ECE 6602 Assignment 6 Solutions for Spring 2003

Size: px
Start display at page:

Download "ECE 6602 Assignment 6 Solutions for Spring 2003"

Transcription

1 ECE 660 Assgnment 6 Solutons for Sprng Wrte a matlab ode to do the modulaton and demodulaton for a bnary FSK usng a) oherent detetor and b) a nonoherent detetor. Modfy the programs that are posted to the web. Experment wth the strength of the nput sgnal by modfyng the parameter A. In eah ase, determne a smallest value where you start to see onsstent errors. For the homework, turn n your ode and the level of the threshold. Coherent: Errors our onsstently at about A = Smulaton of a oherent detetor for FSK ommunatons. Input sgnal strength, A, and a bnary sequene of data. See how small you an make A before you start to note errors (e., make SNR small). Plot r versus t to see f you an determne the data sequene vsually. T = 1;delt = 0.01; t = 0:delt:T-delt; A = nput('input A: '); u = nput('input a bnary sequene of 5 haraters (enter as a vetor n brakets): '); f = 5; delf = 1/T; r = []; out = []; for = 1:5, modulaton alulatons n =.*randn(sze(t)); generates nose s1 = A*os(*p*f*t); s = A*os(*p*(f+delf)*t); f u() == 0,r = s1 +n; else r = s +n; demodulaton alulatons r1a = s1.*r; ra = s.*r; r1=0;r=0; for k = 1:length(t)-1, uses trapezodal rule for ntegraton r1 = r1+r1a(k)*delt/+r1a(k+1)*delt/; r = r+ra(k)*delt/+ra(k+1)*delt/; r = [r r]; f r1 >= r, out = [out 0]; else, out = [out 1]; out plots the sgnals on the last nterval that need to be ntegrated for the orrelaton alulaton t = 4*T:delt:5*T-delt; t = 0:delt:5*T-delt; fgure(1)

2 subplot(11),plot(t,r1a) ylabel('r1a') xlabel('tme') subplot(1),plot(t,ra) ylabel('ra') xlabel('tme') fgure() plot(t,r) ttle('reeved sgnal') xlabel('tme (se)') Nonoherent: Errors our onsstently at about A = 0.07 (a hgher level than that for the oherent detetor).. Smulaton of a square law detetor for FSK ommunatons. Input sgnal strength, A, and a bnary sequene of data. See how small you an make A before you start to note errors (e., make SNR small). Plot r versus t to see f you an determne the data sequene vsually. T = 1;delt = 0.01; t = 0:delt:T-delt; A = nput('input A: '); u = nput('input a bnary sequene of 5 haraters (enter as a vetor n brakets): '); f = 5; delf = 1/T; r = []; out = []; for = 1:5, modulaton alulatons n =.*randn(sze(t)); generates nose theta = rand(1)**p; random phase s1 = A*os(*p*f*t-theta); s = A*os(*p*(f+delf)*t-theta); f u() == 0,r = s1 +n; else r = s +n; demodulaton alulatons (from Fg 5-4-3) r1a = os(*p*t*f).*r; rs1a = sn(*p*t*f).*r; ra = os(*p*t*(f+delf)).*r; rsa = sn(*p*t*(f+delf)).*r; r1=0;r=0;rs1=0;rs=0; for k = 1:length(t)-1, uses trapezodal rule for ntegraton r1 = r1+r1a(k)*delt/+r1a(k+1)*delt/; rs1 = rs1+rs1a(k)*delt/+rs1a(k+1)*delt/; r = r+ra(k)*delt/+ra(k+1)*delt/; rs = rs+rsa(k)*delt/+rsa(k+1)*delt/; r = [r r]; square law deteton R1 = r1^+rs1^; R = r^+rs^; f R1 >= R, out = [out 0]; else,

3 out = [out 1]; out prnt to sreen plots the sgnals on the last nterval that need to be ntegrated for the orrelaton alulaton t = 4*T:delt:5*T-delt; t = 0:delt:5*T-delt; fgure(1) subplot(3),plot(t,rs1a) ylabel('r1sa') xlabel('tme') subplot(),plot(t,ra) ylabel('ra') xlabel('tme') subplot(1),plot(t,r1a) ylabel('r1a') xlabel('tme') subplot(4),plot(t,rsa) ylabel('rsa') xlabel('tme') fgure() plot(t,r) ttle('reeved sgnal') xlabel('tme (se)')

4 . Consder a (10,) blok ode as gven below. Compute all the ntermedate quanttes for ths ase f the frst ode word s sent (a, r,y, et.) as was done n lass. Assume that b = Compute the CM for eah of the ases. What would the sgnal to nose rato need to be for a probablty of bt error to be less than 10-5 for ths ode? Use the Gaussan assumpton You may use Matlab to help ompute a value. I wrote a program for the Q funton as follows: plottng Q(sqrt(a*gamma))versus 10log_10(gamma) q = Q(gamma,a); Q(x) = 1//p * nt from x to nf of exp(-t^/) dt funton q = Q(gamma,a); q =.5*erf(sqrt(gamma*a/)); gammadb = 10*log10(gamma); semlogy(gammadb,q) grd Soluton: use the relatonshps: r (t)=g(t) f a = 0 and g(t) f a = 1 E + v f a = 0 r g = E + v f a = 1 y = (b 1)(r g) = ( 1)E + (b 1) v b a r r g y g(t)+z(t) E -v 1 -E -v g(t)+z(t) -E -v -E +v g(t)+z(t) -E -v 3 -E +v g(t)+z(t) -E -v 4 E -v g(t)+z(t) E -v 5 -E -v g(t)+z(t) -E -v 6 E -v g(t)+z(t) E -v 7 E +v g(t)+z(t) -E -v 8 -E +v g(t)+z(t) -E -v 9 E -v g(t)+z(t) E -v 10 E +v 10 n k = (j 1)y j, 1,..., j= 1 CM = ( s the number of the ode word, where j represents the j th bt) CM 1 =0E +v 1 v v 3 v 4 +v 5 - v 6 +v 7 - v 8 -v 9 +v 10 CM = E ( ) -v 1 v v 3 v 4 +v 5 + v 6 -v 7 + v 8 +v 9 +v 10 = -v 1 v v 3 v 4 +v 5 + v 6 -v 7 + v 8 +v 9 +v 10 CM 3 = E ( ) +v 1 +v +v 3 v 4 -v 5 + v 6 +v 7 -v 8 -v 9 +v 10 = 4E +v 1 +v +v 3 v 4 -v 5 + v 6 +v 7 -v 8 -v 9 +v 10

5 CM 4 = E ( ) -v 1 +v +v 3 +v 4 -v 5 - v 6 -v 7 +v 8 +v 9 -v 10 = -16E -v 1 +v +v 3 +v 4 -v 5 - v 6 -v 7 +v 8 +v 9 -v 10 let D m = CM 1 -CM 4E w m P(Dm < 0) = Q, where w m represents the number of bts that dffer between the frst ode E(v ) word and the m th ode word 4 Unon bound for P Q ( R γw ) where R = 1/5. So, P M Q M m= ( γ ) + Q( 8γ / 5) + Q( 18γ / 5) The rght-hand sde an be plotted versus γ m 4 x To guarantee P M less than 10-5, then γ 11.5

6 3. Wrte a matlab ode that uses DSSS to smulate the modulaton and demodulaton of the system desrbed n Problem. You an use a random number generator to generate b, just make sure that you pass the generated sequene to the reever. Turn n your ode n the homework. DS spread spetrum transmsson smulaton lnear blok ode of (10,) s used ode = [ ; ; ; ]; t = ; f = 50000; delt = t()-t(1); nput numbers from 0 to 3, ths s equvalent to bts values x = nput('nput sequene of 4 numbers from 0 to 3 as a vetor: ') J = nput('nput level of nterferene'); = []; rtest =[]; for = 1:4, f x() == 0, = [ ode(1,:)]; elsef x() == 1, = [ ode(,:)]; elsef x() ==, = [ ode(3,:)]; else = [ ode(4,:)]; b = rand(1,40)-0.5; b = 0.5*sgn(b); onverts to bnary -.5 and.5 depng on sgn b = b+.5; a = xor(b,); gves exat value for, but ths s not used later reate pulse t = ; t = 0:t/50:t*49/50; t = 0:t/50:40*t-t/50; tp = nput('selet type of pulse: 1 for square, for half-sne'); f tp == 1, g = ones(1,length(t)); else g = sn(t/t*p); sl = []; y = []; r = []; for = 1:40, s = (*b()-1)*(*()-1)*g; r = (s + J*randn(1,length(s))).*os(f**p*t); for broadband nterferene r = [r r]; rl = r.*g.*os(f**p*t); ra = 0; for k = 1:length(t)-1, uses trapezodal rule for ntegraton ra = ra+rl(k)*delt/+rl(k+1)*delt/; rtest = [rtest ra]; y = ra*(*b()-1); y = [y y]; CM = zeros(1,4); out = []; for = 1:4, for m = 1:4, CM(m) = (*ode(m,:)-1)*y((-1)*10+1:(*10))'; [X,I] = max(cm); I s the ndex f I == 1,out = [out 0];, elsef I ==, out = [out 1];

7 elsef I == 3, out = [out ]; else out = [out,3]; out plot(t,r) ttle('reeved sgnal wth nterferane') xlabel('tme (se)') ylabel('r(t)') Problem 13.1 n the text (usng method from lass) g(t) = 16E 3T os π T t T E (v ) = G G(0) = P M (0)J AV T T 16E g(t)dt = 0 3T M m= Q 4E w m E(v ) M 3E br w m So: P M Q( ) J T m= av

Consider the following passband digital communication system model. c t. modulator. t r a n s m i t t e r. signal decoder.

Consider the following passband digital communication system model. c t. modulator. t r a n s m i t t e r. signal decoder. PASSBAND DIGITAL MODULATION TECHNIQUES Consder the followng passband dgtal communcaton system model. cos( ω + φ ) c t message source m sgnal encoder s modulator s () t communcaton xt () channel t r a n

More information

represents the amplitude of the signal after modulation and (t) is the phase of the carrier wave.

represents the amplitude of the signal after modulation and (t) is the phase of the carrier wave. 1 IQ Sgnals general overvew 2 IQ reevers IQ Sgnals general overvew Rado waves are used to arry a message over a dstane determned by the ln budget The rado wave (alled a arrer wave) s modulated (moded)

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3.

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3. ECE 6440 Summer 003 Page 1 Homework Assgnment No. 7 s Problem 1 (10 ponts) A fourstage rng oscllator used as the VCO n a PLL s shown. Assume that M1 and M are matched and M3 and M4 are matched. Also assume

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Wreless Informaton Transmsson System Lab. Chapter 7 Channel Capacty and Codng Insttute of Communcatons Engneerng atonal Sun Yat-sen Unversty Contents 7. Channel models and channel capacty 7.. Channel models

More information

Lab session: numerical simulations of sponateous polarization

Lab session: numerical simulations of sponateous polarization Lab sesson: numercal smulatons of sponateous polarzaton Emerc Boun & Vncent Calvez CNRS, ENS Lyon, France CIMPA, Hammamet, March 2012 Spontaneous cell polarzaton: the 1D case The Hawkns-Voturez model for

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Scence Numercal Methods CSCI 361 / 761 Sprng 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2018 16 Lecture 16a May 3, 2018 Numercal soluton of systems

More information

Chaos-Based Physical Layer Design for WSN Applications

Chaos-Based Physical Layer Design for WSN Applications Reent Advanes n Teleommunatons Crut Desgn Chaos-Based Physal Layer Desgn for WS Applatons STVA BRBR Department of letral Computer ngneerng The Unversty of Aukl Aukl, ew Zeal s.berber@aukl.a.nz SHU FG Department

More information

Error Probability for M Signals

Error Probability for M Signals Chapter 3 rror Probablty for M Sgnals In ths chapter we dscuss the error probablty n decdng whch of M sgnals was transmtted over an arbtrary channel. We assume the sgnals are represented by a set of orthonormal

More information

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels Frequeny-Seletve and Tme-Varyng Channels Ampltude flutuatons are not the only effet. Wreless hannel an be frequeny seletve (.e. not flat) and tmevaryng. Frequeny flat/frequeny-seletve hannels Frequeny

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

Stochastic Accumulation of Evidence Models

Stochastic Accumulation of Evidence Models Stochastc Accumulaton of Evdence Models perceptual processng /me drft a ac/on z T R T M tme These models have free parameters that defne the tme for perceptual processng, startng pont and threshold for

More information

Applied Stochastic Processes

Applied Stochastic Processes STAT455/855 Fall 23 Appled Stochastc Processes Fnal Exam, Bref Solutons 1. (15 marks) (a) (7 marks) The dstrbuton of Y s gven by ( ) ( ) y 2 1 5 P (Y y) for y 2, 3,... The above follows because each of

More information

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays Appled Mehans and Materals Onlne: 03-0- ISSN: 66-748, Vols. 78-80, pp 60-604 do:0.408/www.sentf.net/amm.78-80.60 03 rans eh Publatons, Swtzerland H Controller Desgn for Networed Control Systems n Multple-paet

More information

What would be a reasonable choice of the quantization step Δ?

What would be a reasonable choice of the quantization step Δ? CE 108 HOMEWORK 4 EXERCISE 1. Suppose you are samplng the output of a sensor at 10 KHz and quantze t wth a unform quantzer at 10 ts per sample. Assume that the margnal pdf of the sgnal s Gaussan wth mean

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010 FE REVEW OPERATONAL AMPLFERS (OP-AMPS)( ) 1 The Op-amp 2 An op-amp has two nputs and one output. Note the op-amp below. The termnal labeled l wth the (-) sgn s the nvertng nput and the nput labeled wth

More information

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if SK300 and SK400 Lnk funtons for bnomal GLMs Autumn 08 We motvate the dsusson by the beetle eample GLMs for bnomal and multnomal data Covers the followng materal from hapters 5 and 6: Seton 5.6., 5.6.3,

More information

Complex Numbers Alpha, Round 1 Test #123

Complex Numbers Alpha, Round 1 Test #123 Complex Numbers Alpha, Round Test #3. Wrte your 6-dgt ID# n the I.D. NUMBER grd, left-justfed, and bubble. Check that each column has only one number darkened.. In the EXAM NO. grd, wrte the 3-dgt Test

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006)

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006) ECE 534: Elements of Informaton Theory Solutons to Mdterm Eam (Sprng 6) Problem [ pts.] A dscrete memoryless source has an alphabet of three letters,, =,, 3, wth probabltes.4,.4, and., respectvely. (a)

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given). Problem 5.37 Pror to t =, capactor C 1 n the crcut of Fg. P5.37 was uncharged. For I = 5 ma, R 1 = 2 kω, = 5 kω, C 1 = 3 µf, and C 2 = 6 µf, determne: (a) The equvalent crcut nvolvng the capactors for

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2019 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons Our goal to derve the form of the abstract quanttes n rate equatons, such as synaptc

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Assignment 5. Simulation for Logistics. Monti, N.E. Yunita, T.

Assignment 5. Simulation for Logistics. Monti, N.E. Yunita, T. Assgnment 5 Smulaton for Logstcs Mont, N.E. Yunta, T. November 26, 2007 1. Smulaton Desgn The frst objectve of ths assgnment s to derve a 90% two-sded Confdence Interval (CI) for the average watng tme

More information

On High Spatial Reuse Broadcast Scheduling in STDMA Wireless Ad Hoc Networks

On High Spatial Reuse Broadcast Scheduling in STDMA Wireless Ad Hoc Networks On Hgh Spatal Reuse Broadast Shedulng n STDMA Wreless Ad Ho Networks Ashutosh Deepak Gore Abhay Karandkar Informaton Networks Laboratory Department of Eletral Engneerng Indan Insttute of Tehnology - Bombay

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5).

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5). (out of 15 ponts) STAT 3340 Assgnment 1 solutons (10) (10) 1. Fnd the equaton of the lne whch passes through the ponts (1,1) and (4,5). β 1 = (5 1)/(4 1) = 4/3 equaton for the lne s y y 0 = β 1 (x x 0

More information

Note 10. Modeling and Simulation of Dynamic Systems

Note 10. Modeling and Simulation of Dynamic Systems Lecture Notes of ME 475: Introducton to Mechatroncs Note 0 Modelng and Smulaton of Dynamc Systems Department of Mechancal Engneerng, Unversty Of Saskatchewan, 57 Campus Drve, Saskatoon, SK S7N 5A9, Canada

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Modelli Clamfim Equazioni differenziali 7 ottobre 2013

Modelli Clamfim Equazioni differenziali 7 ottobre 2013 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal 7 ottobre 2013 professor Danele Rtell danele.rtell@unbo.t 1/18? Ordnary Dfferental Equatons A dfferental equaton s an equaton that defnes a relatonshp

More information

Complex Numbers, Signals, and Circuits

Complex Numbers, Signals, and Circuits Complex Numbers, Sgnals, and Crcuts 3 August, 009 Complex Numbers: a Revew Suppose we have a complex number z = x jy. To convert to polar form, we need to know the magntude of z and the phase of z. z =

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

An Application of Fuzzy Hypotheses Testing in Radar Detection

An Application of Fuzzy Hypotheses Testing in Radar Detection Proceedngs of the th WSES Internatonal Conference on FUZZY SYSEMS n pplcaton of Fuy Hypotheses estng n Radar Detecton.K.ELSHERIF, F.M.BBDY, G.M.BDELHMID Department of Mathematcs Mltary echncal Collage

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION do: 0.08/nature09 I. Resonant absorpton of XUV pulses n Kr + usng the reduced densty matrx approach The quantum beats nvestgated n ths paper are the result of nterference between two exctaton paths of

More information

IRO0140 Advanced space time-frequency signal processing

IRO0140 Advanced space time-frequency signal processing IRO4 Advanced space tme-frequency sgnal processng Lecture Toomas Ruuben Takng nto account propertes of the sgnals, we can group these as followng: Regular and random sgnals (are all sgnal parameters determned

More information

Digital Modems. Lecture 2

Digital Modems. Lecture 2 Dgtal Modems Lecture Revew We have shown that both Bayes and eyman/pearson crtera are based on the Lkelhood Rato Test (LRT) Λ ( r ) < > η Λ r s called observaton transformaton or suffcent statstc The crtera

More information

Application of Nonbinary LDPC Codes for Communication over Fading Channels Using Higher Order Modulations

Application of Nonbinary LDPC Codes for Communication over Fading Channels Using Higher Order Modulations Applcaton of Nonbnary LDPC Codes for Communcaton over Fadng Channels Usng Hgher Order Modulatons Rong-Hu Peng and Rong-Rong Chen Department of Electrcal and Computer Engneerng Unversty of Utah Ths work

More information

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m Homework Solutons Problem In solvng ths problem, we wll need to calculate some moments of the Gaussan dstrbuton. The brute-force method s to ntegrate by parts but there s a nce trck. The followng ntegrals

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Signal space Review on vector space Linear independence Metric space and norm Inner product

Signal space Review on vector space Linear independence Metric space and norm Inner product Sgnal space.... Revew on vector space.... Lnear ndependence... 3.3 Metrc space and norm... 4.4 Inner product... 5.5 Orthonormal bass... 7.6 Waveform communcaton system... 9.7 Some examples... 6 Sgnal space

More information

Lecture 2: Numerical Methods for Differentiations and Integrations

Lecture 2: Numerical Methods for Differentiations and Integrations Numercal Smulaton of Space Plasmas (I [AP-4036] Lecture 2 by Lng-Hsao Lyu March, 2018 Lecture 2: Numercal Methods for Dfferentatons and Integratons As we have dscussed n Lecture 1 that numercal smulaton

More information

Chapter 3 Differentiation and Integration

Chapter 3 Differentiation and Integration MEE07 Computer Modelng Technques n Engneerng Chapter Derentaton and Integraton Reerence: An Introducton to Numercal Computatons, nd edton, S. yakowtz and F. zdarovsky, Mawell/Macmllan, 990. Derentaton

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 umercal Solutons of oundary-value Problems n Os ovember 7, 7 umercal Solutons of oundary- Value Problems n Os Larry aretto Mechancal ngneerng 5 Semnar n ngneerng nalyss ovember 7, 7 Outlne Revew stff equaton

More information

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1)

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1) . (a) (cos θ + sn θ) = cos θ + cos θ( sn θ) + cos θ(sn θ) + (sn θ) = cos θ cos θ sn θ + ( cos θ sn θ sn θ) (b) from De Movre s theorem (cos θ + sn θ) = cos θ + sn θ cos θ + sn θ = (cos θ cos θ sn θ) +

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2015 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons We consder a network of many neurons, each of whch obeys a set of conductancebased,

More information

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

#64. ΔS for Isothermal Mixing of Ideal Gases

#64. ΔS for Isothermal Mixing of Ideal Gases #64 Carnot Heat Engne ΔS for Isothermal Mxng of Ideal Gases ds = S dt + S T V V S = P V T T V PV = nrt, P T ds = v T = nr V dv V nr V V = nrln V V = - nrln V V ΔS ΔS ΔS for Isothermal Mxng for Ideal Gases

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Chapter 8 SCALAR QUANTIZATION

Chapter 8 SCALAR QUANTIZATION Outlne Chapter 8 SCALAR QUANTIZATION Yeuan-Kuen Lee [ CU, CSIE ] 8.1 Overvew 8. Introducton 8.4 Unform Quantzer 8.5 Adaptve Quantzaton 8.6 Nonunform Quantzaton 8.7 Entropy-Coded Quantzaton Ch 8 Scalar

More information

G4023 Mid-Term Exam #1 Solutions

G4023 Mid-Term Exam #1 Solutions Exam1Solutons.nb 1 G03 Md-Term Exam #1 Solutons 1-Oct-0, 1:10 p.m to :5 p.m n 1 Pupn Ths exam s open-book, open-notes. You may also use prnt-outs of the homework solutons and a calculator. 1 (30 ponts,

More information

6.3.7 Example with Runga Kutta 4 th order method

6.3.7 Example with Runga Kutta 4 th order method 6.3.7 Example wth Runga Kutta 4 th order method Agan, as an example, 3 machne, 9 bus system shown n Fg. 6.4 s agan consdered. Intally, the dampng of the generators are neglected (.e. d = 0 for = 1, 2,

More information

15-381: Artificial Intelligence. Regression and cross validation

15-381: Artificial Intelligence. Regression and cross validation 15-381: Artfcal Intellgence Regresson and cross valdaton Where e are Inputs Densty Estmator Probablty Inputs Classfer Predct category Inputs Regressor Predct real no. Today Lnear regresson Gven an nput

More information

Nice plotting of proteins II

Nice plotting of proteins II Nce plottng of protens II Fnal remark regardng effcency: It s possble to wrte the Newton representaton n a way that can be computed effcently, usng smlar bracketng that we made for the frst representaton

More information

(1) The saturation vapor pressure as a function of temperature, often given by the Antoine equation:

(1) The saturation vapor pressure as a function of temperature, often given by the Antoine equation: CE304, Sprng 2004 Lecture 22 Lecture 22: Topcs n Phase Equlbra, part : For the remander of the course, we wll return to the subject of vapor/lqud equlbrum and ntroduce other phase equlbrum calculatons

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

Machine Learning: and 15781, 2003 Assignment 4

Machine Learning: and 15781, 2003 Assignment 4 ahne Learnng: 070 and 578, 003 Assgnment 4. VC Dmenson 30 onts Consder the spae of nstane X orrespondng to all ponts n the D x, plane. Gve the VC dmenson of the followng hpothess spaes. No explanaton requred.

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

8.592J: Solutions for Assignment 7 Spring 2005

8.592J: Solutions for Assignment 7 Spring 2005 8.59J: Solutons for Assgnment 7 Sprng 5 Problem 1 (a) A flament of length l can be created by addton of a monomer to one of length l 1 (at rate a) or removal of a monomer from a flament of length l + 1

More information

Electrical Circuits 2.1 INTRODUCTION CHAPTER

Electrical Circuits 2.1 INTRODUCTION CHAPTER CHAPTE Electrcal Crcuts. INTODUCTION In ths chapter, we brefly revew the three types of basc passve electrcal elements: resstor, nductor and capactor. esstance Elements: Ohm s Law: The voltage drop across

More information

Numerical Transient Heat Conduction Experiment

Numerical Transient Heat Conduction Experiment Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

More information

MTH 263 Practice Test #1 Spring 1999

MTH 263 Practice Test #1 Spring 1999 Pat Ross MTH 6 Practce Test # Sprng 999 Name. Fnd the area of the regon bounded by the graph r =acos (θ). Observe: Ths s a crcle of radus a, for r =acos (θ) r =a ³ x r r =ax x + y =ax x ax + y =0 x ax

More information

Chapter 4: Root Finding

Chapter 4: Root Finding Chapter 4: Root Fndng Startng values Closed nterval methods (roots are search wthn an nterval o Bsecton Open methods (no nterval o Fxed Pont o Newton-Raphson o Secant Method Repeated roots Zeros of Hgher-Dmensonal

More information

Physics 114 Exam 3 Spring Name:

Physics 114 Exam 3 Spring Name: Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse

More information

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems:

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems: TPG4160 Reservor Smulaton 2017 page 1 of 9 ONE-DIMENSIONAL, ONE-PHASE RESERVOIR SIMULATION Flud systems The term sngle phase apples to any system wth only one phase present n the reservor In some cases

More information

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communcaton Scences Handout 0 Prncples of Dgtal Communcatons Solutons to Problem Set 4 Mar. 6, 08 Soluton. If H = 0, we have Y = Z Z = Y

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Calculus of Variations Basics

Calculus of Variations Basics Chapter 1 Calculus of Varatons Bascs 1.1 Varaton of a General Functonal In ths chapter, we derve the general formula for the varaton of a functonal of the form J [y 1,y 2,,y n ] F x,y 1,y 2,,y n,y 1,y

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

Norm Bounds for a Transformed Activity Level. Vector in Sraffian Systems: A Dual Exercise

Norm Bounds for a Transformed Activity Level. Vector in Sraffian Systems: A Dual Exercise ppled Mathematcal Scences, Vol. 4, 200, no. 60, 2955-296 Norm Bounds for a ransformed ctvty Level Vector n Sraffan Systems: Dual Exercse Nkolaos Rodousaks Department of Publc dmnstraton, Panteon Unversty

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

AP Physics 1 & 2 Summer Assignment

AP Physics 1 & 2 Summer Assignment AP Physcs 1 & 2 Summer Assgnment AP Physcs 1 requres an exceptonal profcency n algebra, trgonometry, and geometry. It was desgned by a select group of college professors and hgh school scence teachers

More information

Hopfield networks and Boltzmann machines. Geoffrey Hinton et al. Presented by Tambet Matiisen

Hopfield networks and Boltzmann machines. Geoffrey Hinton et al. Presented by Tambet Matiisen Hopfeld networks and Boltzmann machnes Geoffrey Hnton et al. Presented by Tambet Matsen 18.11.2014 Hopfeld network Bnary unts Symmetrcal connectons http://www.nnwj.de/hopfeld-net.html Energy functon The

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order: 68A Solutons to Exercses March 05 (a) Usng a Taylor expanson, and notng that n 0 for all n >, ( + ) ( + ( ) + ) We can t nvert / because there s no Taylor expanson around 0 Lets try to calculate the nverse

More information

The Fourier Transform

The Fourier Transform e Processng ourer Transform D The ourer Transform Effcent Data epresentaton Dscrete ourer Transform - D Contnuous ourer Transform - D Eamples + + + Jean Baptste Joseph ourer Effcent Data epresentaton Data

More information

ˆ A = A 0 e i (k r ωt) + c.c. ( ωt) e ikr. + c.c. k,j

ˆ A = A 0 e i (k r ωt) + c.c. ( ωt) e ikr. + c.c. k,j p. Supp. 9- Suppleent to Rate of Absorpton and Stulated Esson Here are a ouple of ore detaled dervatons: Let s look a lttle ore arefully at the rate of absorpton w k ndued by an sotrop, broadband lght

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

Some basic statistics and curve fitting techniques

Some basic statistics and curve fitting techniques Some basc statstcs and curve fttng technques Statstcs s the dscplne concerned wth the study of varablty, wth the study of uncertanty, and wth the study of decsonmakng n the face of uncertanty (Lndsay et

More information