New issues in LES of turbulent flows: multiphysics and uncertainty modelling

Size: px
Start display at page:

Download "New issues in LES of turbulent flows: multiphysics and uncertainty modelling"

Transcription

1 New issues in LES of turbulent flows: multiphysics and uncertainty modelling Pierre Sagaut Institut Jean Le Rond d Alembert Université Pierre et Marie Curie- Paris 6, France Thanks to: J.C. Jouhaud, D. Lucor, J. Meyers, M. Meldi Ecole Centrale de Lyon October 30th, 2009

2 An example of complex flow 2

3 Motivation Simplified/incomplete boundary conditions CAD definition & mesh generation Physical modelling errors Complex system simulation with uncertainties Unknown/varying flow parameters Discretization errors 3

4 Outline 1. Response surface via Polynomial Chaos 2. Uncertainty in subgrid model calibration 3. Putting error/uncertainty bars on LES results 4

5 Uncertain system description What is the space of solutions spanned by uncertain parameters? f = f (t,z;x 1,x 2,...,x n ) df dt = G(t,Z;x 1,...,x n ) full solution space (t,z;x) Single fully deterministic solution (everything perfectly known/prescribed) 5

6 Uncertain system description (cont d) Probability Density Function P(x 1 ) P( f ) Solution P(x n ) x 1 f (x 1,...,x n ) x n Uncertain parameters Response surface f (x 1,...,x n ) Local sensitivity (x 1,...,x n ) 6

7 Generalized Polynomial Chaos Wiener (1938) : Homogeneous Chaos Theory Solution with uncertain random parameter Uncertain parameter Orthogonal polynomial basis functions Pseudo-spectral Galerkin projection of spanned solutions 7

8 Generalized Polynomial Chaos (cont d) Distribution Gaussian Gamma Beta/uniform Binomial Optimal polynomial basis Hermite Laguerre Legendre Krawtchouk gpc post-processing 8

9 Uncertain subgrid model calibration (Lucor, Meyers & Sagaut, J. Fluid Mech, 2007) Classical Smagorinsky-Lilly model Exact Smagorinsky constant expression (Meyers & Sagaut, J. Fluid Mech, 2007) Case-dependent parameters 9

10 Decaying HIT with uncertain Cs TKE decay Final TKE spectrum 10

11 Decaying HIT with uncertain Cs (cont d) Narrow pdf weakly sensitive mode PDF of energy spectrum wide pdf highly sensitive mode 11

12 Cs as a stochastic variable Meyers-Meneveau spectrum shape E(k) =C K ε 2/3 k 5/3 (kl) β f L (kl)f η (kη) f η (kη) = exp( α 1 kη) ( 1+ α 2(kη/α 4 ) α 3 1+(kη/α 4 ) α 3 ) f L (kl) = ( kl [(kl) p + α 5 ] 1/p ) 5/3+β+2 Uncertain parameters! 12

13 Cs as a stochastic variable Constrained problem with + 0 x 5/3 β C K f L (kη)f η (kηre 3/4 )d(kη) = 1 x 1/3 β Re 3β/4 C K f L (kηre 3/4 )f η (kη)d(kη) = 1/2 x 7/3 β Re 3β/4 C K f L (kηre 3/4 )f η (kη)d(kη) = 7S

14 Pdf of Cs Re λ =

15 Stochastic Cs analysis 15

16 Break: uncertain grid turbulence decay Corrsin & Comte-Bellot analysis E(k, t) Ak s A 1 L(t) t 2/(3+s) K(t) t 2(1+s)/(3+s) Re(t) t (1 s)/(3+s) 16

17 Break: uncertain grid turbulence decay Saturation effect (bounded physical domain): A 1 L(t) 1 K(t) t 2 Re(t) t 1

18 EDQNM/gPC analysis (Saffman spectrum) 18

19 Break: uncertain grid turbulence decay Isotropic turbulence decay exponent: Re 1 Re 1 Corresponding parameter tuning (k-ε model): Re 1 Re 1

20 Putting error bars on LES data In complex configurations: optimal values of subgrid models are not known best tuning of artificial viscosity parameter not known these two parameters are considered as uncertain parameters comparison with experimental data should account for possible numerical result variability 20

21 Case study (Jouhaud & Sagaut, J. Fluid Engng, 2008) 21

22 Response surface via Kriging Optimal linear unbiaised statistical predictor Based on sampling points (1 sample = 1 usual simulation) Several variants have been developed (cokriging, ) Kriging methods also provide an estimation of the interpolation error Sampling points can be generated dynamically to minimize the interpolation error (adaptive refinement) 22

23 Basic Kriging Method Estimator at position x Estimated function at position x s Covariance vector Covariance matrix a priori covariogram function: 23

24 Mean flow predicted by LES 24

25 Mean temperature field 25

26 Defining the best LES solution Which solution is the best LES solution? If some experimental data are available: some error functions can be defined solutions with the lowest error norm can be identified «clean» definition of the best LES solution(s) «best» LES a priori depends on the error measure 26

27 Error map Kriging-based response surface of error at X/D=8 L 1 norm L 2 norm 27

28 Error map (cont d) Kriging-based response surface of global error at both locations X/D=8 and X/D=1 L 1 norm L 2 norm 28

29 Best LES solution 29

30 Best LES solution 30

31 Conclusions Validation/certification not trivial! Uncertainties are ubiquitious in almost all application fields Mathematical tools do exist! Computational ressources now available Next step in modelling! 31

32 32

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Performance Evaluation of Generalized Polynomial Chaos

Performance Evaluation of Generalized Polynomial Chaos Performance Evaluation of Generalized Polynomial Chaos Dongbin Xiu, Didier Lucor, C.-H. Su, and George Em Karniadakis 1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA, gk@dam.brown.edu

More information

Multilevel stochastic collocations with dimensionality reduction

Multilevel stochastic collocations with dimensionality reduction Multilevel stochastic collocations with dimensionality reduction Ionut Farcas TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017 Outline 1 Motivation 2 Theoretical background Uncertainty

More information

Implementation of a symmetry-preserving discretization in Gerris

Implementation of a symmetry-preserving discretization in Gerris Implementation of a symmetry-preserving discretization in Gerris Daniel Fuster Cols: Pierre Sagaut, Stephane Popinet Université Pierre et Marie Curie, Institut Jean Le Rond D Alembert Introduction 10/11:

More information

Interaction(s) fluide-structure & modélisation de la turbulence

Interaction(s) fluide-structure & modélisation de la turbulence Interaction(s) fluide-structure & modélisation de la turbulence Pierre Sagaut Institut Jean Le Rond d Alembert Université Pierre et Marie Curie- Paris 6, France http://www.ida.upmc.fr/~sagaut GDR Turbulence

More information

Dinesh Kumar, Mehrdad Raisee and Chris Lacor

Dinesh Kumar, Mehrdad Raisee and Chris Lacor Dinesh Kumar, Mehrdad Raisee and Chris Lacor Fluid Mechanics and Thermodynamics Research Group Vrije Universiteit Brussel, BELGIUM dkumar@vub.ac.be; m_raisee@yahoo.com; chris.lacor@vub.ac.be October, 2014

More information

Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos

Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos J. Fluid Mech. (2007), vol. 585, pp. 255 279. c 2007 Cambridge University Press doi:10.1017/s0022112007006751 Printed in the United Kingdom 255 Sensitivity analysis of large-eddy simulations to subgrid-scale-model

More information

Final Report: DE-FG02-95ER25239 Spectral Representations of Uncertainty: Algorithms and Applications

Final Report: DE-FG02-95ER25239 Spectral Representations of Uncertainty: Algorithms and Applications Final Report: DE-FG02-95ER25239 Spectral Representations of Uncertainty: Algorithms and Applications PI: George Em Karniadakis Division of Applied Mathematics, Brown University April 25, 2005 1 Objectives

More information

Modeling with Itô Stochastic Differential Equations

Modeling with Itô Stochastic Differential Equations Modeling with Itô Stochastic Differential Equations 2.4-2.6 E. Allen presentation by T. Perälä 27.0.2009 Postgraduate seminar on applied mathematics 2009 Outline Hilbert Space of Stochastic Processes (

More information

On why dynamic subgrid-scale models work

On why dynamic subgrid-scale models work / / Center for Turbulence Research Annual Research Briefs 1995 25 On why dynamic subgrid-scale models work By J. Jim_nez 1 1. Motivation Dynamic subgrid models were introduced in (Germano et al. 1991)

More information

An improved velocity increment model based on Kolmogorov equation of filtered velocity

An improved velocity increment model based on Kolmogorov equation of filtered velocity An improved velocity increment model based on Kolmogorov equation of filtered velocity Le Fang, Liang Shao, Jean-Pierre Bertoglio, Guixiang X. Cui, Chun-Xiao Xu, Zhaoshun Zhang To cite this version: Le

More information

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes TTU, October 26, 2012 p. 1/3 Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes Hao Zhang Department of Statistics Department of Forestry and Natural Resources Purdue University

More information

A reduced-order stochastic finite element analysis for structures with uncertainties

A reduced-order stochastic finite element analysis for structures with uncertainties A reduced-order stochastic finite element analysis for structures with uncertainties Ji Yang 1, Béatrice Faverjon 1,2, Herwig Peters 1, icole Kessissoglou 1 1 School of Mechanical and Manufacturing Engineering,

More information

A Polynomial Chaos Approach to Robust Multiobjective Optimization

A Polynomial Chaos Approach to Robust Multiobjective Optimization A Polynomial Chaos Approach to Robust Multiobjective Optimization Silvia Poles 1, Alberto Lovison 2 1 EnginSoft S.p.A., Optimization Consulting Via Giambellino, 7 35129 Padova, Italy s.poles@enginsoft.it

More information

Large Eddy Simula,on: state of the art (with emphasis on mul0scale methods)

Large Eddy Simula,on: state of the art (with emphasis on mul0scale methods) Large Eddy Simula,on: state of the art (with emphasis on mul0scale methods) Pierre Sagaut pierre.sagaut@upmc.fr Ins,tut d Alembert, UMR 7190 Université Pierre et Marie Curie Paris 6 GTP Workshop «LES of

More information

High-resolution simulation results of kinematic and dynamic collision statistics of cloud droplets

High-resolution simulation results of kinematic and dynamic collision statistics of cloud droplets High-resolution simulation results of kinematic and dynamic collision statistics of cloud droplets Bogdan Rosa (bogdan.rosa@imgw.pl) Institute of Meteorology and Water Management National Research Institute

More information

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé CMCS/IACS Ecole Polytechnique Federale de Lausanne Erik.Burman@epfl.ch Méthodes Numériques

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 59 (2010 2194 2199 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Toward

More information

Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-domain

Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-domain Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-domain Prof Nathan L Gibson Department of Mathematics Joint Math Meeting Jan 9, 2011 Prof Gibson (OSU) Inverse Problems for Distributions

More information

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement HONOM 2011 in Trento DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement Institute of Aerodynamics and Flow Technology DLR Braunschweig 11. April 2011 1 / 35 Research

More information

Turbulent Flows. quiescent surroundings W U V. r U. nozzle. fluid supply CHAPTER 5: FREE SHEAR FLOWS

Turbulent Flows. quiescent surroundings W U V. r U. nozzle. fluid supply CHAPTER 5: FREE SHEAR FLOWS quiescent surroundings x W U V r U J θ d nozzle fluid supply Figure 5.1: Sketch of a round jet experiment, showing the polarcylindrical coordinate system employed. 0.2 x/d = 30 U /U J 0.1 x/d = 60 x/d

More information

Band-pass filtered velocity statistics in decaying turbulent box

Band-pass filtered velocity statistics in decaying turbulent box THEORETICAL & APPLIED MECHANICS LETTERS 1, 042002 (2011) Band-pass filtered velocity statistics in decaying turbulent box J. M. Lenoir, S. Simoëns, a) and Jean-Noel Gence UMR CNRS 5509,LMFA, ECL, UCB LyonI,

More information

http://www.springer.com/3-540-30725-7 Erratum Spectral Methods Fundamentals in Single Domains C. Canuto M.Y. Hussaini A. Quarteroni T.A. Zang Springer-Verlag Berlin Heidelberg 2006 Due to a technical error

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

Archimer

Archimer Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site Comptes

More information

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS The 6th ASME-JSME Thermal Engineering Joint Conference March 6-, 3 TED-AJ3-3 LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS Akihiko Mitsuishi, Yosuke Hasegawa,

More information

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 WeC17.1 Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 (1) Graduate Student, (2) Assistant

More information

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields Sous la co-tutelle de : LABORATOIRE DE MODÉLISATION ET SIMULATION MULTI ÉCHELLE CNRS UPEC UNIVERSITÉ PARIS-EST CRÉTEIL UPEM UNIVERSITÉ PARIS-EST MARNE-LA-VALLÉE Stochastic representation of random positive-definite

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Lecture 9: Sensitivity Analysis ST 2018 Tobias Neckel Scientific Computing in Computer Science TUM Repetition of Previous Lecture Sparse grids in Uncertainty Quantification

More information

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Journal of Scientific Computing, Vol. 27, Nos. 1 3, June 2006 ( 2005) DOI: 10.1007/s10915-005-9038-8 Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Xiaoliang Wan 1 and George Em Karniadakis 1

More information

DECAYING TURBULENCE: THEORY AND EXPERIMENTS

DECAYING TURBULENCE: THEORY AND EXPERIMENTS DECAYING TURBULENCE: THEORY AND EXPERIMENTS N.Mazellier, P. Valente & J.C. Vassilicos Department of Aeronautics and Imperial College London, U.K. p. 1 Richardson-Kolmogorov cascade Kolmogorov (1941): E(k)

More information

Characterization of MIPAS CH 4 and N 2 O and MLS N 2 O using data assimilation

Characterization of MIPAS CH 4 and N 2 O and MLS N 2 O using data assimilation Characterization of MIPAS CH 4 and N 2 O and MLS N 2 O using data assimilation Quentin Errera 1 (quentin@oma.be) 1 Belgian Institute for Space Aeronomy (BIRA-IASB) SPARC Data Assimilation Workshop, 15

More information

DNS of the Taylor-Green vortex at Re=1600

DNS of the Taylor-Green vortex at Re=1600 DNS of the Taylor-Green vortex at Re=1600 Koen Hillewaert, Cenaero Corentin Carton de Wiart, NASA Ames koen.hillewaert@cenaero.be, corentin.carton@cenaero.be Introduction This problem is aimed at testing

More information

Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos

Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos Dongbin Xiu Didier Lucor C.-H. Su George Em Karniadakis 1 Division of Applied Mathematics, Brown University, rovidence, RI 02912 Stochastic Modeling of Flow-Structure Interactions Using Generalized olynomial

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

CERTAIN THOUGHTS ON UNCERTAINTY ANALYSIS FOR DYNAMICAL SYSTEMS

CERTAIN THOUGHTS ON UNCERTAINTY ANALYSIS FOR DYNAMICAL SYSTEMS CERTAIN THOUGHTS ON UNCERTAINTY ANALYSIS FOR DYNAMICAL SYSTEMS Puneet Singla Assistant Professor Department of Mechanical & Aerospace Engineering University at Buffalo, Buffalo, NY-1426 Probabilistic Analysis

More information

Spectral Representation of Random Processes

Spectral Representation of Random Processes Spectral Representation of Random Processes Example: Represent u(t,x,q) by! u K (t, x, Q) = u k (t, x) k(q) where k(q) are orthogonal polynomials. Single Random Variable:! Let k (Q) be orthogonal with

More information

Homogeneous Turbulence Dynamics

Homogeneous Turbulence Dynamics Homogeneous Turbulence Dynamics PIERRE SAGAUT Universite Pierre et Marie Curie CLAUDE CAMBON Ecole Centrale de Lyon «Hf CAMBRIDGE Щ0 UNIVERSITY PRESS Abbreviations Used in This Book page xvi 1 Introduction

More information

Ensemble averaged dynamic modeling. By D. Carati 1,A.Wray 2 AND W. Cabot 3

Ensemble averaged dynamic modeling. By D. Carati 1,A.Wray 2 AND W. Cabot 3 Center for Turbulence Research Proceedings of the Summer Program 1996 237 Ensemble averaged dynamic modeling By D. Carati 1,A.Wray 2 AND W. Cabot 3 The possibility of using the information from simultaneous

More information

TECHNISCHE UNIVERSITÄT MÜNCHEN. Uncertainty Quantification in Fluid Flows via Polynomial Chaos Methodologies

TECHNISCHE UNIVERSITÄT MÜNCHEN. Uncertainty Quantification in Fluid Flows via Polynomial Chaos Methodologies TECHNISCHE UNIVERSITÄT MÜNCHEN Bachelor s Thesis in Engineering Science Uncertainty Quantification in Fluid Flows via Polynomial Chaos Methodologies Jan Sültemeyer DEPARTMENT OF INFORMATICS MUNICH SCHOOL

More information

Chapter 2 Spectral Expansions

Chapter 2 Spectral Expansions Chapter 2 Spectral Expansions In this chapter, we discuss fundamental and practical aspects of spectral expansions of random model data and of model solutions. We focus on a specific class of random process

More information

AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy

AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy Antony Jameson 1 1 Thomas V. Jones Professor of Engineering Department of Aeronautics and Astronautics Stanford University

More information

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray Center for Turbulence Research Annual Research Briefs 1997 113 Anisotropic grid-based formulas for subgrid-scale models By G.-H. Cottet 1 AND A. A. Wray 1. Motivations and objectives Anisotropic subgrid-scale

More information

Efficient Reduced Order Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures

Efficient Reduced Order Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures Efficient Reduced Order Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures Yung-Chang Tan Graduate Student Research Assistant Matthew P. Castanier Assistant Research Scientist

More information

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Marcela Alfaro Córdoba August 25, 2016 NCSU Department of Statistics Continuous Parameter

More information

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments Sequential Importance Sampling for Rare Event Estimation with Computer Experiments Brian Williams and Rick Picard LA-UR-12-22467 Statistical Sciences Group, Los Alamos National Laboratory Abstract Importance

More information

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size L Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size 0.01L or smaller are subject to substantial viscous

More information

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Rohit Dhariwal and Vijaya Rani PI: Sarma L. Rani Department of Mechanical and Aerospace

More information

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf**

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** Controlled CO 2 Diversified fuels Fuel-efficient vehicles Clean refining Extended reserves Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** *: Laboratoire J.L.Lions **:Université

More information

Uncertainty Quantification of Two-Phase Flow in Heterogeneous Porous Media

Uncertainty Quantification of Two-Phase Flow in Heterogeneous Porous Media Uncertainty Quantification of Two-Phase Flow in Heterogeneous Porous Media M.Köppel, C.Rohde Institute for Applied Analysis and Numerical Simulation Inria, Nov 15th, 2016 Porous Media Examples: sponge,

More information

Lagrangian acceleration in confined 2d turbulent flow

Lagrangian acceleration in confined 2d turbulent flow Lagrangian acceleration in confined 2d turbulent flow Kai Schneider 1 1 Benjamin Kadoch, Wouter Bos & Marie Farge 3 1 CMI, Université Aix-Marseille, France 2 LMFA, Ecole Centrale, Lyon, France 3 LMD, Ecole

More information

Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits

Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits Hyperbolic Polynomial Chaos Expansion HPCE and its Application to Statistical Analysis of Nonlinear Circuits Majid Ahadi, Aditi Krishna Prasad, Sourajeet Roy High Speed System Simulations Laboratory Department

More information

Non-Newtonian Flows in Porous Media: upscaling problems

Non-Newtonian Flows in Porous Media: upscaling problems 6/26/8 4th Cargèse Summer School, 208 Non-Newtonian Flows in Porous Media: upscaling problems https://www.dropbox.com/s/mcgg0ifpogsznv2/non_newtonian_v00.pdf?dl=0 Davit Y., Zami-Pierre F.,2, de Loubens

More information

Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification

Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification Tim Wildey Sandia National Laboratories Center for Computing Research (CCR) Collaborators: E. Cyr,

More information

Uncertainty Quantification and Validation Using RAVEN. A. Alfonsi, C. Rabiti. Risk-Informed Safety Margin Characterization. https://lwrs.inl.

Uncertainty Quantification and Validation Using RAVEN. A. Alfonsi, C. Rabiti. Risk-Informed Safety Margin Characterization. https://lwrs.inl. Risk-Informed Safety Margin Characterization Uncertainty Quantification and Validation Using RAVEN https://lwrs.inl.gov A. Alfonsi, C. Rabiti North Carolina State University, Raleigh 06/28/2017 Assumptions

More information

What s more chaotic than chaos itself? Brownian Motion - before, after, and beyond.

What s more chaotic than chaos itself? Brownian Motion - before, after, and beyond. Include Only If Paper Has a Subtitle Department of Mathematics and Statistics What s more chaotic than chaos itself? Brownian Motion - before, after, and beyond. Math Graduate Seminar March 2, 2011 Outline

More information

Spectral methods for fuzzy structural dynamics: modal vs direct approach

Spectral methods for fuzzy structural dynamics: modal vs direct approach Spectral methods for fuzzy structural dynamics: modal vs direct approach S Adhikari Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Wales, UK IUTAM Symposium

More information

Sensitivity analysis to the normal grid-resolution in a turbulent channel flow using large-eddy simulations

Sensitivity analysis to the normal grid-resolution in a turbulent channel flow using large-eddy simulations Center for Turbulence Research Annual Research Briefs 01 Sensitivity analysis to the normal grid-resolution in a turbulent channel flow using large-eddy simulations By J. Dombard AND G. Iaccarino 1. Motivation

More information

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22,2012 SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN

More information

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600 Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 6 Overview This problem is aimed at testing the accuracy and the performance of high-order methods on the direct numerical simulation

More information

Uncertainty Quantification in MEMS

Uncertainty Quantification in MEMS Uncertainty Quantification in MEMS N. Agarwal and N. R. Aluru Department of Mechanical Science and Engineering for Advanced Science and Technology Introduction Capacitive RF MEMS switch Comb drive Various

More information

Approximating Infinity-Dimensional Stochastic Darcy s Equations without Uniform Ellipticity

Approximating Infinity-Dimensional Stochastic Darcy s Equations without Uniform Ellipticity Approximating Infinity-Dimensional Stochastic Darcy s Equations without Uniform Ellipticity Marcus Sarkis Jointly work with Juan Galvis USC09 Marcus Sarkis (WPI) SPDE without Uniform Ellipticity USC09

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 6, No., pp. 578 59 c Society for Industrial and Applied Mathematics STOCHASTIC SOLUTIONS FOR THE TWO-DIMENSIONAL ADVECTION-DIFFUSION EQUATION XIAOLIANG WAN, DONGBIN XIU, AND GEORGE

More information

Bruit de mélange des jets subsoniques initialement turbulents

Bruit de mélange des jets subsoniques initialement turbulents Turbulence and Aeroacoustics Research team of the Centre Acoustique École Centrale de Lyon & LMFA UMR CNRS 5509 GDR 2865 CNRS, Turbulence, Poitiers 15-17 octobre 2012 Bruit de mélange des jets subsoniques

More information

Uncertainty Quantification of Radionuclide Release Models using Non-Intrusive Polynomial Chaos. Casper Hoogwerf

Uncertainty Quantification of Radionuclide Release Models using Non-Intrusive Polynomial Chaos. Casper Hoogwerf Uncertainty Quantification of Radionuclide Release Models using Non-Intrusive Polynomial Chaos. Casper Hoogwerf 1 Foreword This report presents the final thesis of the Master of Science programme in Applied

More information

A Vector-Space Approach for Stochastic Finite Element Analysis

A Vector-Space Approach for Stochastic Finite Element Analysis A Vector-Space Approach for Stochastic Finite Element Analysis S Adhikari 1 1 Swansea University, UK CST2010: Valencia, Spain Adhikari (Swansea) Vector-Space Approach for SFEM 14-17 September, 2010 1 /

More information

Fast Numerical Methods for Stochastic Computations: A Review

Fast Numerical Methods for Stochastic Computations: A Review COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 5, No. 2-4, pp. 242-272 Commun. Comput. Phys. February 2009 REVIEW ARTICLE Fast Numerical Methods for Stochastic Computations: A Review Dongbin Xiu Department

More information

A review on wavelet transforms and their applications to MHD and plasma turbulence I

A review on wavelet transforms and their applications to MHD and plasma turbulence I A review on wavelet transforms and their applications to MHD and plasma turbulence I Marie Farge, Laboratoire de Météorologie Dynamique Ecole Normale Supérieure, Paris In collaboration with Kai Schneider,

More information

Proper Generalized Decomposition for Linear and Non-Linear Stochastic Models

Proper Generalized Decomposition for Linear and Non-Linear Stochastic Models Proper Generalized Decomposition for Linear and Non-Linear Stochastic Models Olivier Le Maître 1 Lorenzo Tamellini 2 and Anthony Nouy 3 1 LIMSI-CNRS, Orsay, France 2 MOX, Politecnico Milano, Italy 3 GeM,

More information

Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos

Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos Dongbin Xiu and George Em Karniadakis Division of Applied Mathematics Brown University Providence, RI 9 Submitted to Journal of

More information

Kriging Luc Anselin, All Rights Reserved

Kriging Luc Anselin, All Rights Reserved Kriging Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu Outline Principles Kriging Models Spatial Interpolation

More information

Sparse polynomial chaos expansions in engineering applications

Sparse polynomial chaos expansions in engineering applications DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Sparse polynomial chaos expansions in engineering applications B. Sudret G. Blatman (EDF R&D,

More information

A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations

A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations An Extended Abstract submitted for the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada January 26 Preferred Session Topic: Uncertainty quantification and stochastic methods for CFD A Non-Intrusive

More information

Simulating with uncertainty : the rough surface scattering problem

Simulating with uncertainty : the rough surface scattering problem Simulating with uncertainty : the rough surface scattering problem Uday Khankhoje Assistant Professor, Electrical Engineering Indian Institute of Technology Madras Uday Khankhoje (EE, IITM) Simulating

More information

Application and validation of polynomial chaos methods to quantify uncertainties in simulating the Gulf of Mexico circulation using HYCOM.

Application and validation of polynomial chaos methods to quantify uncertainties in simulating the Gulf of Mexico circulation using HYCOM. Application and validation of polynomial chaos methods to quantify uncertainties in simulating the Gulf of Mexico circulation using HYCOM. Mohamed Iskandarani Matthieu Le Hénaff Carlisle Thacker University

More information

Steps in Uncertainty Quantification

Steps in Uncertainty Quantification Steps in Uncertainty Quantification Challenge: How do we do uncertainty quantification for computationally expensive models? Example: We have a computational budget of 5 model evaluations. Bayesian inference

More information

Turbulence: dynamics and modelling MEC 585 (Part 4)

Turbulence: dynamics and modelling MEC 585 (Part 4) Turbulence: dynamics and modelling MEC 585 (Part 4) Pierre Sagaut D Alembert Institute Université Pierre et Marie Curie -Paris 6 pierre.sagaut@upmc.fr Objectives & contents Part 4: advanced simulation

More information

Suitability of LPS for Laminar and Turbulent Flow

Suitability of LPS for Laminar and Turbulent Flow Suitability of LPS for Laminar and Turbulent Flow Daniel Arndt Helene Dallmann Georg-August-Universität Göttingen Institute for Numerical and Applied Mathematics VMS 2015 10th International Workshop on

More information

Matrix-valued stochastic processes

Matrix-valued stochastic processes Matrix-valued stochastic processes and applications Małgorzata Snarska (Cracow University of Economics) Grodek, February 2017 M. Snarska (UEK) Matrix Diffusion Grodek, February 2017 1 / 18 Outline 1 Introduction

More information

Intermittency of quasi-static magnetohydrodynamic turbulence: A wavelet viewpoint

Intermittency of quasi-static magnetohydrodynamic turbulence: A wavelet viewpoint Intermittency of quasi-static magnetohydrodynamic turbulence: A wavelet viewpoint Naoya Okamoto 1, Katsunori Yoshimatsu 2, Kai Schneider 3 and Marie Farge 4 1 Center for Computational Science, Nagoya University,

More information

AN EFFICIENT COMPUTATIONAL FRAMEWORK FOR UNCERTAINTY QUANTIFICATION IN MULTISCALE SYSTEMS

AN EFFICIENT COMPUTATIONAL FRAMEWORK FOR UNCERTAINTY QUANTIFICATION IN MULTISCALE SYSTEMS AN EFFICIENT COMPUTATIONAL FRAMEWORK FOR UNCERTAINTY QUANTIFICATION IN MULTISCALE SYSTEMS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of

More information

Organization. I MCMC discussion. I project talks. I Lecture.

Organization. I MCMC discussion. I project talks. I Lecture. Organization I MCMC discussion I project talks. I Lecture. Content I Uncertainty Propagation Overview I Forward-Backward with an Ensemble I Model Reduction (Intro) Uncertainty Propagation in Causal Systems

More information

Estimating functional uncertainty using polynomial chaos and adjoint equations

Estimating functional uncertainty using polynomial chaos and adjoint equations 0. Estimating functional uncertainty using polynomial chaos and adjoint equations February 24, 2011 1 Florida State University, Tallahassee, Florida, Usa 2 Moscow Institute of Physics and Technology, Moscow,

More information

Design of experiments for smoke depollution of diesel engine outputs

Design of experiments for smoke depollution of diesel engine outputs ControlledCO 2 Diversifiedfuels Fuel-efficientvehicles Cleanrefining Extendedreserves Design of experiments for smoke depollution of diesel engine outputs M. CANAUD (1), F. WAHL (1), C. HELBERT (2), L.

More information

A Unified Framework for Uncertainty and Sensitivity Analysis of Computational Models with Many Input Parameters

A Unified Framework for Uncertainty and Sensitivity Analysis of Computational Models with Many Input Parameters A Unified Framework for Uncertainty and Sensitivity Analysis of Computational Models with Many Input Parameters C. F. Jeff Wu H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute

More information

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Navtech Part #s Volume 1 #1277 Volume 2 #1278 Volume 3 #1279 3 Volume Set #1280 Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Volume 1 Preface Contents

More information

arxiv: v1 [math.na] 3 Apr 2019

arxiv: v1 [math.na] 3 Apr 2019 arxiv:1904.02017v1 [math.na] 3 Apr 2019 Poly-Sinc Solution of Stochastic Elliptic Differential Equations Maha Youssef and Roland Pulch Institute of Mathematics and Computer Science, University of Greifswald,

More information

Subgrid models for large-eddy simulation using unstructured grids in a stabilized finite element framework

Subgrid models for large-eddy simulation using unstructured grids in a stabilized finite element framework Journal of Turbulence Volume 7, No. 28, 2006 Subgrid models for large-eddy simulation using unstructured grids in a stabilized finite element framework V. LEVASSEUR,P.SAGAUT and M. MALLET Laboratoire de

More information

Geostatistical Modeling for Large Data Sets: Low-rank methods

Geostatistical Modeling for Large Data Sets: Low-rank methods Geostatistical Modeling for Large Data Sets: Low-rank methods Whitney Huang, Kelly-Ann Dixon Hamil, and Zizhuang Wu Department of Statistics Purdue University February 22, 2016 Outline Motivation Low-rank

More information

A Spectral Approach to Linear Bayesian Updating

A Spectral Approach to Linear Bayesian Updating A Spectral Approach to Linear Bayesian Updating Oliver Pajonk 1,2, Bojana V. Rosic 1, Alexander Litvinenko 1, and Hermann G. Matthies 1 1 Institute of Scientific Computing, TU Braunschweig, Germany 2 SPT

More information

Mixing Models for Large-Eddy Simulation of Nonpremixed Turbulent Combustion

Mixing Models for Large-Eddy Simulation of Nonpremixed Turbulent Combustion S. M. debruynkops Lecturer J. J. Riley Professor Department of Mechanical Engineering, University of Washington, Box 35600, Seattle, WA 98195-600 Mixing Models for Large-Eddy Simulation of Nonpremixed

More information

Stochastic Elastic-Plastic Finite Element Method for Performance Risk Simulations

Stochastic Elastic-Plastic Finite Element Method for Performance Risk Simulations Stochastic Elastic-Plastic Finite Element Method for Performance Risk Simulations Boris Jeremić 1 Kallol Sett 2 1 University of California, Davis 2 University of Akron, Ohio ICASP Zürich, Switzerland August

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

plasmas Lise-Marie Imbert-Gérard, Bruno Després. July 27th 2011 Laboratoire J.-L. LIONS, Université Pierre et Marie Curie, Paris.

plasmas Lise-Marie Imbert-Gérard, Bruno Després. July 27th 2011 Laboratoire J.-L. LIONS, Université Pierre et Marie Curie, Paris. Lise-Marie Imbert-Gérard, Bruno Després. Laboratoire J.-L. LIONS, Université Pierre et Marie Curie, Paris. July 27th 2011 1 Physical and mathematical motivations 2 approximation of the solutions 3 4 Plan

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

E. Gravanis, E. Akylas, M.M. Fyrillas, D. Rousson and S.C. Kassinos

E. Gravanis, E. Akylas, M.M. Fyrillas, D. Rousson and S.C. Kassinos 9 th HSTAM International Congress on Mechanics Limassol, Cyprus, 1 14 July, 010 MODELING THE STRUCTURE FUNCTIONS IN LINEARLY FORCED ISOTROPIC TURBULENCE 1 1 3 4 E. Gravanis, E. Akylas, M.M. Fyrillas, D.

More information

Closed-loop fluid flow control with a reduced-order model gain-scheduling approach

Closed-loop fluid flow control with a reduced-order model gain-scheduling approach Closed-loop fluid flow control with a reduced-order model gain-scheduling approach L. Mathelin 1 M. Abbas-Turki 2 L. Pastur 1,3 H. Abou-Kandil 2 1 LIMSI - CNRS (Orsay) 2 SATIE, Ecole Normale Supérieure

More information

Stochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos

Stochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos Stochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos Dongbin Xiu, Didier Lucor, C.-H. Su and George Em Karniadakis Division of Applied Mathematics Brown University Providence,

More information

Analysis and Simulation of Blood Flow in the Portal Vein with Uncertainty Quantification

Analysis and Simulation of Blood Flow in the Portal Vein with Uncertainty Quantification Analysis and Simulation of Blood Flow in the Portal Vein with Uncertainty Quantification João Pedro Carvalho Rêgo de Serra e Moura Instituto Superior Técnico Abstract Blood flow simulations in CFD are

More information