆ, ˆ Estimated parameters Closed loop error dynamics M ( qr ) = Vqqr (, ) Kr f ( ) f vt ( ) v Model following error driven by parameter estimation error d

14 Adaptive control structure ˆ T = ( ˆT f W V ) K rv( t) f c v h Standard Adaptive Parameter tuning algorithms ˆ = ( ˆT T ) ( ˆT ) ˆT T W F V r F V V r FrWˆ ˆ = ( ( ˆT T ) ˆ T V GV Wr) GrVˆ Robust control term vt ()= K( Zˆ Z ) r z F B T T T T T T T = e e xm x m xm q q T No task reference trajectory is used here The robot controller makes the model following error e= x m x small The parameters of the admittance model M mxm Dmx m Kmxm = fh are not needed

15 No task trajectory information is used in this inner loop robot controller The inner loop robot controller makes the model following error small The admittance model parameters are not needed Only the admittance model trajectories x, x, x are needed. m m m

16 Shi nian shu mu Bai nian shu ren Keshi- Wu nian shu xueshang

17 2. Outer Task-Specific Control Loop 2A. Adaptive Inverse Filter Task Design 2B. Model Reference Adaptive Control Task Design 2C. Reinforcement Learning Task Control for Minimum Human Effort

18 2A. Outer loop Task Specific Design #1 Work of Isura Ranatunga Adaptive Inverse Control and Wiener Filter B. Widrow Adaptive inverse filter Signal to robot controller Want to find M(s) so that Ds () M() shs () with H(s) and D(s) unknown For trajectory following task e.g. point to point motion control

19 Want to find M(s) so that Ds () M() shs () with H(s) and D(s) unknown Wiener Filter Solution in terms of power spectral densities f x () s h d Ds () M()= s = () s H() s f h f h

20 Find Wiener Filter online using adaptive learning f () h t xm () t 1/s 1/s b 1 a 1 1/s 1/s b 2 a 2 1/s 1/s b 3 a 3 d dt f h d dt x d

21 Ideal Filter Wiener filter solution x ()= t H() t () t d x ()= t H() t ˆ () t m Known regression vector Unknown coefficients x d x m

22 Combined stability analysis of Inner robot control loop and Outer task following loop Lyapunov function L r M q r tr W F W tr V G V t P t t T T 1 T 1 T 1 = ( ) { } { } () () () Robot model following error Outer loop inverse adaptive filter error NN weight estimation errors

23 2B. Outer loop Task Specific Design #2 Work of Bakur AlQaudi Model Reference Adaptive Control K. Astrom BUT In standard MRAC, the controller appears before the unknown plant Here, the unknown plant (e.g. human) is BEFORE the controller

24 BUT In standard MRAC, the controller appears before the unknown plant Here, the unknown plant (e.g. human) is BEFORE the controller So we need to add a human dynamics identifier

25 Unknown Human model H () h s b y sa u c Basic muscle response model Nominal Robot impedance model H p () s b y n s a u n p To generate prescribed model trajectory x, x, x m m m Task reference model first order crossover model ideal human + robot system H s b y m m m() sam uc

26 Human response estimation error y y yˆ Parameter estimation error a aˆ a b bˆ b

27 Human response estimation error y y yˆ

28

29 Combined stability proof of overall 2 loop robot task system Adaptive tuning parameter errors r M q r tr W F W tr V G V T T 1 T 1 ( ) { } { } Inner model tracking error NN parameter estimation errors

30 PD controller like that provided by cerebellum Basic muscle response

31 Kung Tz 500 BC Confucius Tian xia da tong Harmony under heaven Archery Chariot driving Music Rites and Rituals Poetry Mathematics Man s relations to Family Friends Society Nation Emperor Ancestors 124 BC - Han Imperial University in Chang-an

32 2C. Outer loop Task Specific Design #3 Work of Reza Modares Reinforcement Learning for minimum human effort Feedforward assistive control term l (.) Human force amplifier xd e + d ( Ks + Ks ) - p d Human 1 f h K h ( Ms + Bs + K) xm Prescribed Impedance Model Find robot impedance model parameters To minimize human force effort f h And task trajectory following error e d M, BK,

33 ( Ks+ K ) f = ke d p h e d Tracking error e = x -x Î d d m n e = [ e e ] = x -x Î T T T 2n d d d d x = [ x x ] Î 2 T T T n m m x = [ x x ] Î T T T 2n d d d

34 Performance index ò J = ( e T Q e + f T Q f + u T Ru ) dt t Then control is d d d h h h e e u = K e + K f e 1 d 2 h Minimize human effort and tracking error How to get human force into PI? ò T T J = ( X QX + u Ru ) dt t e e

35 Robot Impedance Model Unknown Human Model ( Ks+ K ) f= ke d p e d K f + K f = k e d h p h e d f =- K K f + k K e º A f + E e -1 h d p h e d,0 d h h h d Overall Augmented Dynamics Feedback linearization loop

36 Optimal control is an offline method Based on solving ARE Knowing all the plant dynamics We want online method to learn the optimal control without knowing the System Matrix A Reinforcement Learning

37 Off policy IRL Bellman equation t+d t t+dt T T T T T Xt () PXt () + ò [2 Xt () PBe] dt = é Xt () QXt () u Ru ù dt Xt ( t) PXt ( t) t ò ê + + +D +D ë e eúû t t Off policy term

38 Take enough data along the system trajectory To solve this equation using least squares

39 3. Experimental Results on PR2

40 3. Experimental Results Work of Isura Ranatunga Sven Cremer

41

42 Point to point tracking error Human force effort

43 Future Work

44 Thanks!!

45

Shengli Xie Minyue Fu Derong Liu

Shengli Xie Minyue Fu Derong Liu 2 Shengli Xie Minyue Fu Derong Liu 3 F.L. Lewis, NAI Moncrief-O Donnell Chair, UTA Research Institute (UTARI) The University of Texas at Arlington, USA and Guest Foreign Professor, Guangdong University

More information

Lyapunov Design for Controls

Lyapunov Design for Controls F.L. Lewis, NAI Moncrief-O Donnell Chair, UTA Research Institute (UTARI) The University of Texas at Arlington, USA and Foreign Professor, Chongqing University, China Supported by : China Qian Ren Program,

More information

F.L. Lewis. New Developments in Integral Reinforcement Learning: Continuous-time Optimal Control and Games

F.L. Lewis. New Developments in Integral Reinforcement Learning: Continuous-time Optimal Control and Games F.L. Lewis National Academy of Inventors Moncrief-O Donnell Chair, UTA Research Institute (UTARI) The University of Texas at Arlington, USA and Qian Ren Consulting Professor, State Key Laboratory of Synthetical

More information

Zhongping Jiang Tengfei Liu

Zhongping Jiang Tengfei Liu Zhongpng Jang Tengfe Lu 4 F.L. Lews, NAI Moncref-O Donnell Char, UTA Research Insttute (UTARI) The Unversty of Texas at Arlngton, USA and Qan Ren Consultng Professor, State Key Laboratory of Synthetcal

More information

Linear Quadratic Regulator (LQR) Design II

Linear Quadratic Regulator (LQR) Design II Lecture 8 Linear Quadratic Regulator LQR) Design II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Outline Stability and Robustness properties

More information

Neural Network Control of Robot Manipulators and Nonlinear Systems

Neural Network Control of Robot Manipulators and Nonlinear Systems Neural Network Control of Robot Manipulators and Nonlinear Systems F.L. LEWIS Automation and Robotics Research Institute The University of Texas at Arlington S. JAG ANNATHAN Systems and Controls Research

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 12: Multivariable Control of Robotic Manipulators Part II

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 12: Multivariable Control of Robotic Manipulators Part II MCE/EEC 647/747: Robot Dynamics and Control Lecture 12: Multivariable Control of Robotic Manipulators Part II Reading: SHV Ch.8 Mechanical Engineering Hanz Richter, PhD MCE647 p.1/14 Robust vs. Adaptive

More information

Output Adaptive Model Reference Control of Linear Continuous State-Delay Plant

Output Adaptive Model Reference Control of Linear Continuous State-Delay Plant Output Adaptive Model Reference Control of Linear Continuous State-Delay Plant Boris M. Mirkin and Per-Olof Gutman Faculty of Agricultural Engineering Technion Israel Institute of Technology Haifa 3, Israel

More information

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties Australian Journal of Basic and Applied Sciences, 3(1): 308-322, 2009 ISSN 1991-8178 Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties M.R.Soltanpour, M.M.Fateh

More information

Neural network based robust hybrid control for robotic system: an H approach

Neural network based robust hybrid control for robotic system: an H approach Nonlinear Dyn (211) 65:421 431 DOI 117/s1171-1-992-4 ORIGINAL PAPER Neural network based robust hybrid control for robotic system: an H approach Jinzhu Peng Jie Wang Yaonan Wang Received: 22 February 21

More information

Nonlinear PD Controllers with Gravity Compensation for Robot Manipulators

Nonlinear PD Controllers with Gravity Compensation for Robot Manipulators BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 4, No Sofia 04 Print ISSN: 3-970; Online ISSN: 34-408 DOI: 0.478/cait-04-00 Nonlinear PD Controllers with Gravity Compensation

More information

On-line Learning of Robot Arm Impedance Using Neural Networks

On-line Learning of Robot Arm Impedance Using Neural Networks On-line Learning of Robot Arm Impedance Using Neural Networks Yoshiyuki Tanaka Graduate School of Engineering, Hiroshima University, Higashi-hiroshima, 739-857, JAPAN Email: ytanaka@bsys.hiroshima-u.ac.jp

More information

A Sliding Mode Control based on Nonlinear Disturbance Observer for the Mobile Manipulator

A Sliding Mode Control based on Nonlinear Disturbance Observer for the Mobile Manipulator International Core Journal of Engineering Vol.3 No.6 7 ISSN: 44-895 A Sliding Mode Control based on Nonlinear Disturbance Observer for the Mobile Manipulator Yanna Si Information Engineering College Henan

More information

Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain

Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain World Applied Sciences Journal 14 (9): 1306-1312, 2011 ISSN 1818-4952 IDOSI Publications, 2011 Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain Samira Soltani

More information

INVERSE MODEL APPROACH TO DISTURBANCE REJECTION AND DECOUPLING CONTROLLER DESIGN. Leonid Lyubchyk

INVERSE MODEL APPROACH TO DISTURBANCE REJECTION AND DECOUPLING CONTROLLER DESIGN. Leonid Lyubchyk CINVESTAV Department of Automatic Control November 3, 20 INVERSE MODEL APPROACH TO DISTURBANCE REJECTION AND DECOUPLING CONTROLLER DESIGN Leonid Lyubchyk National Technical University of Ukraine Kharkov

More information

On Practical Applications of Active Disturbance Rejection Control

On Practical Applications of Active Disturbance Rejection Control 2010 Chinese Control Conference On Practical Applications of Active Disturbance Rejection Control Qing Zheng Gannon University Zhiqiang Gao Cleveland State University Outline Ø Introduction Ø Active Disturbance

More information

Observer Based Output Feedback Tracking Control of Robot Manipulators

Observer Based Output Feedback Tracking Control of Robot Manipulators 1 IEEE International Conference on Control Applications Part of 1 IEEE Multi-Conference on Systems and Control Yokohama, Japan, September 8-1, 1 Observer Based Output Feedback Tracking Control of Robot

More information

Robot Manipulator Control. Hesheng Wang Dept. of Automation

Robot Manipulator Control. Hesheng Wang Dept. of Automation Robot Manipulator Control Hesheng Wang Dept. of Automation Introduction Industrial robots work based on the teaching/playback scheme Operators teach the task procedure to a robot he robot plays back eecute

More information

GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL

GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL 1 KHALED M. HELAL, 2 MOSTAFA R.A. ATIA, 3 MOHAMED I. ABU EL-SEBAH 1, 2 Mechanical Engineering Department ARAB ACADEMY

More information

UTA Research Institute (UTARI) The University of Texas at Arlington

UTA Research Institute (UTARI) The University of Texas at Arlington F.L. Lewis Moncrief-O Donnell Endowed Chair Head, Controls & Sensors Group UA Research Institute (UARI) he University of exas at Arlington Supported by : NSF - Paul Werbos AFOSR Europe- Kevin Bollino ONR

More information

Optimal Design of CMAC Neural-Network Controller for Robot Manipulators

Optimal Design of CMAC Neural-Network Controller for Robot Manipulators 22 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 1, FEBUARY 2000 Optimal Design of CMAC Neural-Network Controller for Robot Manipulators Young H. Kim

More information

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

More information

H-infinity Model Reference Controller Design for Magnetic Levitation System

H-infinity Model Reference Controller Design for Magnetic Levitation System H.I. Ali Control and Systems Engineering Department, University of Technology Baghdad, Iraq 6043@uotechnology.edu.iq H-infinity Model Reference Controller Design for Magnetic Levitation System Abstract-

More information

RBF Neural Network Adaptive Control for Space Robots without Speed Feedback Signal

RBF Neural Network Adaptive Control for Space Robots without Speed Feedback Signal Trans. Japan Soc. Aero. Space Sci. Vol. 56, No. 6, pp. 37 3, 3 RBF Neural Network Adaptive Control for Space Robots without Speed Feedback Signal By Wenhui ZHANG, Xiaoping YE and Xiaoming JI Institute

More information

Neural Network-Based Adaptive Control of Robotic Manipulator: Application to a Three Links Cylindrical Robot

Neural Network-Based Adaptive Control of Robotic Manipulator: Application to a Three Links Cylindrical Robot Vol.3 No., 27 مجلد 3 العدد 27 Neural Network-Based Adaptive Control of Robotic Manipulator: Application to a Three Links Cylindrical Robot Abdul-Basset A. AL-Hussein Electrical Engineering Department Basrah

More information

IN recent years, controller design for systems having complex

IN recent years, controller design for systems having complex 818 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL 29, NO 6, DECEMBER 1999 Adaptive Neural Network Control of Nonlinear Systems by State and Output Feedback S S Ge, Member,

More information

Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems

Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems 2 Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems Paul Lambrechts Digital Motion Control (4K4), 23 Faculty of Mechanical Engineering, Control Systems Technology Group /42 2

More information

Tracking Control of Robot Manipulators with Bounded Torque Inputs* W.E. Dixon, M.S. de Queiroz, F. Zhang and D.M. Dawson

Tracking Control of Robot Manipulators with Bounded Torque Inputs* W.E. Dixon, M.S. de Queiroz, F. Zhang and D.M. Dawson Robotica (1999) volume 17, pp. 121 129. Printed in the United Kingdom 1999 Cambridge University Press Tracking Control of Robot Manipulators with Bounded Torque Inputs* W.E. Dixon, M.S. de Queiroz, F.

More information

Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

More information

Linear Quadratic Regulator (LQR) II

Linear Quadratic Regulator (LQR) II Optimal Control, Guidance and Estimation Lecture 11 Linear Quadratic Regulator (LQR) II Pro. Radhakant Padhi Dept. o Aerospace Engineering Indian Institute o Science - Bangalore Outline Summary o LQR design

More information

Research Article Periodic and Chaotic Motions of a Two-Bar Linkage with OPCL Controller

Research Article Periodic and Chaotic Motions of a Two-Bar Linkage with OPCL Controller Hindawi Publishing Corporation Mathematical Problems in Engineering Volume, Article ID 98639, 5 pages doi:.55//98639 Research Article Periodic and Chaotic Motions of a Two-Bar Linkage with OPCL Controller

More information

Inverse Optimality Design for Biological Movement Systems

Inverse Optimality Design for Biological Movement Systems Inverse Optimality Design for Biological Movement Systems Weiwei Li Emanuel Todorov Dan Liu Nordson Asymtek Carlsbad CA 921 USA e-mail: wwli@ieee.org. University of Washington Seattle WA 98195 USA Google

More information

Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models

Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models 104 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 6, JUNE 006 Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models C. C. Cheah, C. Liu, and J.

More information

Introduction to centralized control

Introduction to centralized control ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Control Part 2 Introduction to centralized control Independent joint decentralized control may prove inadequate when the user requires high task

More information

Gain Scheduling Control with Multi-loop PID for 2-DOF Arm Robot Trajectory Control

Gain Scheduling Control with Multi-loop PID for 2-DOF Arm Robot Trajectory Control Gain Scheduling Control with Multi-loop PID for 2-DOF Arm Robot Trajectory Control Khaled M. Helal, 2 Mostafa R.A. Atia, 3 Mohamed I. Abu El-Sebah, 2 Mechanical Engineering Department ARAB ACADEMY FOR

More information

FUZZY CONTROL OF NONLINEAR SYSTEMS WITH INPUT SATURATION USING MULTIPLE MODEL STRUCTURE. Min Zhang and Shousong Hu

FUZZY CONTROL OF NONLINEAR SYSTEMS WITH INPUT SATURATION USING MULTIPLE MODEL STRUCTURE. Min Zhang and Shousong Hu ICIC Express Letters ICIC International c 2008 ISSN 1881-803X Volume 2, Number 2, June 2008 pp. 131 136 FUZZY CONTROL OF NONLINEAR SYSTEMS WITH INPUT SATURATION USING MULTIPLE MODEL STRUCTURE Min Zhang

More information

CS545 Contents XVI. l Adaptive Control. l Reading Assignment for Next Class

CS545 Contents XVI. l Adaptive Control. l Reading Assignment for Next Class CS545 Contents XVI Adaptive Control Model Reference Adaptive Control Self-Tuning Regulators Linear Regression Recursive Least Squares Gradient Descent Feedback-Error Learning Reading Assignment for Next

More information

NEURAL NETWORK-BASED MRAC CONTROL OF DYNAMIC NONLINEAR SYSTEMS

NEURAL NETWORK-BASED MRAC CONTROL OF DYNAMIC NONLINEAR SYSTEMS Int J Appl Math Comput Sci 6 Vol 6 No 9 NEURAL NETWORK-BASED MRAC CONTROL OF DYNAMIC NONLINEAR SYSTEMS GHANIA DEBBACHE ABDELHAK BENNIA NOUREDDINE GOLÉA Electrical Engineering Institute Oum El-Bouaghi University

More information

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 Unit Outline Introduction to the course: Course goals, assessment, etc... What is Control Theory A bit of jargon,

More information

An Adaptive Full-State Feedback Controller for Bilateral Telerobotic Systems

An Adaptive Full-State Feedback Controller for Bilateral Telerobotic Systems 21 American Control Conference Marriott Waterfront Baltimore MD USA June 3-July 2 21 FrB16.3 An Adaptive Full-State Feedback Controller for Bilateral Telerobotic Systems Ufuk Ozbay Erkan Zergeroglu and

More information

Kernel Least Mean Square Algorithm in Control of Nonlinear Systems

Kernel Least Mean Square Algorithm in Control of Nonlinear Systems Kernel Least Mean Square Algorithm in Control of Nonlinear Systems Zinat Mazloomi*, Heydar usian Shandiz**, and Hossein Faramarzpour*** *Faculty of Electerical and Robotic Engineering, Shahrood University

More information

Robotics. Control Theory. Marc Toussaint U Stuttgart

Robotics. Control Theory. Marc Toussaint U Stuttgart Robotics Control Theory Topics in control theory, optimal control, HJB equation, infinite horizon case, Linear-Quadratic optimal control, Riccati equations (differential, algebraic, discrete-time), controllability,

More information

Adaptive Inverse Control

Adaptive Inverse Control TA1-8:30 Adaptive nverse Control Bernard Widrow Michel Bilello Stanford University Department of Electrical Engineering, Stanford, CA 94305-4055 Abstract A plant can track an input command signal if it

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 6: Generalized and Controller Design Overview In this Lecture, you will learn: Generalized? What about changing OTHER parameters

More information

Control of industrial robots. Centralized control

Control of industrial robots. Centralized control Control of industrial robots Centralized control Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano ipartimento di Elettronica, Informazione e Bioingegneria Introduction Centralized control

More information

Optimal Control with Learned Forward Models

Optimal Control with Learned Forward Models Optimal Control with Learned Forward Models Pieter Abbeel UC Berkeley Jan Peters TU Darmstadt 1 Where we are? Reinforcement Learning Data = {(x i, u i, x i+1, r i )}} x u xx r u xx V (x) π (u x) Now V

More information

A Novel Integral-Based Event Triggering Control for Linear Time-Invariant Systems

A Novel Integral-Based Event Triggering Control for Linear Time-Invariant Systems 53rd IEEE Conference on Decision and Control December 15-17, 2014. Los Angeles, California, USA A Novel Integral-Based Event Triggering Control for Linear Time-Invariant Systems Seyed Hossein Mousavi 1,

More information

Seul Jung, T. C. Hsia and R. G. Bonitz y. Robotics Research Laboratory. University of California, Davis. Davis, CA 95616

Seul Jung, T. C. Hsia and R. G. Bonitz y. Robotics Research Laboratory. University of California, Davis. Davis, CA 95616 On Robust Impedance Force Control of Robot Manipulators Seul Jung, T C Hsia and R G Bonitz y Robotics Research Laboratory Department of Electrical and Computer Engineering University of California, Davis

More information

THE robot is one of the choices for improving productivity

THE robot is one of the choices for improving productivity 320 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 1, FEBRUARY 2005 Multiple Neuro-Adaptive Control of Robot Manipulators Using Visual Cues Choon-Young Lee and Ju-Jang Lee, Senior Member, IEEE

More information

F.L. Lewis. New Developments in Integral Reinforcement Learning: Continuous-time Optimal Control and Games

F.L. Lewis. New Developments in Integral Reinforcement Learning: Continuous-time Optimal Control and Games F.L. Lewis National Academy of Inventors Moncrief-O Donnell Chair, UA Research Institute (UARI) he University of exas at Arlington, USA and Qian Ren Consulting Professor, State Key Laboratory of Synthetical

More information

Deadzone Compensation in Motion Control Systems Using Neural Networks

Deadzone Compensation in Motion Control Systems Using Neural Networks 602 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 4, APRIL 2000 Deadzone Compensation in Motion Control Systems Using Neural Networks Rastko R. Selmić and Frank L. Lewis Abstract A compensation

More information

Dynamic backstepping control for pure-feedback nonlinear systems

Dynamic backstepping control for pure-feedback nonlinear systems Dynamic backstepping control for pure-feedback nonlinear systems ZHANG Sheng *, QIAN Wei-qi (7.6) Computational Aerodynamics Institution, China Aerodynamics Research and Development Center, Mianyang, 6,

More information

Introduction to System Identification and Adaptive Control

Introduction to System Identification and Adaptive Control Introduction to System Identification and Adaptive Control A. Khaki Sedigh Control Systems Group Faculty of Electrical and Computer Engineering K. N. Toosi University of Technology May 2009 Introduction

More information

DISTURBANCE OBSERVER BASED CONTROL: CONCEPTS, METHODS AND CHALLENGES

DISTURBANCE OBSERVER BASED CONTROL: CONCEPTS, METHODS AND CHALLENGES DISTURBANCE OBSERVER BASED CONTROL: CONCEPTS, METHODS AND CHALLENGES Wen-Hua Chen Professor in Autonomous Vehicles Department of Aeronautical and Automotive Engineering Loughborough University 1 Outline

More information

Asymptotic Tracking for Uncertain Dynamic Systems Via a Multilayer Neural Network Feedforward and RISE Feedback Control Structure

Asymptotic Tracking for Uncertain Dynamic Systems Via a Multilayer Neural Network Feedforward and RISE Feedback Control Structure 80 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 9, OCTOBER 008 [7] H. Gao, T. Chen, and T. Chai, Passivity and passification for networked control systems, SIAM J. Control and Optimiz., vol. 46,

More information

CHAPTER 3 TUNING METHODS OF CONTROLLER

CHAPTER 3 TUNING METHODS OF CONTROLLER 57 CHAPTER 3 TUNING METHODS OF CONTROLLER 3.1 INTRODUCTION This chapter deals with a simple method of designing PI and PID controllers for first order plus time delay with integrator systems (FOPTDI).

More information

Adaptive set point control of robotic manipulators with amplitude limited control inputs* E. Zergeroglu, W. Dixon, A. Behal and D.

Adaptive set point control of robotic manipulators with amplitude limited control inputs* E. Zergeroglu, W. Dixon, A. Behal and D. Robotica (2) volume 18, pp. 171 181. Printed in the United Kingdom 2 Cambridge University Press Adaptive set point control of robotic manipulators with amplitude limited control inputs* E. Zergeroglu,

More information

Adaptive Predictive Observer Design for Class of Uncertain Nonlinear Systems with Bounded Disturbance

Adaptive Predictive Observer Design for Class of Uncertain Nonlinear Systems with Bounded Disturbance International Journal of Control Science and Engineering 2018, 8(2): 31-35 DOI: 10.5923/j.control.20180802.01 Adaptive Predictive Observer Design for Class of Saeed Kashefi *, Majid Hajatipor Faculty of

More information

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servo-oriented

More information

A composite adaptive output feedback tracking controller for robotic manipulators* E. Zergeroglu, W. Dixon, D. Haste, and D.

A composite adaptive output feedback tracking controller for robotic manipulators* E. Zergeroglu, W. Dixon, D. Haste, and D. Robotica (1999) volume 17, pp. 591 600. Printed in the United Kingdom 1999 Cambridge University Press A composite adaptive output feedback tracking controller for robotic manipulators* E. Zergeroglu, W.

More information

Combined NN/RISE-based Asymptotic Tracking Control of a 3 DOF Robot Manipulator

Combined NN/RISE-based Asymptotic Tracking Control of a 3 DOF Robot Manipulator JIAS Journal of Intelligent Automation Systems Published online: 15 January 214 Combined NN/RISE-based Asymptotic Tracking Control of a 3 DOF Robot Manipulator Sara Yazdanzad a, Alireza Khosravi b,*, Abolfazl

More information

Design and Control of Variable Stiffness Actuation Systems

Design and Control of Variable Stiffness Actuation Systems Design and Control of Variable Stiffness Actuation Systems Gianluca Palli, Claudio Melchiorri, Giovanni Berselli and Gabriele Vassura DEIS - DIEM - Università di Bologna LAR - Laboratory of Automation

More information

M. De La Sen, A. Almansa and J. C. Soto Instituto de Investigación y Desarrollo de Procesos, Leioa ( Bizkaia). Aptdo. 644 de Bilbao, Spain

M. De La Sen, A. Almansa and J. C. Soto Instituto de Investigación y Desarrollo de Procesos, Leioa ( Bizkaia). Aptdo. 644 de Bilbao, Spain American Journal of Applied Sciences 4 (6): 346-353, 007 ISSN 546-939 007 Science Publications Adaptive Control of Robotic Manipulators with Improvement of the ransient Behavior hrough an Intelligent Supervision

More information

Chapter 2 Review of Linear and Nonlinear Controller Designs

Chapter 2 Review of Linear and Nonlinear Controller Designs Chapter 2 Review of Linear and Nonlinear Controller Designs This Chapter reviews several flight controller designs for unmanned rotorcraft. 1 Flight control systems have been proposed and tested on a wide

More information

Stability Analysis of Optimal Adaptive Control under Value Iteration using a Stabilizing Initial Policy

Stability Analysis of Optimal Adaptive Control under Value Iteration using a Stabilizing Initial Policy Stability Analysis of Optimal Adaptive Control under Value Iteration using a Stabilizing Initial Policy Ali Heydari, Member, IEEE Abstract Adaptive optimal control using value iteration initiated from

More information

Neural Network Controller for Robotic Manipulator

Neural Network Controller for Robotic Manipulator MMAE54 Robotics- Class Project Paper Neural Network Controller for Robotic Manipulator Kai Qian Department of Biomeical Engineering, Illinois Institute of echnology, Chicago, IL 666 USA. Introuction Artificial

More information

Path Integral Stochastic Optimal Control for Reinforcement Learning

Path Integral Stochastic Optimal Control for Reinforcement Learning Preprint August 3, 204 The st Multidisciplinary Conference on Reinforcement Learning and Decision Making RLDM203 Path Integral Stochastic Optimal Control for Reinforcement Learning Farbod Farshidian Institute

More information

1348 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004

1348 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004 1348 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL 34, NO 3, JUNE 2004 Direct Adaptive Iterative Learning Control of Nonlinear Systems Using an Output-Recurrent Fuzzy Neural

More information

A Sliding Mode Controller Using Neural Networks for Robot Manipulator

A Sliding Mode Controller Using Neural Networks for Robot Manipulator ESANN'4 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), 8-3 April 4, d-side publi., ISBN -9337-4-8, pp. 93-98 A Sliding Mode Controller Using Neural Networks for Robot

More information

Tracking Control of a Class of Differential Inclusion Systems via Sliding Mode Technique

Tracking Control of a Class of Differential Inclusion Systems via Sliding Mode Technique International Journal of Automation and Computing (3), June 24, 38-32 DOI: 7/s633-4-793-6 Tracking Control of a Class of Differential Inclusion Systems via Sliding Mode Technique Lei-Po Liu Zhu-Mu Fu Xiao-Na

More information

Design and Comparative Analysis of Controller for Non Linear Tank System

Design and Comparative Analysis of Controller for Non Linear Tank System Design and Comparative Analysis of for Non Linear Tank System Janaki.M 1, Soniya.V 2, Arunkumar.E 3 12 Assistant professor, Department of EIE, Karpagam College of Engineering, Coimbatore, India 3 Associate

More information

Robotics. Dynamics. University of Stuttgart Winter 2018/19

Robotics. Dynamics. University of Stuttgart Winter 2018/19 Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler, joint space control, reference trajectory following, optimal operational

More information

LINEAR QUADRATIC GAUSSIAN

LINEAR QUADRATIC GAUSSIAN ECE553: Multivariable Control Systems II. LINEAR QUADRATIC GAUSSIAN.: Deriving LQG via separation principle We will now start to look at the design of controllers for systems Px.t/ D A.t/x.t/ C B u.t/u.t/

More information

New Advances in Uncertainty Analysis and Estimation

New Advances in Uncertainty Analysis and Estimation New Advances in Uncertainty Analysis and Estimation Overview: Both sensor observation data and mathematical models are used to assist in the understanding of physical dynamic systems. However, observational

More information

Coordinated Tracking Control of Multiple Laboratory Helicopters: Centralized and De-Centralized Design Approaches

Coordinated Tracking Control of Multiple Laboratory Helicopters: Centralized and De-Centralized Design Approaches Coordinated Tracking Control of Multiple Laboratory Helicopters: Centralized and De-Centralized Design Approaches Hugh H. T. Liu University of Toronto, Toronto, Ontario, M3H 5T6, Canada Sebastian Nowotny

More information

Tracking Control of an Ultrasonic Linear Motor Actuated Stage Using a Sliding-mode Controller with Friction Compensation

Tracking Control of an Ultrasonic Linear Motor Actuated Stage Using a Sliding-mode Controller with Friction Compensation Vol. 3, No., pp. 3-39() http://dx.doi.org/.693/smartsci.. Tracking Control of an Ultrasonic Linear Motor Actuated Stage Using a Sliding-mode Controller with Friction Compensation Chih-Jer Lin,*, Ming-Jia

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #36 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, April 4, 2003 3. Cascade Control Next we turn to an

More information

Fuzzy control of a class of multivariable nonlinear systems subject to parameter uncertainties: model reference approach

Fuzzy control of a class of multivariable nonlinear systems subject to parameter uncertainties: model reference approach International Journal of Approximate Reasoning 6 (00) 9±44 www.elsevier.com/locate/ijar Fuzzy control of a class of multivariable nonlinear systems subject to parameter uncertainties: model reference approach

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

THE control of systems with uncertain nonlinear dynamics

THE control of systems with uncertain nonlinear dynamics IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 2, MARCH 2008 373 Asymptotic Tracking for Systems With Structured and Unstructured Uncertainties P. M. Patre, Student Member, IEEE, W. MacKunis,

More information

Feedback Control of Dynamic Bipedal Robot Locomotion

Feedback Control of Dynamic Bipedal Robot Locomotion Feedback Control of Dynamic Bipedal Robot Locomotion Eric R. Westervelt Jessy W. Grizzle Christine Chevaiiereau Jun Ho Choi Benjamin Morris CRC Press Taylor & Francis Croup Boca Raton London New York CRC

More information

Robotics. Dynamics. Marc Toussaint U Stuttgart

Robotics. Dynamics. Marc Toussaint U Stuttgart Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler recursion, general robot dynamics, joint space control, reference trajectory

More information

Introduction to centralized control

Introduction to centralized control Industrial Robots Control Part 2 Introduction to centralized control Independent joint decentralized control may prove inadequate when the user requires high task velocities structured disturbance torques

More information

Μια προσπαθεια για την επιτευξη ανθρωπινης επιδοσης σε ρομποτικές εργασίες με νέες μεθόδους ελέγχου

Μια προσπαθεια για την επιτευξη ανθρωπινης επιδοσης σε ρομποτικές εργασίες με νέες μεθόδους ελέγχου Μια προσπαθεια για την επιτευξη ανθρωπινης επιδοσης σε ρομποτικές εργασίες με νέες μεθόδους ελέγχου Towards Achieving Human like Robotic Tasks via Novel Control Methods Zoe Doulgeri doulgeri@eng.auth.gr

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING NMT EE 589 & UNM ME 482/582 Simplified drive train model of a robot joint Inertia seen by the motor Link k 1 I I D ( q) k mk 2 kk Gk Torque amplification G

More information

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls Module 9 : Robot Dynamics & controls Lecture 32 : General procedure for dynamics equation forming and introduction to control Objectives In this course you will learn the following Lagrangian Formulation

More information

Position with Force Feedback Control of Manipulator Arm

Position with Force Feedback Control of Manipulator Arm Position with Force Feedback Control of Manipulator Arm 1 B. K. Chitra, 2 J. Nandha Gopal, 3 Dr. K. Rajeswari PG Student, Department of EIE Assistant Professor, Professor, Department of EEE Abstract This

More information

AN INTELLIGENT control system may have the ability

AN INTELLIGENT control system may have the ability IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL 34, NO 1, FEBRUARY 2004 325 Adaptive Control for Uncertain Nonlinear Systems Based on Multiple Neural Networks Choon-Young Lee

More information

Reference Spreading Hybrid Control Exploiting Dynamic Contact Transitions in Robotics Applications. Alessandro Saccon

Reference Spreading Hybrid Control Exploiting Dynamic Contact Transitions in Robotics Applications. Alessandro Saccon Reference Spreading Hybrid Control Exploiting Dynamic Contact Transitions in Robotics Applications Alessandro Saccon OptHySYS Workshop Trento, January 9-11, 2017 Atlas Robotic Locomotion and Manipulation

More information

Optimization of Model-Reference Variable-Structure Controller Parameters for Direct-Current Motor

Optimization of Model-Reference Variable-Structure Controller Parameters for Direct-Current Motor Journal of Computations & Modelling, vol., no.3, 1, 67-88 ISSN: 179-765 (print), 179-885 (online) Scienpress Ltd, 1 Optimization of Model-Reference Variable-Structure Controller Parameters for Direct-Current

More information

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi,

More information

Design and Control of Compliant Humanoids. Alin Albu-Schäffer. DLR German Aerospace Center Institute of Robotics and Mechatronics

Design and Control of Compliant Humanoids. Alin Albu-Schäffer. DLR German Aerospace Center Institute of Robotics and Mechatronics Design and Control of Compliant Humanoids Alin Albu-Schäffer DLR German Aerospace Center Institute of Robotics and Mechatronics Torque Controlled Light-weight Robots Torque sensing in each joint Mature

More information

ADAPTIVE FORCE AND MOTION CONTROL OF ROBOT MANIPULATORS IN CONSTRAINED MOTION WITH DISTURBANCES

ADAPTIVE FORCE AND MOTION CONTROL OF ROBOT MANIPULATORS IN CONSTRAINED MOTION WITH DISTURBANCES ADAPTIVE FORCE AND MOTION CONTROL OF ROBOT MANIPULATORS IN CONSTRAINED MOTION WITH DISTURBANCES By YUNG-SHENG CHANG A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM

ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi, Chennai-600

More information

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar Video 8.1 Vijay Kumar 1 Definitions State State equations Equilibrium 2 Stability Stable Unstable Neutrally (Critically) Stable 3 Stability Translate the origin to x e x(t) =0 is stable (Lyapunov stable)

More information

Adaptive NN Control of Dynamic Systems with Unknown Dynamic Friction

Adaptive NN Control of Dynamic Systems with Unknown Dynamic Friction Adaptive NN Control of Dynamic Systems with Unknown Dynamic Friction S. S. Ge 1,T.H.LeeandJ.Wang Department of Electrical and Computer Engineering National University of Singapore Singapore 117576 Abstract

More information

Integrator Windup

Integrator Windup 3.5.2. Integrator Windup 3.5.2.1. Definition So far we have mainly been concerned with linear behaviour, as is often the case with analysis and design of control systems. There is, however, one nonlinear

More information

SLIDING MODE FAULT TOLERANT CONTROL WITH PRESCRIBED PERFORMANCE. Jicheng Gao, Qikun Shen, Pengfei Yang and Jianye Gong

SLIDING MODE FAULT TOLERANT CONTROL WITH PRESCRIBED PERFORMANCE. Jicheng Gao, Qikun Shen, Pengfei Yang and Jianye Gong International Journal of Innovative Computing, Information and Control ICIC International c 27 ISSN 349-498 Volume 3, Number 2, April 27 pp. 687 694 SLIDING MODE FAULT TOLERANT CONTROL WITH PRESCRIBED

More information

OVER THE past 20 years, the control of mobile robots has

OVER THE past 20 years, the control of mobile robots has IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 5, SEPTEMBER 2010 1199 A Simple Adaptive Control Approach for Trajectory Tracking of Electrically Driven Nonholonomic Mobile Robots Bong Seok

More information

Overview of the Seminar Topic

Overview of the Seminar Topic Overview of the Seminar Topic Simo Särkkä Laboratory of Computational Engineering Helsinki University of Technology September 17, 2007 Contents 1 What is Control Theory? 2 History

More information