AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda 4. BASES AND DIMENSION

Size: px
Start display at page:

Download "AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda 4. BASES AND DIMENSION"

Transcription

1 4. BASES AND DIMENSION

2 Definition Let u 1,..., u n be n vectors in V. The vectors u 1,..., u n are linearly independent if the only linear combination of them equal to the zero vector has only zero scalars; that is, given λ 1,..., λ n R if λ 1 u λ n u n = 0 V λ 1 =... = λ n = 0. Otherwise, it is said that u 1,..., u n are linearly dependent, that is λ 1,..., λ n R not all zero such that λ 1 u λ n u n = 0 V. 1. Let us prove that u 1 = (1, 0, 0), u 2 = (0, 3, 0), u 3 = (0, 0, 5) are linearly independent in R 3. If λ 1 u 1 + λ 2 u 2 + λ 3 u 3 = 0 R 3 then (λ 1, 3λ 2, 5λ 3 ) = (0, 0, 0) and thus λ 1 = λ 2 = λ 3 = {(1, 2, 0), (2, 0, 0), (0, 1, 0), (0, 0, 6)} is a set of linearly dependent vectors because (1, 2, 0) (1/2)(2, 0, 0) 2(0, 1, 0) + 0(0, 0, 6) = (0, 0, 0). 3. If 0 V is an element of C, then C is a set of linearly dependent vectors. 4. u, v V are linearly dependent u = αv, for some α R.

3 Theorem Let V be a real vector space. The number of elements of any generating set of V is greater than or equal to the number of elements of any set of linearly independent vectors of V. Definition Let V be a finitely generated real vector space. A subset B = {v 1,..., v n } of V is a basis of V if it verifies, 1. B is a generating set of V, 2. B is a set of linearly independent vectors. Example Let e i be the vector of R n with zeros in every entry except for the ith entry, which equals 1. B = {e 1,..., e n } is a basis of R n called the standard basis. Theorem (Existence of basis) Every set of generating vectors G of a real vector space V which is finitely generated and nonzero contains a basis B of V. Therefore, every real vector space V finitely generated and nonzero has a basis.

4 Example In V = R 2 the set AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda G = {(1, 0), (1, 1), ( 1, 0), (1, 2)} is a generating set of V and contains the basis B = {(1, 0), (1, 1)} of V, which is obtained by removing vectors of G linearly dependent of the remaining vectors of G. In this case ( 1, 0) = ( 1)(1, 0) and (1, 2) = 2(1, 1) (1, 0). Proposition Let V be a finitely generated real vector space and let B = {v 1,..., v n } be a basis of V. Every vector of V has a unique expression as a linear combination of the vectors of B. Definition Let V be a finitely generated real vector space and let B = {v 1,..., v n } be a basis of V. The coordinates of v V are the scalars in the unique list (λ 1,..., λ n ) R n such that v = λ 1 v λ n v n. We will write (λ 1,..., λ n ) B to mean the coordinates of a vector in the basis B.

5 Example In V = R 3 fix the basis B = {v 1 = (1, 0, 0), v 2 = (0, 2, 0), v 3 = (0, 0, 1)}. The coordinates of v = (2, 1, 1) in B are (2, 1/2, 1) B sinse v = 2v 1 + 1/2v 2 1v 3. Remarks 1. Observe that a vector space has infinitely many bases. 2. If V is a finitely generated vector space then every basis has a finite number of vectors. 3. The set R[x] of all the polynomials in x with real coefficients is a real vector space, which is not finitely generated. A basis of R[x] has infinitely many vectors. Dimension Theorem All the bases of a finitely generated real vector space V {0 V } have the same number of vectors. Definition The dimension of a finitely generated real vector space V, is the number of elements of a basis of V. We denote it by dim V. By convention dim{0 V } = 0.

6 Theorem Let V be a finitely generated real vector space. Every linearly independent set of vectors of V is included in a basis of V. Example Let V = R 3. The set of linearly independent vectors I = {(1, 1, 0), (0, 2, 0)} is a subset of the basis {(1, 1, 0), (0, 2, 0), (0, 0, 1)} of R 3, the vector (0, 0, 1) was added to complete I to a basis of V. Definition The rank of a set of vectors C = {u 1,..., u n } in V is the dimension of the subspace they generate: rank(c) = dim C. Given a finite dimensional vector space V, we fix a basis B. Let M be the matrix whose rows are the coordinates of the vectors of C in the basis B. Then, rank(c) = rank(m). Proposition The rank of a matrix M equals the highest number of row vectors of M (equivalently column vectors) which are linearly independent.

7 5. EQUATIONS OF SUBSPACES Let V be a real vector space and let us fix a basis B = {v 1,..., v n } of V. Let U be a vector subspace of V such that 0 < dimu < dimv.

8 CARTESIAN EQUATIONS Proposition There exists a homogeneous system of linear equations AX = 0, with dim V dim U equations, whose solution set equals the set of the coordinates of all the vectors of U in the basis B, that is {(λ 1,..., λ n ) R n λ 1 v λ n v n U} = = {(s 1, s 2,..., s n ) R n AS = 0} where S = s 1 s 2. s n. Every homogeneous system verifying the previous statement is given the name of system of implicit or cartesian equations of U in the basis B. Let us suppose that dim U = m (with 0 < m < n) and let {u 1,..., u m } be a basis of U. To find the implicit equations of U means to look for conditions on the coordinates (x 1, x 2,..., x n ) B of a vector v in B so that v belongs to U.

9 Let us suppose that the coordinates of u i in the basis B are (u i1,..., u in ) B and built the matrix M of size (m + 1) n : x 1 x 2 x n u 11 u 12 u 1n M = u 21 u 22 u 2n.... u m1 u m2 u mn The vector v belongs to U if it is a linear combination of the vectors in {u 1,..., u m }, then rank(m) = m. This means that all the minors of order m + 1 of M are zero. Each minor of order m + 1 provides a homogeneous linear equation. Since dim U = m we can reduce the system to l = n m equations Cartesian equations of U a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0. a l1 x 1 + a l2 x a ln x n = 0,

10 taking l minors of order m + 1 containing a nonzero minor of order m previously fixed. Observe that the cartesian equations of a subspace U in the basis B are not unique. PARAMETRIC EQUATIONS Definition The parametric equations of U in the basis B are a parametric solution of the system of cartesian equations of U in the basis B. If dim U = m the parametric equations are x 1 = u 11 α 1 + u 21 α u m1 α m x Parametric equations of U 2 = u 12 α 1 + u 22 α u m2 α m. x n = u 1n α 1 + u 2n α u mn α m, where α 1, α 2,..., α m are the parameters and u ij R.

11 They can be also written as AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda (x 1, x 2,..., x n ) = = (u 11 α 1 + u 21 α u m1 α m,..., u 1n α 1 + u 2n α u mn α m ). This means that a vector v V, with coordinates (x 1, x 2,..., x n ) B, belongs to U if (x 1, x 2,..., x n ) B = = (u 11 α 1 + u 21 α u m1 α m,..., u 1n α 1 + u 2n α u mn α m ) B = = α 1 (u 11,..., u 1n ) B + α 2 (u 21,..., u 2n ) B... + α m (u m1,..., u mn ) B. If we call u i the coordinate vector (u i1,..., u in ) B, i = 1,..., m then is a basis of U. {u 1, u 2,..., u m }

12 6. OPERATIONS WITH SUBSPACES

13 INTERSECTION OF SUBSPACES Let V be a real vector space with basis B. The intersection of vector subspaces is a vector subspace. We explain next how to obtain the equations of the intersection of two subspaces. Let U 1 and U 2 be vector subspaces of V with systems of cartesian equations a 11 x 1 + a 12 x a 1n x n = 0 Equations of U 1. Equations of U 2 U 1 has l 1 equations and U 2 has l 2 equations. a l1 1x 1 + a l1 2x a l1 nx n = 0, b 11 x 1 + b 12 x b 1n x n = 0. b l2 1x 1 + b l2 2x b l2 nx n = 0,

14 The intersection subspace U 1 U 2 contains those vectors of V whose coordinates (x 1, x 2,..., x n ) B verify the system: Remarks ( ) = a 11 x 1 + a 12 x a 1n x n = 0. a l1 1x 1 + a l1 2x a l1 nx n = 0 b 11 x 1 + b 12 x b 1n x n = 0. b l2 1x 1 + b l2 2x b l2 nx n = 0, 1. The system of cartesian equations of U 1 U 2 is obtained removing from ( ) equations that depend linearly on the remaining equations. This can be achieved obtaining the echelon form of ( ). Thus, the number of cartesian equations of U 1 U 2 is l 1 + l A parametric solution of ( ) provides the parametric equations of U 1 U 2 and from them a basis of U 1 U 2 is obtained.

15 SUM OF SUBSPACES Given subspaces U 1 and U 2 of V, in general U 1 U 2 is not a subspace of V. Let us see a counterexample. Example Given the subspaces of V = R 2 U 1 = {(x, 0) R 2 x R} U 2 = {(0, y) R 2 y R}. The set U 1 U 2 is not a subspace of R 2 since u 1 = (1, 0) U 1, u 2 = (0, 1) U 2 but u 1 + u 2 = (1, 1) / U 1 U 2. Definition Let U 1 and U 2 be subspaces of V. We call sum of U 1 and U 2 to the set U 1 + U 2 = {u 1 + u 2 u 1 U 1, u 2 U 2 }.

16 Proposition The set U 1 + U 2 is a vector subspace of V, it is the smallest subspace that contains U 1 U 2, that is U 1 + U 2 = U 1 U 2. To compute U 1 + U 2 it is important to take into account that if B U1 is a basis of U 1 and B U2 is a basis of U 2 then U 1 + U 2 = B U1 B U2, that is, B U1 B U2 is a generating set of U 1 + U 2. We can obtain a basis B U1 +U 2 of U 1 + U 2 from B U1 B U2 by removing vectors, to obtain a linearly independent set, which is also a generating set.

17 DIRECT SUM OF SUBSPACES Definition Let U 1 and U 2 be subspaces of V. The subspace U 1 + U 2 is a direct sum if U 1 U 2 = {0 V }. We write U 1 U 2. Example Let V = R 3 and fix the standard basis. Let us consider vector subspaces U and W given by their cartesian equations, U { x1 + x 2 + x 3 = 0 x 1 + x 3 = 0, W 2x 2 + x 3 = 0. The coordinates (x 1, x 2, x 3 ) of a vector of U W are a solution of the system x 1 + x 2 + x 3 = 0 x 1 + x 3 = 0 2x 2 + x 3 = 0,

18 whose coefficient matrix has rank 3. By Rouche s Theorem the system has only the zero solution (it is a homogeneous system). This shows that U W = {0 R 3} and then U W, that is the sum is a direct sum. Proposition Let B 1 be a basis of U 1 and B 2 a basis of U 2 then: U 1 U 2 = {0 V } B 1 B 2 is a linearly independent set, that is U 1 U 2 B 1 B 2 is a basis of U 1 + U 2. Definition Two subspaces U 1 and U 2 of a real vector space V are complementary if U 1 U 2 = V. U 1 U 2 = V { U1 + U 2 = V U 1 U 2 = {0 V }

19 Remarks AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda 1. Every subspace has a complementary subspace. 2. Let U 1 and U 2 be complementary subspaces of V. If B 1 is a basis of U 1 and B 2 is a basis of U 2 then B 1 B 2 is a basis of V. Theorem Dimension Formula or Grassman Formula Let U 1 and U 2 be subspaces of V. Then dim U 1 + dim U 2 = dim(u 1 + U 2 ) + dim(u 1 U 2 ).

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

Abstract Vector Spaces

Abstract Vector Spaces CHAPTER 1 Abstract Vector Spaces 1.1 Vector Spaces Let K be a field, i.e. a number system where you can add, subtract, multiply and divide. In this course we will take K to be R, C or Q. Definition 1.1.

More information

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

More information

A = u + V. u + (0) = u

A = u + V. u + (0) = u Recall: Last time we defined an affine subset of R n to be a subset of the form A = u + V = {u + v u R n,v V } where V is a subspace of R n We said that we would use the notation A = {u,v } to indicate

More information

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS MTH 35, SPRING 2017 NIKOS APOSTOLAKIS 1. Linear independence Example 1. Recall the set S = {a i : i = 1,...,5} R 4 of the last two lectures, where a 1 = (1,1,3,1) a 2 = (2,1,2, 1) a 3 = (7,3,5, 5) a 4

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer.

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer. Chapter 3 Directions: For questions 1-11 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]

More information

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true.

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Dimension We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Lemma If a vector space V has a basis B containing n vectors, then any set containing more

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian.

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. Spanning set Let S be a subset of a vector space V. Definition. The span of the set S is the smallest subspace W V that contains S. If

More information

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and 6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if (a) v 1,, v k span V and (b) v 1,, v k are linearly independent. HMHsueh 1 Natural Basis

More information

Linear Independence x

Linear Independence x Linear Independence A consistent system of linear equations with matrix equation Ax = b, where A is an m n matrix, has a solution set whose graph in R n is a linear object, that is, has one of only n +

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

BASIS AND DIMENSION. Budi Murtiyasa Muhammadiyah University of Surakarta

BASIS AND DIMENSION. Budi Murtiyasa Muhammadiyah University of Surakarta BASIS AND DIMENSION Budi Murtiyasa Muhammadiyah University of Surakarta Plan Linearly dependence and Linearly Independece Basis and Dimension Sum Space and Intersection Space Row/Column Space Linearly

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

Chapter 2. General Vector Spaces. 2.1 Real Vector Spaces

Chapter 2. General Vector Spaces. 2.1 Real Vector Spaces Chapter 2 General Vector Spaces Outline : Real vector spaces Subspaces Linear independence Basis and dimension Row Space, Column Space, and Nullspace 2 Real Vector Spaces 2 Example () Let u and v be vectors

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK)

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK) LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK) In this lecture, F is a fixed field. One can assume F = R or C. 1. More about the spanning set 1.1. Let S = { v 1, v n } be n vectors in V, we have defined

More information

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8.

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8. Linear Algebra M1 - FIB Contents: 5 Matrices, systems of linear equations and determinants 6 Vector space 7 Linear maps 8 Diagonalization Anna de Mier Montserrat Maureso Dept Matemàtica Aplicada II Translation:

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

System of Linear Equations

System of Linear Equations Chapter 7 - S&B Gaussian and Gauss-Jordan Elimination We will study systems of linear equations by describing techniques for solving such systems. The preferred solution technique- Gaussian elimination-

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

More information

Lecture 9: Vector Algebra

Lecture 9: Vector Algebra Lecture 9: Vector Algebra Linear combination of vectors Geometric interpretation Interpreting as Matrix-Vector Multiplication Span of a set of vectors Vector Spaces and Subspaces Linearly Independent/Dependent

More information

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3.

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3. 1. Determine by inspection which of the following sets of vectors is linearly independent. (a) (d) 1, 3 4, 1 { [ [,, 1 1] 3]} (b) 1, 4 5, (c) 3 6 (e) 1, 3, 4 4 3 1 4 Solution. The answer is (a): v 1 is

More information

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

More information

AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY

AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY 3. Euclidean space AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda A real vector space E is an euclidean vector space if it is provided of an scalar product

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

Chapter 2: Linear Independence and Bases

Chapter 2: Linear Independence and Bases MATH20300: Linear Algebra 2 (2016 Chapter 2: Linear Independence and Bases 1 Linear Combinations and Spans Example 11 Consider the vector v (1, 1 R 2 What is the smallest subspace of (the real vector space

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

(II.B) Basis and dimension

(II.B) Basis and dimension (II.B) Basis and dimension How would you explain that a plane has two dimensions? Well, you can go in two independent directions, and no more. To make this idea precise, we formulate the DEFINITION 1.

More information

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences. Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.. Recall that P 3 denotes the vector space of polynomials of degree less

More information

R b. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 1, x h. , x p. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9

R b. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 1, x h. , x p. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 The full solution of Ax b x x p x h : The general solution is the sum of any particular solution of the system Ax b plus the general solution of the corresponding homogeneous system Ax. ) Reduce A b to

More information

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F has characteristic zero. The following are facts (in

More information

Lecture 6: Corrections; Dimension; Linear maps

Lecture 6: Corrections; Dimension; Linear maps Lecture 6: Corrections; Dimension; Linear maps Travis Schedler Tues, Sep 28, 2010 (version: Tues, Sep 28, 4:45 PM) Goal To briefly correct the proof of the main Theorem from last time. (See website for

More information

Math 550 Notes. Chapter 2. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes. Chapter 2. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010 Math 550 Notes Chapter 2 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 2 Fall 2010 1 / 20 Linear algebra deals with finite dimensional

More information

SYMBOL EXPLANATION EXAMPLE

SYMBOL EXPLANATION EXAMPLE MATH 4310 PRELIM I REVIEW Notation These are the symbols we have used in class, leading up to Prelim I, and which I will use on the exam SYMBOL EXPLANATION EXAMPLE {a, b, c, } The is the way to write the

More information

Math 369 Exam #2 Practice Problem Solutions

Math 369 Exam #2 Practice Problem Solutions Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

MODEL ANSWERS TO THE FIRST QUIZ. 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function

MODEL ANSWERS TO THE FIRST QUIZ. 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function MODEL ANSWERS TO THE FIRST QUIZ 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function A: I J F, where I is the set of integers between 1 and m and J is

More information

MATH 225 Summer 2005 Linear Algebra II Solutions to Assignment 1 Due: Wednesday July 13, 2005

MATH 225 Summer 2005 Linear Algebra II Solutions to Assignment 1 Due: Wednesday July 13, 2005 MATH 225 Summer 25 Linear Algebra II Solutions to Assignment 1 Due: Wednesday July 13, 25 Department of Mathematical and Statistical Sciences University of Alberta Question 1. [p 224. #2] The set of all

More information

Exercises Chapter II.

Exercises Chapter II. Page 64 Exercises Chapter II. 5. Let A = (1, 2) and B = ( 2, 6). Sketch vectors of the form X = c 1 A + c 2 B for various values of c 1 and c 2. Which vectors in R 2 can be written in this manner? B y

More information

Vector Spaces 4.5 Basis and Dimension

Vector Spaces 4.5 Basis and Dimension Vector Spaces 4.5 and Dimension Summer 2017 Vector Spaces 4.5 and Dimension Goals Discuss two related important concepts: Define of a Vectors Space V. Define Dimension dim(v ) of a Vectors Space V. Vector

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

4.6 Bases and Dimension

4.6 Bases and Dimension 46 Bases and Dimension 281 40 (a) Show that {1,x,x 2,x 3 } is linearly independent on every interval (b) If f k (x) = x k for k = 0, 1,,n, show that {f 0,f 1,,f n } is linearly independent on every interval

More information

Linear Algebra Lecture Notes-I

Linear Algebra Lecture Notes-I Linear Algebra Lecture Notes-I Vikas Bist Department of Mathematics Panjab University, Chandigarh-6004 email: bistvikas@gmail.com Last revised on February 9, 208 This text is based on the lectures delivered

More information

Chapter 3. More about Vector Spaces Linear Independence, Basis and Dimension. Contents. 1 Linear Combinations, Span

Chapter 3. More about Vector Spaces Linear Independence, Basis and Dimension. Contents. 1 Linear Combinations, Span Chapter 3 More about Vector Spaces Linear Independence, Basis and Dimension Vincent Astier, School of Mathematical Sciences, University College Dublin 3. Contents Linear Combinations, Span Linear Independence,

More information

Chapter 2 Subspaces of R n and Their Dimensions

Chapter 2 Subspaces of R n and Their Dimensions Chapter 2 Subspaces of R n and Their Dimensions Vector Space R n. R n Definition.. The vector space R n is a set of all n-tuples (called vectors) x x 2 x =., where x, x 2,, x n are real numbers, together

More information

13. Systems of Linear Equations 1

13. Systems of Linear Equations 1 13. Systems of Linear Equations 1 Systems of linear equations One of the primary goals of a first course in linear algebra is to impress upon the student how powerful matrix methods are in solving systems

More information

Chapter 1: Systems of Linear Equations

Chapter 1: Systems of Linear Equations Chapter : Systems of Linear Equations February, 9 Systems of linear equations Linear systems Lecture A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Homework #6 Solutions

Homework #6 Solutions Problems Section.1: 6, 4, 40, 46 Section.:, 8, 10, 14, 18, 4, 0 Homework #6 Solutions.1.6. Determine whether the functions f (x) = cos x + sin x and g(x) = cos x sin x are linearly dependent or linearly

More information

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion.

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion. Question (i) 7 points] Compute the determinant of the following matrix using cofactor expansion 2 4 2 4 2 Solution: Expand down the second column, since it has the most zeros We get 2 4 determinant = +det

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

(b) The nonzero rows of R form a basis of the row space. Thus, a basis is [ ], [ ], [ ]

(b) The nonzero rows of R form a basis of the row space. Thus, a basis is [ ], [ ], [ ] Exam will be on Monday, October 6, 27. The syllabus for Exam 2 consists of Sections Two.III., Two.III.2, Two.III.3, Three.I, and Three.II. You should know the main definitions, results and computational

More information

Solutions to Math 51 First Exam April 21, 2011

Solutions to Math 51 First Exam April 21, 2011 Solutions to Math 5 First Exam April,. ( points) (a) Give the precise definition of a (linear) subspace V of R n. (4 points) A linear subspace V of R n is a subset V R n which satisfies V. If x, y V then

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

Math Linear algebra, Spring Semester Dan Abramovich

Math Linear algebra, Spring Semester Dan Abramovich Math 52 0 - Linear algebra, Spring Semester 2012-2013 Dan Abramovich Fields. We learned to work with fields of numbers in school: Q = fractions of integers R = all real numbers, represented by infinite

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

Exam 2 Solutions. (a) Is W closed under addition? Why or why not? W is not closed under addition. For example,

Exam 2 Solutions. (a) Is W closed under addition? Why or why not? W is not closed under addition. For example, Exam 2 Solutions. Let V be the set of pairs of real numbers (x, y). Define the following operations on V : (x, y) (x, y ) = (x + x, xx + yy ) r (x, y) = (rx, y) Check if V together with and satisfy properties

More information

Row Reduction and Echelon Forms

Row Reduction and Echelon Forms Row Reduction and Echelon Forms 1 / 29 Key Concepts row echelon form, reduced row echelon form pivot position, pivot, pivot column basic variable, free variable general solution, parametric solution existence

More information

1. Select the unique answer (choice) for each problem. Write only the answer.

1. Select the unique answer (choice) for each problem. Write only the answer. MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

More information

Test 3, Linear Algebra

Test 3, Linear Algebra Test 3, Linear Algebra Dr. Adam Graham-Squire, Fall 2017 Name: I pledge that I have neither given nor received any unauthorized assistance on this exam. (signature) DIRECTIONS 1. Don t panic. 2. Show all

More information

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are

More information

Solutions to Homework 5 - Math 3410

Solutions to Homework 5 - Math 3410 Solutions to Homework 5 - Math 34 (Page 57: # 489) Determine whether the following vectors in R 4 are linearly dependent or independent: (a) (, 2, 3, ), (3, 7,, 2), (, 3, 7, 4) Solution From x(, 2, 3,

More information

Exam 1 - Definitions and Basic Theorems

Exam 1 - Definitions and Basic Theorems Exam 1 - Definitions and Basic Theorems One of the difficuliies in preparing for an exam where there will be a lot of proof problems is knowing what you re allowed to cite and what you actually have to

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued)

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued) 1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix

More information

2 so Q[ 2] is closed under both additive and multiplicative inverses. a 2 2b 2 + b

2 so Q[ 2] is closed under both additive and multiplicative inverses. a 2 2b 2 + b . FINITE-DIMENSIONAL VECTOR SPACES.. Fields By now you ll have acquired a fair knowledge of matrices. These are a concrete embodiment of something rather more abstract. Sometimes it is easier to use matrices,

More information

x 2 For example, Theorem If S 1, S 2 are subspaces of R n, then S 1 S 2 is a subspace of R n. Proof. Problem 3.

x 2 For example, Theorem If S 1, S 2 are subspaces of R n, then S 1 S 2 is a subspace of R n. Proof. Problem 3. .. Intersections and Sums of Subspaces Until now, subspaces have been static objects that do not interact, but that is about to change. In this section, we discuss the operations of intersection and addition

More information

ELE/MCE 503 Linear Algebra Facts Fall 2018

ELE/MCE 503 Linear Algebra Facts Fall 2018 ELE/MCE 503 Linear Algebra Facts Fall 2018 Fact N.1 A set of vectors is linearly independent if and only if none of the vectors in the set can be written as a linear combination of the others. Fact N.2

More information

1 Systems of equations

1 Systems of equations Highlights from linear algebra David Milovich, Math 2 TA for sections -6 November, 28 Systems of equations A leading entry in a matrix is the first (leftmost) nonzero entry of a row. For example, the leading

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Matrices and RRE Form

Matrices and RRE Form Matrices and RRE Form Notation R is the real numbers, C is the complex numbers (we will only consider complex numbers towards the end of the course) is read as an element of For instance, x R means that

More information

Determine whether the following system has a trivial solution or non-trivial solution:

Determine whether the following system has a trivial solution or non-trivial solution: Practice Questions Lecture # 7 and 8 Question # Determine whether the following system has a trivial solution or non-trivial solution: x x + x x x x x The coefficient matrix is / R, R R R+ R The corresponding

More information

web: HOMEWORK 1

web:   HOMEWORK 1 MAT 207 LINEAR ALGEBRA I 2009207 Dokuz Eylül University, Faculty of Science, Department of Mathematics Instructor: Engin Mermut web: http://kisideuedutr/enginmermut/ HOMEWORK VECTORS IN THE n-dimensional

More information

Lecture 6: Spanning Set & Linear Independency

Lecture 6: Spanning Set & Linear Independency Lecture 6: Elif Tan Ankara University Elif Tan (Ankara University) Lecture 6 / 0 Definition (Linear Combination) Let v, v 2,..., v k be vectors in (V,, ) a vector space. A vector v V is called a linear

More information

Vector Spaces 4.4 Spanning and Independence

Vector Spaces 4.4 Spanning and Independence Vector Spaces 4.4 and Independence Summer 2017 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Solutions of Linear system, vector and matrix equation

Solutions of Linear system, vector and matrix equation Goals: Solutions of Linear system, vector and matrix equation Solutions of linear system. Vectors, vector equation. Matrix equation. Math 112, Week 2 Suggested Textbook Readings: Sections 1.3, 1.4, 1.5

More information

MA 0540 fall 2013, Row operations on matrices

MA 0540 fall 2013, Row operations on matrices MA 0540 fall 2013, Row operations on matrices December 2, 2013 This is all about m by n matrices (of real or complex numbers). If A is such a matrix then A corresponds to a linear map F n F m, which we

More information

GENERAL VECTOR SPACES AND SUBSPACES [4.1]

GENERAL VECTOR SPACES AND SUBSPACES [4.1] GENERAL VECTOR SPACES AND SUBSPACES [4.1] General vector spaces So far we have seen special spaces of vectors of n dimensions denoted by R n. It is possible to define more general vector spaces A vector

More information

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are

More information

Topic 1: Matrix diagonalization

Topic 1: Matrix diagonalization Topic : Matrix diagonalization Review of Matrices and Determinants Definition A matrix is a rectangular array of real numbers a a a m a A = a a m a n a n a nm The matrix is said to be of order n m if it

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science Section 4.2 Subspaces College of Science MATHS 211: Linear Algebra (University of Bahrain) Subspaces 1 / 42 Goal: 1 Define subspaces. 2 Subspace test. 3 Linear Combination of elements. 4 Subspace generated

More information

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 Jesús De Loera, UC Davis February 1, 2012 General Linear Systems of Equations (2.2). Given a system of m equations and n unknowns. Now m n is OK! Apply elementary

More information

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve: MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these

More information

Vector Spaces. (1) Every vector space V has a zero vector 0 V

Vector Spaces. (1) Every vector space V has a zero vector 0 V Vector Spaces 1. Vector Spaces A (real) vector space V is a set which has two operations: 1. An association of x, y V to an element x+y V. This operation is called vector addition. 2. The association of

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS J. WARNER SUMMARY OF A PAPER BY J. CARLSON, E. FRIEDLANDER, AND J. PEVTSOVA, AND FURTHER OBSERVATIONS 1. The Nullcone and Restricted Nullcone We will need

More information

AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY

AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY 2. AFFINE TRANSFORMATIONS 2.1 Definition and first properties Definition Let (A, V, φ) and (A, V, φ ) be two real affine spaces. We will say that a map f : A A

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW SPENCER BECKER-KAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for

More information

Math 321: Linear Algebra

Math 321: Linear Algebra Math 32: Linear Algebra T. Kapitula Department of Mathematics and Statistics University of New Mexico September 8, 24 Textbook: Linear Algebra,by J. Hefferon E-mail: kapitula@math.unm.edu Prof. Kapitula,

More information

Math 3C Lecture 25. John Douglas Moore

Math 3C Lecture 25. John Douglas Moore Math 3C Lecture 25 John Douglas Moore June 1, 2009 Let V be a vector space. A basis for V is a collection of vectors {v 1,..., v k } such that 1. V = Span{v 1,..., v k }, and 2. {v 1,..., v k } are linearly

More information

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis Math 24 4.3 Linear Independence; Bases A. DeCelles Overview Main ideas:. definitions of linear independence linear dependence dependence relation basis 2. characterization of linearly dependent set using

More information

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,

More information

Fall 2016 MATH*1160 Final Exam

Fall 2016 MATH*1160 Final Exam Fall 2016 MATH*1160 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie Dec 16, 2016 INSTRUCTIONS: 1. The exam is 2 hours long. Do NOT start until instructed. You may use blank

More information