Homogeneous Turbulence Dynamics

Size: px
Start display at page:

Download "Homogeneous Turbulence Dynamics"

Transcription

1 Homogeneous Turbulence Dynamics PIERRE SAGAUT Universite Pierre et Marie Curie CLAUDE CAMBON Ecole Centrale de Lyon «Hf CAMBRIDGE Щ0 UNIVERSITY PRESS

2 Abbreviations Used in This Book page xvi 1 Introduction Scope of the Book Structure and Contents of the Book 3 Bibliography 9 2 Statistical Analysis of Homogeneous Turbulent Flows: Reminders Background Deterministic Equations Mass Conservation The Navier-Stokes Momentum Equations Incompressible Turbulence First Insight into Compressibility Effects Reminder About Circulation and Vorticity Adding Body Forces or Mean Gradients Briefs About Statistical and Probabilistic Approaches Ensemble Averaging, Statistical Homogeneity Single-Point and Multipoint Moments Statistics for Velocity Increments Application of Reynolds Decomposition to Dynamical Equations Reynolds Stress Tensor and Related Equations RST Equations The Mean Flow Consistent With Homogeneity Homogeneous RST Equations. Briefs About Closure Methods Anisotropy in Physical Space. Single-Point and Two-Point Correlations Spectral Analysis, From Random Fields to Two-Point «Correlations. Local Frame, Helical Modes Second-Order Statistics Poloidal-Toroidal Decomposition and Craya-Herring Frame of Reference Helical-Mode Decomposition Use of Projection Operators Nonlinear Dynamics Background Nonlinearity in Different Reference Frames 36 VII

3 viii Contents 2.6 Anisotropy in Fourier Space Second-Order Velocity Statistics Some Comments About Higher-Order Statistics A Synthetic Scheme of the Closure Problem: Nonlinearity and Nonlocality 43 Bibliography 47 3 Incompressible Homogeneous Isotropic Turbulence Observations and Measures in Forced and Freely Decaying Turbulence How to Generate Isotropic Turbulence? Main Observed Statistical Features of Developed Isotropic Turbulence Energy Decay Regimes Coherent Structures in Isotropic Turbulence Self-Similar Decay Regimes, Symmetries, and Invariants Symmetries of Navier-Stokes Equations and Existence of Self-Similar Solutions Algebraic Decay Exponents Deduced From Symmetry Analysis Time-Variation Exponent and Inviscid Global Invariants Refined Analysis Without PLE Hypothesis Self-Similarity Breakdown Self-Similar Decay in the Final Region Reynolds Stress Tensor and Analysis of Related Equations Classical Statistical Analysis: Energy Cascade, Local Isotropy, Usual Characteristic Scales Double Correlations and Typical Scales (Very Brief) Reminder About Kolmogorov Legacy, Structure Functions, "Modern" Scaling Approach Turbulent Kinetic-Energy Cascade in Fourier Space Advanced Analysis of Energy Transfers in Fourier Space The Background Triadic Interaction Nonlinear Energy Transfers and Triple Correlations Global and Detailed Conservation Properties Advanced Analysis of Triadic Transfers and Waleffe's Instability Assumption Further Discussions About the Instability Assumption Principle of Quasi-Normal Closures EDQNM for Isotropic Turbulence. Final Equations and Results Topological Analysis, Coherent Events, and Related Dynamics 97

4 3.6.1 Topological Analysis of Isotropic Turbulence Vortex Tube: Statistical Properties and Dynamics Bridging with Turbulence Dynamics and Intermittency Nonlinear Dynamics in the Physical Space On Vortices, Scales, Wavenumbers, and Wave Vectors - What are the Small Scales? Is There an Energy Cascade in the Physical Space? Ill Self-Amplification of Velocity Gradients Non-Gaussianity and Depletion of Nonlinearity What are the Proper Features of Three-Dimensional Navier-Stokes Turbulence? Influence of the Space Dimension: Introduction to d-dimensional Turbulence Pure 2D Turbulence and Dual Cascade Role of Pressure: A View of Burgers' Turbulence Sensitivity with Respect to Energy-Pumping Process: Turbulence with Hyperviscosity 122 Bibliography Incompressible Homogeneous Anisotropic Turbulence: Pure Rotation Physical and Numerical Experiments Brief Review of Experiments, More or Less in the Configuration of Homogeneous Turbulence Governing Equations Generals Important Nondimensional Numbers. Particular Regimes Advanced Analysis of Energy Transfer by DNS Balance of RST Equations. A Case Without "Production." New Tensorial Modeling Inertial Waves. Linear Regime Analysis of Deterministic Solutions Analysis of Statistical Moments. Phase Mixing and Low-Dimensional Manifolds Nonlinear Theory and Modeling: Wave Turbulence and EDQNM Bull Exact Nonlinear Equations. Wave Turbulence Second-Order Statistics: Identification of Relevant Spectral-Transfer Terms Toward a Rational Closure with an EDQNM Model Recovering the Asymptotic Theory of Inertial Wave Turbulence Fundamental Issues: Solved and Open Questions Eventual Two-Dimensionalization or Not 153

5 4.7.2 Meaning of the Slow Manifold Are Present DNS and LES Useful for Theoretical Prediction? Is the Pure Linear Theory Relevant? Provisional Conclusions About Scaling Laws and Quantified Values of Key Descriptors Coherent Structures, Description, and Dynamics % 159 Bibliography Incompressible Homogeneous Anisotropic Turbulence: Strain Main Observations Experiments for Turbulence in the Presence of Mean Strain. Kinematics of the Mean Flow Pure Irrotational Strain, Planar Distortion Axisymmetric (Irrotational) Strain The Most General Case for 3D Irrotational Case More General Distortions. Kinematics of Rotational Mean Flows First Approach in Physical Space to Irrotational Mean Flows Governing Equations, RST Balance, and Single-Point Modeling General Assessment of RST Single-Point Closures Linear Response of Turbulence to Irrotational Mean Strain The Fundamentals of Homogeneous RDT Qualitative Trends Induced by the Green's Function Results at Very Short Times. Relevance at Large Elapsed Times Final RDT Results for Mean Irrotational Strain General RDT Solution Linear Response of Turbulence to Axisymmetric Strain First Step Toward a Nonlinear Approach Nonhomogeneous Flow Cases. Coherent Structures in Strained Homogeneous Turbulence 187 Bibliography Incompressible Homogeneous Anisotropic Turbulence: Pure Shear Physical and Numerical Experiments: Kinetic Energy, RST, Length Scales, Anisotropy Experimental and Numerical Realizations Main Observations 193

6 6.2 Reynolds Stress Tensor and Analysis of Related Equations Rapid Distortion Theory: Equations, Solutions, Algebraic Growth Some Properties of RDT Solutions Relevance of Homogeneous RDT Evidence and Uncertainties for Nonlinear Evolution: Kinetic-Energy Exponential Growth Using Spectral Theory Vortical-Structure Dynamics in Homogeneous Shear Turbulence Self-Sustaining Turbulent Cycle in Homogeneous Sheared Turbulence Self-Sustaining Processes in Nonhomogeneous Sheared Turbulence: Exact Coherent States and Traveling-Wave Solutions Local Isotropy in Homogeneous Shear Flows 214 Bibliography Incompressible Homogeneous Anisotropic Turbulence: Buoyancy and Stable Stratification Observations, Propagating and Nonpropagating Motion. Collapse of Vertical Motion and Layering Simplified Equations, Using Navier-Stokes and Boussinesq Approximations, With Uniform Density Gradient Reynolds Stress Equations With Additional Scalar Variance and Flux First Look at Gravity Waves Eigenmode Decomposition. Physical Interpretation The Toroidal Cascade as a Strong Nonlinear Mechanism Explaining the Layering The Viewpoint of Modeling and Theory: RDT, Wave Turbulence, EDQNM Coherent Structures: Dynamics and Scaling of the Layered Flow, "Pancake" Dynamics, Instabilities Simplified Scaling Laws Pancake Structures, Zig-Zag, and Kelvin-Helmholtz Instabilities 237 Bibliography Coupled Effects: Rotation, Stratification, Strain, and Shear Rotating^tratified Turbulence Basic Triadic Interaction for Quasi-Geostrophic Cascade About the Case With Small but Nonnegligible f/n Ratio 247

7 xii Contents The QG Model Revisited. Discussion Rotation or Stratification With Mean Shear The Rotating-Shear-Flow Case The Stratified-Shear-Flow Case Analogies and Differences Between the Two * Cases Shear, Rotation, and Stratification. RDT Approach to Baroclinic Instability Physical Context, the Mean Flow RDT Equations Elliptical Flow Instability From "Homogeneous" RDT Axisymmetric Strain With Rotation Relevance of RDT and WKB RDT Variants for Analysis of Classical Instabilities 266 Bibliography Compressible Homogeneous Isotropic Turbulence Introduction to Modal Decomposition of Turbulent Fluctuations Statement of the Problem Kovasznay's Linear Decomposition Weakly Nonlinear Corrected Kovasznay Decomposition Helmholtz Decomposition and Its Extension Bridging Between Kovasznay and Helmholtz Decomposition On the Feasibility of a Fully General Modal Decomposition Mean-Flow Equations, Reynolds Stress Tensor, and Energy Balance in Compressible Flows Arbitrary Flows Simplifications in the Isotropic Case Quasi-Isentropic Isotropic Turbulence: Physical and Spectral Descriptions Different Regimes in Compressible Turbulence Quasi-Isentropic Turbulent Regime Weakly Compressible Thermal Regime Nonlinear Subsonic Regime Supersonic Regime Structures in the Physical Space Turbulent Structures in Compressible Turbulence A Probabilistic Model for Shocklets 321 Bibliography 324

8 XIII 10 Compressible Homogeneous Anisotropic Turbulence Effects of Compressibility in Free-Shear Flows. Observations RST Equations and Single-Point Modeling Preliminary Linear Approach: Pressure-Released Limit and Irrotational Strain A General Quasi-Isentropic Approach to Homogeneous Compressible Shear Flows Governing Equations and Admissible Mean Flows Properties of Admissible Mean Flows Linear Response in Fourier Space. Governing Equations Incompressible Turbulence With Compressible Mean-Flow Effects: Compressed Turbulence Compressible Turbulence in the Presence of Pure Plane Shear Qualitative Results Discussion of Results Toward a Complete Linear Solution Perspectives and Open Issues Homogeneous Shear Flows Perspectives Toward Inhomogeneous Shear Flows Topological Analysis, Coherent Events and Related Dynamics Nonlinear Dynamics in the Subsonic Regime Topological Analysis of the Rate-of-Strain Tensor Vortices, Shocklets, and Dynamics 355 Bibliography Isotropic Turbulence-Shock Interaction Brief Survey of Existing Interaction Regimes Destructive Interactions Nondestructive Interactions Linear Nondestructive Interaction Shock Modeling and Jump Relations Introduction to the Linear Interaction Approximation Theory Vortical Turbulence-Shock Interaction Acoustic Turbulence-Shock Interaction Mixed Turbulence-Shock Interaction On the Use of RDT for Linear Nondestructive Interaction Modeling Nonlinear Nondestructive Interactions Turbulent Jump Conditions for the Mean Field Jump Conditions for an Incident Isotropic Turbulence 381 Bibliography 382

9 xiv Contents 12 Linear Interaction Approximation for Shock-Perturbation Interaction Shock Description and Emitted Fluctuating Field Calculation of Wave Vectors of Emitted Waves General Incident Entropy and Vorticity Waves Incident Acoustic Waves Calculation of Amplitude of Emitted Waves General Decompositions of the Perturbation Field Calculation of Amplitudes of Emitted Waves Reconstruction of the Second-Order Moments Case of a Single Incident Wave Case of an Incident Turbulent Isotropic Field A posteriori Assessment of LIA 403 Bibliography Linear Theories. From Rapid Distortion Theory to WKB Variants Rapid Distortion Theory for Homogeneous Turbulence Solutions for ODEs in Orthonormal Fixed Frames of Reference Using Solenoidal Modes for a Green's Function with a Minimal Number of Components Prediction of Statistical Quantities RDT for Two-Time Correlations Zonal RDT and Short-Wave Stability Analysis Irrotational Mean Flows Zonal Stability Analysis With Disturbances Localized Around Base-Flow Trajectories Using Characteristic Rays Related to Waves Instead of Trajectories Application to Statistical Modeling of Inhomogeneous Turbulence Transport Models Along Mean Trajectories Semiempirical Transport "Shell" Models Conclusions, Recent Perspectives Including Subgrid-Scale Dynamics Modeling 419 Bibliography Anisotropic Nonlinear Triadic Closures Canonical HIT, Dependence on the Eddy Damping for the Scaling of the Energy Spectrum in the Inertial Range 423

10 xv 14.2 Solving the Linear Operator to Account for Strong Anisotropy Random and Averaged Nonlinear Green's Functions Homogeneous Anisotropic Turbulence with a Mean Flow A General EDQN Closure. Different Levels of Markovianization EDQNM2 Version A Simplified Version: EDQNM The Most Sophisticated Version: EDQNM Application of Three Versions to the Rotating Turbulence Other Cases of Flows With and Without Production Effects of the Distorting Mean Flow Flows Without Production Combining Strong and Weak Turbulence Role of the Nonlinear Decorrelation Time Scale Connection with Self-Consistent Theories: Single Time or Two Time? Applications to Weak Anisotropy A Self-Consistent Representation of the Spectral Tensor for Weak Anisotropy Brief Discussion of Concepts, Results, and Open Issues Open Numerical Problems 446 Bibliography Conclusions and Perspectives Homogenization of Turbulence. Local or Global Homogeneity? Physical Space or Fourier Space? Linear Theory, "Homogeneous" RDT, WKB Variants, and LIA Multipoint Closures for Weak and Strong Turbulence The Wave-Turbulence Limit Coexistence of Weak and Strong Turbulence, With Interactions Revisiting Basic Assumptions in MPC Structure Formation, Structuring Effects, and Individual Coherent Structures Anisotropy Including Dimensionality, a Main Theme Deriving Practical Models 459 Bibliography 460 Index 461 *

ATMOSPHERIC AND OCEANIC FLUID DYNAMICS

ATMOSPHERIC AND OCEANIC FLUID DYNAMICS ATMOSPHERIC AND OCEANIC FLUID DYNAMICS Fundamentals and Large-scale Circulation G E O F F R E Y K. V A L L I S Princeton University, New Jersey CAMBRIDGE UNIVERSITY PRESS An asterisk indicates more advanced

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

The Effect of Rapid Rotation & Stratification on Homogeneous Turbulent Shear Flows via Linear Kinematic Simulations

The Effect of Rapid Rotation & Stratification on Homogeneous Turbulent Shear Flows via Linear Kinematic Simulations The Effect of Rapid Rotation & ratification on Homogeneous Turbulent Shear Flows via Linear Kinematic Simulations Aaron Wienkers 1 Introduction The evolution and statistics of developed turbulence quite

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

Detailed Outline, M E 521: Foundations of Fluid Mechanics I

Detailed Outline, M E 521: Foundations of Fluid Mechanics I Detailed Outline, M E 521: Foundations of Fluid Mechanics I I. Introduction and Review A. Notation 1. Vectors 2. Second-order tensors 3. Volume vs. velocity 4. Del operator B. Chapter 1: Review of Basic

More information

MECHANICS OF FLUIDS AND TRANSPORT PROCESSES Editors: R.I. Moreau and G.rE. Oravas

MECHANICS OF FLUIDS AND TRANSPORT PROCESSES Editors: R.I. Moreau and G.rE. Oravas Turbulence in fluids MECHANICS OF FLUIDS AND TRANSPORT PROCESSES Editors: R.I. Moreau and G.rE. Oravas J. Happel and H. Brenner, Low Reynolds number hydrodynamics. 1983. ISBN 90-247-2877-0. S. Zahorski,

More information

Institute for Computer Applications in Science and Engineering. NASA Langley Research Center, Hampton, VA 23681, USA. Jean-Pierre Bertoglio

Institute for Computer Applications in Science and Engineering. NASA Langley Research Center, Hampton, VA 23681, USA. Jean-Pierre Bertoglio Radiative energy transfer in compressible turbulence Francoise Bataille y and Ye hou y Institute for Computer Applications in Science and Engineering NASA Langley Research Center, Hampton, VA 68, USA Jean-Pierre

More information

2 The governing equations. 3 Statistical description of turbulence. 4 Turbulence modeling. 5 Turbulent wall bounded flows

2 The governing equations. 3 Statistical description of turbulence. 4 Turbulence modeling. 5 Turbulent wall bounded flows 1 The turbulence fact : Definition, observations an universal features of turbulence 2 The governing equations PART VII Homogeneous Shear Flows 3 Statistical escription of turbulence 4 Turbulence moeling

More information

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream Turbulence injection of a water jet into a water tank Reynolds number EF$ 1. There is no clear definition and range of turbulence (multi-scale phenomena) 2. Reynolds number is an indicator for turbulence

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Nonlinear Problems of Elasticity

Nonlinear Problems of Elasticity Stuart S. Antman Nonlinear Problems of Elasticity With 105 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Contents Preface vn Chapter I. Background

More information

Natalia Tronko S.V.Nazarenko S. Galtier

Natalia Tronko S.V.Nazarenko S. Galtier IPP Garching, ESF Exploratory Workshop Natalia Tronko University of York, York Plasma Institute In collaboration with S.V.Nazarenko University of Warwick S. Galtier University of Paris XI Outline Motivations:

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

Energy Transfer and Triadic Interactions in Compressible Turbulence

Energy Transfer and Triadic Interactions in Compressible Turbulence NASA/CR-97-0649 ICASE Report No. 97-6 Energy Transfer and Triadic Interactions in Compressible Turbulence F. Bataille INSA, Centre for Thermique de Lyon, France Ye Zhou ICASE Jean-Pierre Bertoglio Laboratoire

More information

6 VORTICITY DYNAMICS 41

6 VORTICITY DYNAMICS 41 6 VORTICITY DYNAMICS 41 6 VORTICITY DYNAMICS As mentioned in the introduction, turbulence is rotational and characterized by large uctuations in vorticity. In this section we would like to identify some

More information

in this web service Cambridge University Press

in this web service Cambridge University Press CONTINUUM MECHANICS This is a modern textbook for courses in continuum mechanics. It provides both the theoretical framework and the numerical methods required to model the behavior of continuous materials.

More information

Max Planck Institut für Plasmaphysik

Max Planck Institut für Plasmaphysik ASDEX Upgrade Max Planck Institut für Plasmaphysik 2D Fluid Turbulence Florian Merz Seminar on Turbulence, 08.09.05 2D turbulence? strictly speaking, there are no two-dimensional flows in nature approximately

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

Lecture 2. Turbulent Flow

Lecture 2. Turbulent Flow Lecture 2. Turbulent Flow Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of this turbulent water jet. If L is the size of the largest eddies, only very small

More information

The Nonlinear Schrodinger Equation

The Nonlinear Schrodinger Equation Catherine Sulem Pierre-Louis Sulem The Nonlinear Schrodinger Equation Self-Focusing and Wave Collapse Springer Preface v I Basic Framework 1 1 The Physical Context 3 1.1 Weakly Nonlinear Dispersive Waves

More information

CVS filtering to study turbulent mixing

CVS filtering to study turbulent mixing CVS filtering to study turbulent mixing Marie Farge, LMD-CNRS, ENS, Paris Kai Schneider, CMI, Université de Provence, Marseille Carsten Beta, LMD-CNRS, ENS, Paris Jori Ruppert-Felsot, LMD-CNRS, ENS, Paris

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly 1. Introduction to Turbulent Flows Coverage of this section: Definition of Turbulence Features of Turbulent Flows Numerical Modelling Challenges History of Turbulence Modelling 1 1.1 Definition of Turbulence

More information

Statistical studies of turbulent flows: self-similarity, intermittency, and structure visualization

Statistical studies of turbulent flows: self-similarity, intermittency, and structure visualization Statistical studies of turbulent flows: self-similarity, intermittency, and structure visualization P.D. Mininni Departamento de Física, FCEyN, UBA and CONICET, Argentina and National Center for Atmospheric

More information

INTERNAL GRAVITY WAVES

INTERNAL GRAVITY WAVES INTERNAL GRAVITY WAVES B. R. Sutherland Departments of Physics and of Earth&Atmospheric Sciences University of Alberta Contents Preface List of Tables vii xi 1 Stratified Fluids and Waves 1 1.1 Introduction

More information

Amplification of magnetic fields in core collapse

Amplification of magnetic fields in core collapse Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

FUNDAMENTALS OF OCEAN ACOUSTICS

FUNDAMENTALS OF OCEAN ACOUSTICS FUNDAMENTALS OF OCEAN ACOUSTICS Third Edition L.M. Brekhovskikh Yu.P. Lysanov Moscow, Russia With 120 Figures Springer Contents Preface to the Third Edition Preface to the Second Edition Preface to the

More information

Turbulence: Basic Physics and Engineering Modeling

Turbulence: Basic Physics and Engineering Modeling DEPARTMENT OF ENERGETICS Turbulence: Basic Physics and Engineering Modeling Numerical Heat Transfer Pietro Asinari, PhD Spring 2007, TOP UIC Program: The Master of Science Degree of the University of Illinois

More information

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size L Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size 0.01L or smaller are subject to substantial viscous

More information

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition Foreword Preface Preface of the First Edition xiii xv xvii Parti Fundamentals 1. Introduction 1.1 Objective 3 1.2 Importance of Geophysical Fluid Dynamics 4 1.3 Distinguishing Attributes of Geophysical

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

Locality of Energy Transfer

Locality of Energy Transfer (E) Locality of Energy Transfer See T & L, Section 8.2; U. Frisch, Section 7.3 The Essence of the Matter We have seen that energy is transferred from scales >`to scales

More information

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing.

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. Lecture 14 Turbulent Combustion 1 We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. In a fluid flow, turbulence is characterized by fluctuations of

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Analytical Solution Techniques J. Kevorkian University of Washington Wadsworth & Brooks/Cole Advanced Books & Software Pacific Grove, California C H A P T E R 1 The Diffusion

More information

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD)

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) Vortex Dynamos Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) An introduction to vortices Vortices are ubiquitous in geophysical and astrophysical fluid mechanics (stratification & rotation).

More information

Topics in Fluid Dynamics: Classical physics and recent mathematics

Topics in Fluid Dynamics: Classical physics and recent mathematics Topics in Fluid Dynamics: Classical physics and recent mathematics Toan T. Nguyen 1,2 Penn State University Graduate Student Seminar @ PSU Jan 18th, 2018 1 Homepage: http://math.psu.edu/nguyen 2 Math blog:

More information

Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman

Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman 1. Characteristics of the Roughness Sub layer With well understood caveats, the time averaged statistics of flow in the atmospheric

More information

EXACT SOLUTIONS TO THE NAVIER-STOKES EQUATION FOR AN INCOMPRESSIBLE FLOW FROM THE INTERPRETATION OF THE SCHRÖDINGER WAVE FUNCTION

EXACT SOLUTIONS TO THE NAVIER-STOKES EQUATION FOR AN INCOMPRESSIBLE FLOW FROM THE INTERPRETATION OF THE SCHRÖDINGER WAVE FUNCTION EXACT SOLUTIONS TO THE NAVIER-STOKES EQUATION FOR AN INCOMPRESSIBLE FLOW FROM THE INTERPRETATION OF THE SCHRÖDINGER WAVE FUNCTION Vladimir V. KULISH & José L. LAGE School of Mechanical & Aerospace Engineering,

More information

Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto

Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto Nonequilibrium Dynamics in Astrophysics and Material Science 2011-11-02 @ YITP, Kyoto Multi-scale coherent structures and their role in the Richardson cascade of turbulence Susumu Goto (Okayama Univ.)

More information

Passive Scalars in Stratified Turbulence

Passive Scalars in Stratified Turbulence GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:10.1029/, Passive Scalars in Stratified Turbulence G. Brethouwer Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden E. Lindborg Linné Flow Centre,

More information

Mixing in Highly Compressible Turbulence

Mixing in Highly Compressible Turbulence Mixing in Highly Compressible Turbulence Liubin Pan Evan Scannapieco School of Earth and Space Exploration Arizona State University Astrophysical motivation: Heavy elements from supernova and stellar winds

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

Instabilities due a vortex at a density interface: gravitational and centrifugal effects

Instabilities due a vortex at a density interface: gravitational and centrifugal effects Instabilities due a vortex at a density interface: gravitational and centrifugal effects Harish N Dixit and Rama Govindarajan Abstract A vortex placed at an initially straight density interface winds it

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill

More information

Prototype Instabilities

Prototype Instabilities Prototype Instabilities David Randall Introduction Broadly speaking, a growing atmospheric disturbance can draw its kinetic energy from two possible sources: the kinetic and available potential energies

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Validation of a Pseudo-Sound Theory for the Pressure- Dilatation in DNS of Compressible Turbulence

Validation of a Pseudo-Sound Theory for the Pressure- Dilatation in DNS of Compressible Turbulence NASA/CR-201748 ICASE Report No. 97-53 Validation of a Pseudo-Sound Theory for the Pressure- Dilatation in DNS of Compressible Turbulence J. R. Ristorcelli ICASE and G. A. Blaisdell Purdue University Institute

More information

36. TURBULENCE. Patriotism is the last refuge of a scoundrel. - Samuel Johnson

36. TURBULENCE. Patriotism is the last refuge of a scoundrel. - Samuel Johnson 36. TURBULENCE Patriotism is the last refuge of a scoundrel. - Samuel Johnson Suppose you set up an experiment in which you can control all the mean parameters. An example might be steady flow through

More information

arxiv: v1 [physics.flu-dyn] 27 Aug 2014

arxiv: v1 [physics.flu-dyn] 27 Aug 2014 arxiv:148.6483v1 [physics.flu-dyn] 27 Aug 214 Inverse cascade and symmetry breaking in rapidly-rotating Boussinesq convection B. Favier, 1, a) L.J. Silvers, 1 and M.R.E. Proctor 2 1) Centre for Mathematical

More information

Lecture 3: The Navier-Stokes Equations: Topological aspects

Lecture 3: The Navier-Stokes Equations: Topological aspects Lecture 3: The Navier-Stokes Equations: Topological aspects September 9, 2015 1 Goal Topology is the branch of math wich studies shape-changing objects; objects which can transform one into another without

More information

Fundamentals of Aerodynamits

Fundamentals of Aerodynamits Fundamentals of Aerodynamits Fifth Edition in SI Units John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland

More information

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks 2292-13 School and Conference on Analytical and Computational Astrophysics 14-25 November, 2011 Angular momentum transport in accretion disks Gianluigi Bodo Osservatorio Astronomico, Torino Italy Angular

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 30 2007 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

(U c. t)/b (U t)/b

(U c. t)/b (U t)/b DYNAMICAL MODELING OF THE LARGE-SCALE MOTION OF A PLANAR TURBULENT JET USING POD MODES. S. Gordeyev 1 and F. O. Thomas 1 University of Notre Dame, Notre Dame, USA University of Notre Dame, Notre Dame,

More information

Vortices in accretion discs: formation process and dynamical evolution

Vortices in accretion discs: formation process and dynamical evolution Vortices in accretion discs: formation process and dynamical evolution Geoffroy Lesur DAMTP (Cambridge UK) LAOG (Grenoble) John Papaloizou Sijme-Jan Paardekooper Giant vortex in Naruto straight (Japan)

More information

Dynamical modeling of sub-grid scales in 2D turbulence

Dynamical modeling of sub-grid scales in 2D turbulence Physica D 142 (2000) 231 253 Dynamical modeling of sub-grid scales in 2D turbulence Jean-Philippe Laval a,, Bérengère Dubrulle b,c, Sergey Nazarenko d,e a CEA/DAPNIA/SAp L Orme des Merisiers, 709, F-91191

More information

FUNDAMENTALS OF AERODYNAMICS

FUNDAMENTALS OF AERODYNAMICS *A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information

Turbulent Rankine Vortices

Turbulent Rankine Vortices Turbulent Rankine Vortices Roger Kingdon April 2008 Turbulent Rankine Vortices Overview of key results in the theory of turbulence Motivation for a fresh perspective on turbulence The Rankine vortex CFD

More information

Several forms of the equations of motion

Several forms of the equations of motion Chapter 6 Several forms of the equations of motion 6.1 The Navier-Stokes equations Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

A simple subgrid-scale model for astrophysical turbulence

A simple subgrid-scale model for astrophysical turbulence CfCA User Meeting NAOJ, 29-30 November 2016 A simple subgrid-scale model for astrophysical turbulence Nobumitsu Yokoi Institute of Industrial Science (IIS), Univ. of Tokyo Collaborators Axel Brandenburg

More information

Lagrangian intermittency in drift-wave turbulence. Wouter Bos

Lagrangian intermittency in drift-wave turbulence. Wouter Bos Lagrangian intermittency in drift-wave turbulence Wouter Bos LMFA, Ecole Centrale de Lyon, Turbulence & Stability Team Acknowledgments Benjamin Kadoch, Kai Schneider, Laurent Chevillard, Julian Scott,

More information

Turbulent boundary layer

Turbulent boundary layer Turbulent boundary layer 0. Are they so different from laminar flows? 1. Three main effects of a solid wall 2. Statistical description: equations & results 3. Mean velocity field: classical asymptotic

More information

The effect of compressibility on turbulent shear flow: a rapid-distortion-theory and direct-numerical-simulation study

The effect of compressibility on turbulent shear flow: a rapid-distortion-theory and direct-numerical-simulation study J. Fluid Mech. (1997), vol. 330, pp. 307 338 Copyright c 1997 Cambridge University Press 307 The effect of compressibility on turbulent shear flow: a rapid-distortion-theory and direct-numerical-simulation

More information

arxiv: v1 [physics.flu-dyn] 15 Sep 2014

arxiv: v1 [physics.flu-dyn] 15 Sep 2014 Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations arxiv:1409.4254v1 [physics.flu-dyn] 15 Sep 2014 D. Rosenberg 1, A. Pouquet 2,

More information

Turbulence in the Atmosphere and Oceans

Turbulence in the Atmosphere and Oceans Turbulence in the Atmosphere and Oceans Instructors: Raffaele Ferrari and Glenn Flierl Course description The course will present the phenomena, theory, and modeling of turbulence in the Earth s oceans

More information

Continuum Mechanics and Theory of Materials

Continuum Mechanics and Theory of Materials Peter Haupt Continuum Mechanics and Theory of Materials Translated from German by Joan A. Kurth Second Edition With 91 Figures, Springer Contents Introduction 1 1 Kinematics 7 1. 1 Material Bodies / 7

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Spectral analysis of the transition to turbulence from a dipole in stratified fluid

Spectral analysis of the transition to turbulence from a dipole in stratified fluid J. Fluid Mech. (212), vol. 713, pp. 86 18. c Cambridge University Press 212 86 doi:1.117/jfm.212.437 Spectral analysis of the transition to turbulence from a dipole in stratified fluid Pierre Augier, Jean-Marc

More information

II Relationship of Classical Theory to Quantum Theory A Quantum mean occupation number

II Relationship of Classical Theory to Quantum Theory A Quantum mean occupation number Appendix B Some Unifying Concepts Version 04.AppB.11.1K [including mostly Chapters 1 through 11] by Kip [This appendix is in the very early stages of development] I Physics as Geometry A Newtonian Physics

More information

Isotropic homogeneous 3D turbulence

Isotropic homogeneous 3D turbulence Chapter 6 Isotropic homogeneous 3D turbulence Turbulence was recognized as a distinct fluid behavior by Leonardo da Vinci more than 500 years ago. It is Leonardo who termed such motions turbolenze, and

More information

PHYSFLU - Physics of Fluids

PHYSFLU - Physics of Fluids Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2018 BACHELOR'S DEGREE IN ENGINEERING PHYSICS

More information

On the decay of two-dimensional homogeneous turbulence

On the decay of two-dimensional homogeneous turbulence On the decay of two-dimensional homogeneous turbulence J. R. Chasnov a) The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Received 19 June 1996; accepted 3 September

More information

WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA

WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA AKIRA ISHIMARU UNIVERSITY of WASHINGTON IEEE Antennas & Propagation Society, Sponsor IEEE PRESS The Institute of Electrical and Electronics Engineers, Inc.

More information

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical Outline Geurts Book Department of Fluid Mechanics, Budapest University of Technology and Economics Spring 2013 Outline Outline Geurts Book 1 Geurts Book Origin This lecture is strongly based on the book:

More information

Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell

Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell PHYSICS OF PLASMAS VOLUME 11, NUMBER 11 NOVEMBER 2004 Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell Fujihiro Hamba a) Institute of Industrial Science,

More information

arxiv: v2 [physics.class-ph] 4 Apr 2009

arxiv: v2 [physics.class-ph] 4 Apr 2009 arxiv:0903.4949v2 [physics.class-ph] 4 Apr 2009 Geometric evolution of the Reynolds stress tensor in three-dimensional turbulence Sergey Gavrilyuk and Henri Gouin Abstract The dynamics of the Reynolds

More information

Turbulence and Energy Transfer in Strongly-Stratified Flows

Turbulence and Energy Transfer in Strongly-Stratified Flows Turbulence and Energy Transfer in Strongly-Stratified Flows James J. Riley University of Washington Collaborators: Steve debruynkops (UMass) Kraig Winters (Scripps IO) Erik Lindborg (KTH) First IMS Turbulence

More information

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability Jeffrey B. Weiss; notes by Duncan Hewitt and Pedram Hassanzadeh June 18, 2012 1 Introduction 1.1 What

More information

Simulations for Enhancing Aerodynamic Designs

Simulations for Enhancing Aerodynamic Designs Simulations for Enhancing Aerodynamic Designs 2. Governing Equations and Turbulence Models by Dr. KANNAN B T, M.E (Aero), M.B.A (Airline & Airport), PhD (Aerospace Engg), Grad.Ae.S.I, M.I.E, M.I.A.Eng,

More information

Dimensionality influence on energy, enstrophy and passive scalar transport.

Dimensionality influence on energy, enstrophy and passive scalar transport. Dimensionality influence on energy, enstrophy and passive scalar transport. M. Iovieno, L. Ducasse, S. Di Savino, L. Gallana, D. Tordella 1 The advection of a passive substance by a turbulent flow is important

More information

Theory of Elasticity. <gl Spri ringer. and Thermal Stresses. Explanations, Problems and Solutions. Jozef Ignaczak. Naotake Noda Yoshinobu Tanigawa

Theory of Elasticity. <gl Spri ringer. and Thermal Stresses. Explanations, Problems and Solutions. Jozef Ignaczak. Naotake Noda Yoshinobu Tanigawa M. Reza Eslami Richard B. Hetnarski Jozef Ignaczak Naobumi Sumi Naotake Noda Yoshinobu Tanigawa Theory of Elasticity and Thermal Stresses Explanations, Problems and Solutions

More information

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document. Dobra, T., Lawrie, A., & Dalziel, S. B. (2016). Nonlinear Interactions of Two Incident Internal Waves. 1-8. Paper presented at VIIIth International Symposium on Stratified Flows, San Diego, United States.

More information

Dynamo on the OMEGA laser and kinetic problems of proton radiography

Dynamo on the OMEGA laser and kinetic problems of proton radiography Dynamo on the OMEGA laser and kinetic problems of proton radiography Archie Bott, Alex Rigby, Tom White, Petros Tzeferacos, Don Lamb, Gianluca Gregori, Alex Schekochihin (and many others ) 2 th August

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

Kovasznay Mode Decomposition of Velocity- Temperature Correlation in Canonical Shock-Turbulence Interaction

Kovasznay Mode Decomposition of Velocity- Temperature Correlation in Canonical Shock-Turbulence Interaction The published version can be found at: http://dx.doi.org/.7/s494-6-9722-9 http://link.springer.com/article/.7%2fs494-6-9722-9 Noname manuscript No. (will be inserted by the editor) Kovasznay Mode Decomposition

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 20 2011 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

Wall turbulence with arbitrary mean velocity profiles

Wall turbulence with arbitrary mean velocity profiles Center for Turbulence Research Annual Research Briefs 7 Wall turbulence with arbitrary mean velocity profiles By J. Jiménez. Motivation The original motivation for this work was an attempt to shorten the

More information

Course Syllabus: Continuum Mechanics - ME 212A

Course Syllabus: Continuum Mechanics - ME 212A Course Syllabus: Continuum Mechanics - ME 212A Division Course Number Course Title Academic Semester Physical Science and Engineering Division ME 212A Continuum Mechanics Fall Academic Year 2017/2018 Semester

More information

RECONSTRUCTION OF TURBULENT FLUCTUATIONS FOR HYBRID RANS/LES SIMULATIONS USING A SYNTHETIC-EDDY METHOD

RECONSTRUCTION OF TURBULENT FLUCTUATIONS FOR HYBRID RANS/LES SIMULATIONS USING A SYNTHETIC-EDDY METHOD RECONSTRUCTION OF TURBULENT FLUCTUATIONS FOR HYBRID RANS/LES SIMULATIONS USING A SYNTHETIC-EDDY METHOD N. Jarrin 1, A. Revell 1, R. Prosser 1 and D. Laurence 1,2 1 School of MACE, the University of Manchester,

More information

The interaction of vorticity and rate-of-strain in homogeneous sheared turbulence

The interaction of vorticity and rate-of-strain in homogeneous sheared turbulence PHYSICS OF FLUIDS VOLUME 12, NUMBER 4 APRIL 2000 The interaction of vorticity and rate-of-strain in homogeneous sheared turbulence K. K. Nomura a) and P. J. Diamessis Department of Mechanical and Aerospace

More information

Microstructural Randomness and Scaling in Mechanics of Materials. Martin Ostoja-Starzewski. University of Illinois at Urbana-Champaign

Microstructural Randomness and Scaling in Mechanics of Materials. Martin Ostoja-Starzewski. University of Illinois at Urbana-Champaign Microstructural Randomness and Scaling in Mechanics of Materials Martin Ostoja-Starzewski University of Illinois at Urbana-Champaign Contents Preface ix 1. Randomness versus determinism ix 2. Randomness

More information

CHAPTER 11: REYNOLDS-STRESS AND RELATED MODELS. Turbulent Flows. Stephen B. Pope Cambridge University Press, 2000 c Stephen B. Pope y + < 1.

CHAPTER 11: REYNOLDS-STRESS AND RELATED MODELS. Turbulent Flows. Stephen B. Pope Cambridge University Press, 2000 c Stephen B. Pope y + < 1. 1/3 η 1C 2C, axi 1/6 2C y + < 1 axi, ξ > 0 y + 7 axi, ξ < 0 log-law region iso ξ -1/6 0 1/6 1/3 Figure 11.1: The Lumley triangle on the plane of the invariants ξ and η of the Reynolds-stress anisotropy

More information