# AP Physics 1 & 2 Summer Assignment

Size: px
Start display at page:

Transcription

1 AP Physcs 1 & 2 Summer Assgnment AP Physcs 1 requres an exceptonal profcency n algebra, trgonometry, and geometry. It was desgned by a select group of college professors and hgh school scence teachers to be equvalent to an ntroductory college physcs course. In addton to the scence concepts, physcs often seems lke a course n appled mathematcs. Thus, the followng assgnment wll reflect ths. I. Assgnment Detals Mathematcal problems : these problems are consdered routne n AP Physcs 1 and a revew of your prevous math knowledge. Conceptual problems : these problems am to promote a deeper understandng of the fundamental content and unfyng concepts of physcs. Lab based problems : these problems wll am to analyze events usng mathematcal relatonshps and conceptual expertse. II. When s ths assgnment due? Ths Summer Assgnment s to be turned n at the begnnng of class on your frst day of AP Physcs 1 & 2 n September. Each secton wll count as a separate Mnor Assessment grade. III. Contact Informaton If you have any questons durng the summer please reach out to me va the Remnd app ( Name : BHS AP Physcs 1 & 2 Code ) or emal at Keep n mnd, I wll only be checkng my emal occasonally so t may take a few days before you receve a response - DO NOT PROCRASTINATE! If you do not know how to complete a secton, do not worry. Ths does not mean that you are not cut out for AP Physcs, t may mean that you may need to spend more tme revewng that topc from Honors Physcs. Below are a few valuable webstes to assst f needed:

2 Part One: Mathematcal Problems Drectons: Solve the followng equatons for the gven varable and condtons. Smplfy f possble and box your answer. 1. v 2 f = v 2 + 2ad (a) Solve for v. v f v 3. F = m( t f t ) (a) Solve for v f, f t = 0. (b) Solve for d. (b) Solve for t f, f v f = 0 and t d f = d + v o t + 2 at (a) Solve for v o. v 4. a c = 2 r (a) Solve for v. (b) Solve for t, f v o 5. m gsnθ = μmgcosθ (a) Solve for θ. (c) Solve for t, f d = d f.

3 1 6. mv mgh f = 2 mv 2 + mgh 2 f (a) Solve for h f, f h = 0 and v f 10. (F 1snθ) r 1 + ( F 2 snϕ) r 2 = 0 (a) Solve for r 2. (b) Solve for v f, f h f 7. F t = mv f mv 11. k x + m( g ) = 0 (a) Solve for m. (a) Solve for v f. 8. m 1 v 1 + m 2 v 2 = ( m 1 + m 2 )v f (a) Solve for v 2. m 12. F g = G 1 m 2 r 2 (a) Solve for r. 9. m 1 v 1 + m 2 v 2 = m 1 v 1f + m 2 v 2f (a) Solve for v 2f, f v 1 v 13. L L cosθ = 2 2 (a) Solve for L.

4 14. mv 2 Mm R = G R 2 (a) Solve for v. 18. F 1 + F 2 = F T and F 1 d 1 = F 2 d 2 (a) Solve for F 1 n terms of F T, d 1, and d T = 2 L π g (a) Solve for g. F c = ma c v 2 a c = r 19. and. (a) Solve for r n terms of F c, m, and v mv kx = 2 mv 2 + mgh 2 f (a) Solve for x f v f 20. T = 2 L 1 π and g T = f (a) Solve for L n terms π, g, and f. Use the equatons n each problem to solve for the specfed varable n the gven terms. 17. F f = μf N and F N = m gcosθ (a) Solve for μ n terms of F f, m, g and θ.

5 Part Two: Conceptual Problems z = x y c = a b l = m n r = t 2 1. Consder,,, and a) As x ncreases and y stays constant, z. b) As y ncreases and x stays constant, z. c) As x ncreases and z stays constant, y. d) As a ncreases and c stays constant, b. e) As c ncreases and b stays constant, a. f) As b ncreases and a stays constant, c. g) As n ncreases and m stays constant, l. h) As l ncreases and n stays constant, m. ) If s s trpled and t stays constant, r s multpled by. j) If t s doubled and s stays constant, r s multpled by. In each case, a sphere s movng from left to rght next to a tape marked n meters. A strobe (flash) photograph s taken every second, and the locaton of the sphere s recorded. The total tme ntervals shown are not the same for all spheres. s 2 2. Rank these spheres on the greatest dsplacement over the frst 3 seconds.

6 3. Rank these spheres on the greatest average velocty over the frst 3 seconds. The followng drawngs represent strobe (flash) photographs of a ball movng n the drecton of the arrow. The crcles represent the postons of the ball at succeedng nstants of tme. The tme nterval between successve postons s the same n all cases. 4. Rank each case based on the magntude of the ball s average speed n the last tme nterval. The followng drawngs represent strobe (flash) photographs of a ball movng n the drecton of the arrow. The crcles represent the postons of the ball at succeedng nstants of tme. The tme nterval between successve postons s the same n all cases. Assume all acceleratons are constant. 5. Rank the magntude of the acceleraton for each case based on the drawngs.

7 The model rockets depcted below have just had ther engnes turned off when they are at the same heght. All of the rockets are amed straght up, but ther speeds dffer. Although they are the same sze and shape, the rockets carry dfferent loads so ther masses dffer. The specfc mass and speed for each rocket s gven n each fgure. 6. Rank these model rockets on the maxmum heght they wll reach. In each fgure below, a car s velocty s shown before and after a short tme nterval. 7. Rank these stuatons on the magntude of the change n velocty durng the tme nterval.

8 In each case shown, someone s runnng on a flatbed tran car as the tran moves. In cases C and D, the person s runnng toward the front of the tran, whle n cases A and B the person s runnng toward the rear. The speeds of the tran and of each person relatve to the tran are gven. An observer s standng besde the track watchng each tran go by. 8. Rank these runners on how fast they are movng relatve to the observer standng besde the track Shown are fve asterods and a spaceshp, all movng n the same drecton away from the earth. The veloctes of the asterods and of the spaceshp are gven as measured from the earth. 9. Lst the asterods that are movng toward an observer on the spaceshp. 10. Lst the asterods that are movng away from an observer on the spaceshp. Brefly explan your reasonng

9 Part Three: Lab-Based Problems In ths set of actvtes, we ll explore the moton of objects. We ll develop multple ways to descrbe moton and use them to explan and predct how objects move. Clck on ths vdeo. Press play and watch the vdeo all the way through. The ball s released from rest and moves to the left down the ramp. You wll be makng a poston vs tme graph n Google Sheets or Mcrosoft Excel but wll frst need to collect data. Use the large ruler and stopwatch, and begn collectng data just as the ball s released. The large ruler s desgned to be used wth the blue dot on the left end postoned on the ramp surface. Here are some questons to consder: a. At what locaton and tme should the orgn be set? That s, what poston and tme wll you consder to be zero? b. How many data ponts wll you need n order to establsh the shape of the functon? c. Whch quanttes go on each axs of the graph? d. How should the graph be labeled? Record your data below and then plot your data n Google Sheets or Mcrosoft Excel. Prnt out the graph and nclude t wth ths packet. BE SURE YOUR GRAPH HAS A LINE/CURVE OF BEST-FIT! 1. What does the shape of ths graph ndcate about the moton of the ball?

10 You ll need to use another method to more carefully analyze ths stuaton: a velocty vs tme graph. Select at least 6 ponts postons along the curve drawn on your poston vs. tme graph. For each, draw a lne tangent to the curve, and determne the slope of the tangent lne. Ths slope s the nstantaneous velocty at ths pont. A data chart s shown to the rght to assst you n organzng your data. Usng the sx values obtaned, plot a graph of velocty vs. tme usng Google Sheets or Excel. Once the data ponts are plotted, HAND DRAW a lne or curve of best ft. 2. What does the shape of ths graph ndcate about the moton of the ball? 3. Use the graph to determne the acceleraton of the ball down the ramp, and show your work below. 4. Usng your knowledge of knematcs, and based on the smulaton data you collected, solve for the acceleraton of the rollng ball down the nclne. Show your work.

### Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

### = 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]

Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:

### Physics 2A Chapter 3 HW Solutions

Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

### Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

### Kinematics in 2-Dimensions. Projectile Motion

Knematcs n -Dmensons Projectle Moton A medeval trebuchet b Kolderer, c1507 http://members.net.net.au/~rmne/ht/ht0.html#5 Readng Assgnment: Chapter 4, Sectons -6 Introducton: In medeval das, people had

### Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

### Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

ME 270 Sprng 2017 Exam 1 NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name

### Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

### First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

### Motion in One Dimension

Moton n One Dmenson Speed ds tan ce traeled Aerage Speed tme of trael Mr. Wolf dres hs car on a long trp to a physcs store. Gen the dstance and tme data for hs trp, plot a graph of hs dstance ersus tme.

### Physics 201, Lecture 4. Vectors and Scalars. Chapters Covered q Chapter 1: Physics and Measurement.

Phscs 01, Lecture 4 Toda s Topcs n Vectors chap 3) n Scalars and Vectors n Vector ddton ule n Vector n a Coordnator Sstem n Decomposton of a Vector n Epected from prevew: n Scalars and Vectors, Vector

### GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 12 SESSION 1 (LEARNER NOTES)

PHYSICAL SCIENCES GRADE 1 SESSION 1 (LEARNER NOTES) TOPIC 1: MECHANICS PROJECTILE MOTION Learner Note: Always draw a dagram of the stuaton and enter all the numercal alues onto your dagram. Remember to

### Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem n the space

### EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

### I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

ME 270 Fall 2012 Fnal Exam Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem

### Module 14: THE INTEGRAL Exploring Calculus

Module 14: THE INTEGRAL Explorng Calculus Part I Approxmatons and the Defnte Integral It was known n the 1600s before the calculus was developed that the area of an rregularly shaped regon could be approxmated

### So far: simple (planar) geometries

Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

### A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

### Mathematics Intersection of Lines

a place of mnd F A C U L T Y O F E D U C A T I O N Department of Currculum and Pedagog Mathematcs Intersecton of Lnes Scence and Mathematcs Educaton Research Group Supported b UBC Teachng and Learnng Enhancement

### ONE-DIMENSIONAL COLLISIONS

Purpose Theory ONE-DIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n one-dmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal

### Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

### Mathematical Preparations

1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

### Supplemental Instruction sessions next week

Homework #4 Wrtten homework due now Onlne homework due on Tue Mar 3 by 8 am Exam 1 Answer keys and scores wll be posted by end of the week Supplemental Instructon sessons next week Wednesday 8:45 10:00

### τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor

### Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight

Physcs 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn n the ollowng problems rom Chapter 4 Knght Conceptual Questons: 8, 0, ; 4.8. Anta s approachng ball and movng away rom where ball was

### χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

### APPENDIX 2 FITTING A STRAIGHT LINE TO OBSERVATIONS

Unversty of Oulu Student Laboratory n Physcs Laboratory Exercses n Physcs 1 1 APPEDIX FITTIG A STRAIGHT LIE TO OBSERVATIOS In the physcal measurements we often make a seres of measurements of the dependent

### Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

### If the solution does not follow a logical thought process, it will be assumed in error.

Group # Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem n the space provded

### Statistics MINITAB - Lab 2

Statstcs 20080 MINITAB - Lab 2 1. Smple Lnear Regresson In smple lnear regresson we attempt to model a lnear relatonshp between two varables wth a straght lne and make statstcal nferences concernng that

### Physics 181. Particle Systems

Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

### Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Chapter 9 Correlaton and Regresson 9. Correlaton Correlaton A correlaton s a relatonshp between two varables. The data can be represented b the ordered pars (, ) where s the ndependent (or eplanator) varable,

### I have not received unauthorized aid in the completion of this exam.

ME 270 Sprng 2013 Fnal Examnaton Please read and respond to the followng statement, I have not receved unauthorzed ad n the completon of ths exam. Agree Dsagree Sgnature INSTRUCTIONS Begn each problem

### Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

### Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!

Important Dates: Post Test: Dec. 8 0 durng rectatons. If you have taken the post test, don t come to rectaton! Post Test Make-Up Sessons n ARC 03: Sat Dec. 6, 0 AM noon, and Sun Dec. 7, 8 PM 0 PM. Post

### Section 8.3 Polar Form of Complex Numbers

80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

### Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

ME 270 Sprng 2014 Fnal Exam NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

### Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

### Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 7, 2014 Max Score 45 Points + 8 Extra Credit

EN40: Dynamcs and Vbratons School of Engneerng Brown Unversty Homework : Knematcs and Dynamcs of Partcles Due Frday Feb 7, 014 Max Score 45 Ponts + 8 Extra Credt 1. An expermental mcro-robot (see a descrpton

### Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement.

Name: PHYS 110 Dr. McGoern Sprng 018 Exam 1 Multple Choce: Crcle the answer that best ealuates the statement or completes the statement. #1 - I the acceleraton o an object s negate, the object must be

### Spring Force and Power

Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

### Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART 2) LECTURE NO.

Slde Kng Saud Unersty College of Scence Physcs & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART ) LECTURE NO. 6 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED Lecture

### Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

ME 270 Summer 2014 Fnal Exam NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

### PHYSICS 203-NYA-05 MECHANICS

PHYSICS 03-NYA-05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN - ST. LAWRENCE 790 NÉRÉE-TREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/

### where v means the change in velocity, and t is the

1 PHYS:100 LECTURE 4 MECHANICS (3) Ths lecture covers the eneral case of moton wth constant acceleraton and free fall (whch s one of the more mportant examples of moton wth constant acceleraton) n a more

### ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

### Displacement at any time. Velocity at any displacement in the x-direction u 2 = v ] + 2 a x ( )

The Language of Physcs Knematcs The branch of mechancs that descrbes the moton of a body wthout regard to the cause of that moton (p. 39). Average velocty The average rate at whch the dsplacement vector

### Module 9. Lecture 6. Duality in Assignment Problems

Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

### PHYS 1441 Section 002 Lecture #16

PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Non-conservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!

### Section 8.1 Exercises

Secton 8.1 Non-rght Trangles: Law of Snes and Cosnes 519 Secton 8.1 Exercses Solve for the unknown sdes and angles of the trangles shown. 10 70 50 1.. 18 40 110 45 5 6 3. 10 4. 75 15 5 6 90 70 65 5. 6.

### 11. Dynamics in Rotating Frames of Reference

Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

### SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ

s SCHOOL OF COMPUTING, ENGINEERING ND MTHEMTICS SEMESTER EXMINTIONS 011/01 DYNMICS ME47 DR. N.D.D. MICHÉ Tme allowed: THREE hours nswer: ny FOUR from SIX questons Each queston carres 5 marks Ths s a CLOSED-BOOK

### NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

### Conservation of Angular Momentum = "Spin"

Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

### Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis

Resource Allocaton and Decson Analss (ECON 800) Sprng 04 Foundatons of Regresson Analss Readng: Regresson Analss (ECON 800 Coursepak, Page 3) Defntons and Concepts: Regresson Analss statstcal technques

### Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

### PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg

PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays

### Physics 207 Lecture 13. Lecture 13

Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem

### Analytical Chemistry Calibration Curve Handout

I. Quck-and Drty Excel Tutoral Analytcal Chemstry Calbraton Curve Handout For those of you wth lttle experence wth Excel, I ve provded some key technques that should help you use the program both for problem

### coordinates. Then, the position vectors are described by

Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

### CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

### COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

### Polynomial Regression Models

LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

### Physics 5153 Classical Mechanics. Principle of Virtual Work-1

P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

### Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta

### Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a

### Linear Momentum. Center of Mass.

Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

### Physics 111: Mechanics Lecture 11

Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

### Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

### Chapter 2. Pythagorean Theorem. Right Hand Rule. Position. Distance Formula

Chapter Moton n One Dmenson Cartesan Coordnate System The most common coordnate system or representng postons n space s one based on three perpendcular spatal axes generally desgnated x, y, and z. Any

### Chapter 20 Rigid Body: Translation and Rotational Motion Kinematics for Fixed Axis Rotation

Chapter 20 Rgd Body: Translaton and Rotatonal Moton Knematcs for Fxed Axs Rotaton 20.1 Introducton... 1 20.2 Constraned Moton: Translaton and Rotaton... 1 20.2.1 Rollng wthout slppng... 5 Example 20.1

### Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

### Chapter 13: Multiple Regression

Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

### MTH 263 Practice Test #1 Spring 1999

Pat Ross MTH 6 Practce Test # Sprng 999 Name. Fnd the area of the regon bounded by the graph r =acos (θ). Observe: Ths s a crcle of radus a, for r =acos (θ) r =a ³ x r r =ax x + y =ax x ax + y =0 x ax

### EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

N40: ynamcs and Vbratons Homewor 7: Rgd Body Knematcs School of ngneerng Brown Unversty 1. In the fgure below, bar AB rotates counterclocwse at 4 rad/s. What are the angular veloctes of bars BC and C?.

### Formulas for the Determinant

page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

### ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

### Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

### EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

### How Differential Equations Arise. Newton s Second Law of Motion

page 1 CHAPTER 1 Frst-Order Dfferental Equatons Among all of the mathematcal dscplnes the theory of dfferental equatons s the most mportant. It furnshes the explanaton of all those elementary manfestatons

### DUE: WEDS FEB 21ST 2018

HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

### Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

### Use these variables to select a formula. x = t Average speed = 100 m/s = distance / time t = x/v = ~2 m / 100 m/s = 0.02 s or 20 milliseconds

The speed o a nere mpulse n the human body s about 100 m/s. I you accdentally stub your toe n the dark, estmatethe tme t takes the nere mpulse to trael to your bran. Tps: pcture, poste drecton, and lst

### Midterm Examination. Regression and Forecasting Models

IOMS Department Regresson and Forecastng Models Professor Wllam Greene Phone: 22.998.0876 Offce: KMC 7-90 Home page: people.stern.nyu.edu/wgreene Emal: wgreene@stern.nyu.edu Course web page: people.stern.nyu.edu/wgreene/regresson/outlne.htm

### Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

### Physics 2A Chapters 6 - Work & Energy Fall 2017

Physcs A Chapters 6 - Work & Energy Fall 017 These notes are eght pages. A quck summary: The work-energy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on

### Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2

Lnear omentum Week 8: Chapter 9 Lnear omentum and Collsons The lnear momentum of a partcle, or an object that can be modeled as a partcle, of mass m movng wth a velocty v s defned to be the product of

### Important Instructions to the Examiners:

Summer 0 Examnaton Subject & Code: asc Maths (70) Model Answer Page No: / Important Instructons to the Examners: ) The Answers should be examned by key words and not as word-to-word as gven n the model

### ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

### Spin-rotation coupling of the angularly accelerated rigid body

Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

### CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

### SIMPLE LINEAR REGRESSION

Smple Lnear Regresson and Correlaton Introducton Prevousl, our attenton has been focused on one varable whch we desgnated b x. Frequentl, t s desrable to learn somethng about the relatonshp between two

### 10/23/2003 PHY Lecture 14R 1

Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

### Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests

Smulated of the Cramér-von Mses Goodness-of-Ft Tests Steele, M., Chaselng, J. and 3 Hurst, C. School of Mathematcal and Physcal Scences, James Cook Unversty, Australan School of Envronmental Studes, Grffth

### Chapter 8. Potential Energy and Conservation of Energy

Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

### Linear Momentum. Equation 1

Lnear Momentum OBJECTIVE Obsere collsons between two carts, testng or the conseraton o momentum. Measure energy changes durng derent types o collsons. Classy collsons as elastc, nelastc, or completely

### AS-Level Maths: Statistics 1 for Edexcel

1 of 6 AS-Level Maths: Statstcs 1 for Edecel S1. Calculatng means and standard devatons Ths con ndcates the slde contans actvtes created n Flash. These actvtes are not edtable. For more detaled nstructons,

### Iterative General Dynamic Model for Serial-Link Manipulators

EEL6667: Knematcs, Dynamcs and Control of Robot Manpulators 1. Introducton Iteratve General Dynamc Model for Seral-Lnk Manpulators In ths set of notes, we are gong to develop a method for computng a general

### Newton s Method for One - Dimensional Optimization - Theory

Numercal Methods Newton s Method for One - Dmensonal Optmzaton - Theory For more detals on ths topc Go to Clck on Keyword Clck on Newton s Method for One- Dmensonal Optmzaton You are free to Share to copy,

### Newton s Laws of Motion

Chapter 4 Newton s Laws of Moton 4.1 Forces and Interactons Fundamental forces. There are four types of fundamental forces: electromagnetc, weak, strong and gravtatonal. The frst two had been successfully