Before we consider two canonical turbulent flows we need a general description of turbulence.

Size: px
Start display at page:

Download "Before we consider two canonical turbulent flows we need a general description of turbulence."

Transcription

1 Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent flow is to consider it to be subject to two types of random movement: one on the scale of the thermal motion of molecules and one on the scale (macroscopic) of fluid velocity fluctuations (eddies). The main difference between these two motion types is: 1. Scale the turbulent fluctuation scale is typical molecular mean free path. 2. Continuity in a turbulent fluctuation some chunk of fluid must be pushed out of the way for a turbulent fluctuation to occur (and similarly, fluid must replace the void left by the mass of fluid carried in the turbulent fluctuation). How do we know a fluid is turbulent? Symptoms of turbulence: 1

2 2 Canonical Turbulent Flows Diffusive (more so than due to molecular diffusion, much much more so...). Unsteady Random (there is coherence in turbulence so it is not truly random). Wide range of scales of motion Consider the following: The Energy Spectrum Big whirls have little whirls which feed on their velocity; and little whirls have lesser whirls, and so on to viscosity. L.F. Richardson, c The Cascade Picture The energy of an eddy u 2 where u is the typical (read mean) velocity at a location.

3 Canonical Turbulent Flows 3 Let s assume that an eddy passes all of its energy to smaller scales in the time it takes the eddy to rotate approximately one revolution, known as the eddy turnover time. Then the rate of loss of energy to smaller scales u2 T e Where T e is the eddy turnover time L u eddy). (L is the diameter, or length scale, of the typical Therefore the rate of loss of energy to the smallest scales u3 L turbulent kinetic energy. = ε = dissipation rate of If the flow is in equilibrium (meaning the rate of the production of turbulence is equal to the rate of the dissipation of turbulence locally), this energy is passed on unattenuated by inviscid nonlinear interactions (e.g., vortex stretching, ω u where ω = u is the vorticity vector and u is the velocity vector) to smaller scales where it is ultimately dissipated by viscosity to heat, in which case we can write: u 3 L = ε = dissipation rate of turbulent kinetic energy (2.1) a classic scaling estimate for the dissipation rate. What is the smallest length scale of turbulence? It is set by the kinematic viscosity, ν, and the turbulent kinetic energy transfer rate = turbulent kinetic energy dissipation rate = ε in equilibrium flows. Applying dimensional analysis we find: l ε a ν b [L] = [L2 ] [L 2 ] [T 3 ] [T ] for [L] 1 = 2a +2b for [T ] 0 = 3a + b 1 = 4a a = 1 4 b = 3 4 [ ] ν l = ε 1/4 ν 3/4 3 1/4 = = η ε

4 4 Canonical Turbulent Flows Where η is known as the Kolmogorov length scale - the smallest length scale of a turbulent eddy. What is the ratio of the largest length scale, L, to the smallest, η? L η ( L ( ν 3 ) 1/4 Lu3/4 Lu ν 3/4 L 1/4 ν ε ) 3/4 Re 3/4 L E.g., to computationally resolve a turbulent flow (direct numerical simulation) we must resolve η x η where x is the computational grid spacing, over the whole flow domain L. Hence the number of grid points required in any one coordinate direction to fully resolve the flow is N = L x L η Re3/4 L. Therefore in 3-D we would need O(N 3 ) Re 9/4 L points. In Cayuga Lake L 1000m u 10 1 m/s ν 10 6 m/s. Therefore Re L 10 8 N or 1 billion billion points! That is order 1 billion Gigabytes of memory just to store your data at one time step, or 1 million Terabytes or 1thousandPetabytes or what is known as an Exabyte. Not happening! Today (2017) the typical largest simulations are run on grids of points, or O(10 12 ) points, and this is extremely rare! Hence the only way to determine exactly how even a moderate Reynolds number flow behaves is to make measurements! And instead of looking at all this data in an instantaneous sense we take a stochastic approach.

5 Canonical Turbulent Flows Reynolds Decomposition Let u = u + u (2.2) where u is the temporal mean component and u is the fluctuating component. This decomposition is known as the Reynolds decomposition after Osborne Reynolds, who first proposed it as a statistical approach to aid in the study of turbulence. The definition of u is Therefore u = 1 T T 0 udt (2.3) u = 0 u = u uu = 0 But u u 0 O.K., to get a feel for the analysis of a turbulent signal let s consider some data. The signal below is the axial-component of velocity measured downstream from a turbulent round jet on the jet axis. The signal was collected with a one-component laser Doppler velocimeter (LDV), which basically measures the Doppler shift of light due to the motion of small seed particles in the direction of a light ray. This is somewhat analogous to an acoustic Doppler velocimeter (ADV),which we will discuss in detail. The signal was sampled at f s = 100 Hz for seconds. Only 5 seconds of the signal is shown along with the u = m/s (dashed line). Following Reynolds decomposition for this signal we can determine u 2 = m 2 /s 2. The square root of this value, u 2 = m/s, is often reported as a measure of the mean turbulence intensity level for a single velocity component. For those of you who recall your statistics this is essentially

6 6 Canonical Turbulent Flows u (m/s) t (s) the standard deviation hence we expect about 63% of the velocity fluctuations to be less than 5.42 cm/s and 95% of the velocity fluctuations to be less than 10.8 cm/s if the statistics are normally distributed which is a good assumption for the turbulent round jet. Looking at the figure we see this looks about right for the limited portion of the data we can see. In fact, let s verify the assumption of a normally distributed data, how? Look at the histogram! Counts Data Gaussian u (m/s) Now, let s look at the spectrum (determined by averaging records of length of 512 points) Note for completeness I have plotted the entire spectrum (S uu ) where the negative frequencies are on the right half of the plot (e.g., between 50 and 100 Hz - since the plot is log-log the plot does not appear symmetric but the data is!). Normally we would only plot G uu (the positive frequencies) so the symmetric negative frequency data would not be shown.

7 Canonical Turbulent Flows S uu (m 2 /s 3 ) f (Hz) G uu (m 2 /s 3 ) f (Hz) Of course, just to be confusing, it is entirely common to plot just the positive frequencies of S uu (i.e., without the factor of two on the amplitudes of G uu ) henceyoumust be careful to understand what other researchers have done when you are looking at spectra! We see a well developed -5/3 region, known as the inertial subrange, which connects the low frequency region where the turbulence is produced to the high frequency region where the turbulence is dissipated. Now our data set does not really indicate the turbulence dissipation region as either instrument noise contaminates the signal at the highest frequencies - burying the actual turbulence signal which is decaying, or we have not sampled fast enough to resolve the dissipative frequencies. Looking at our data it appears to be a bit of both as there is evidence of the spectra beginning to flatten out at the highest frequencies, an indication of noise starting to dominate. Note that the integral of the spectrum yields the variance ( m 2 /s 2 ). We can get a rough estimate of where

8 8 Canonical Turbulent Flows the dissipation region occurs by estimating the Kolmogorov length scale as η = 0.1mm (typical smallest η in water in laboratory flows we will discuss how to better estimate this value later) and noting that the mean flow is moving at about 0.15 m/s therefore the smallest scales are crossing the measurement volume in a time τ = η/u =0.001 mm/0.15 m/s = s, or at a rate of 150 Hz. We would need to sample at twice this rate to resolve 150 Hz, right?! (Nyquist criteria). Hence by sampling at 100 Hz (and resolving only down to 50 Hz due to Nyquist criteria) we would expect to see perhaps just the beginning of the dissipation region but not much. The autocorrelation function (averaging records of length of 512 points) is shown below and on the top of the next page. We see that for the first 0.1 s or so the signal is strongly correlated to itself and this correlation then rapidly decays. After this, the signal slowly decays to a weakly negative correlation (second plot calculated with just 2 ensembles - N/2=9728 points, or second length records). This all suggests that the turbulence forgets its history on the order of second and behaves essentially randomly after this point. In fact, we define the autocorrelation time scale as the integral of the autocorrelation function. Integrating the second figure we find a time scale of 0.31 s. This is important information if one is interested in designing an efficient system for determining the mean or other moments as data that is truly independent with respect to each point will converge toward the true statistical value the most rapidly hence we are often interested in knowing the autocorrelation time scale. R uu /R uu (0) t (s)

9 Canonical Turbulent Flows 9 1 R uu /R uu (0) t (s) The Reynolds Stress u v If you apply Reynolds decomposition to the governing equations for fluid mechanics (the Navier-Stokes equations) and then average the equations over some time scale (which could be an infinite time in an ergodic flow) you can develop an expression forthefeatures of the mean quantities (e.g., the mean velocity and pressure fields). The linear terms in the Navier-Stokes equations just become the mean over the time scale of interest. However, decomposing the non-linear terms and averaging yields new terms. Let s take a look at why. Consider the two instantaneous quantities A and B which we decompose to A = A + A where the overline indicates a temporal average over the time scale of interest. Based on our definition of the Reynolds decomposition we have: A =0 Proof A = (A + A )=A + A = A + A A = 0 (2.4) and importantly the nonlinear product yields: AB = (A + A )(B + B )=(AB + AB + A B + A B ) (2.5) = AB + A B + AB + A B = AB + A B + A B + A B = AB + A B Where A B is the correlation of fluctuating quantities. These types of terms are the source of turbulent transport and stirring (and great modeling challenges!) in turbulent flows.

10 10 Canonical Turbulent Flows Now, when you average the continuity equation and the Navier-Stokes equations you have linear terms x A = x A (2.6) where the temporal mean just passes through to the variable, why? Since the averaging process is a time integration we can move the spatial derivative outside the integral. e.g., 1 T t0 +T t 0 A x dτ = 1 x T t0 +T t 0 Adτ = A x Now we continue down Osborne Reynolds path and apply our decomposition to the Navier-Stokes equations under the assumption of ergotic incompressible flow. It is left as an exercise for the student to show that continuity just looks like: And the Navier Stokes equations become: u x + v y + w z = 0 (2.7) u u x + v u y + w u z u v x + v v y + w v z u w x + v w y + w w z = 1 ( P 2 ρ x + ν u x + 2 u 2 y + 2 u 2 z 2 ( 2 v = 1 P ρ y + ν = 1 P ρ z + ν ) u 2 ) x + 2 v 2 y + 2 v u v 2 z 2 x ( ) 2 w x + 2 w 2 y + 2 w 2 z 2 x u v y u w z v 2 y v w z (2.8) (2.9) u w x v w w 2 y z g (2.10) These equations, known as the Reynolds Averaged Navier Stokes equations, orrans equations, look essentially the same as the original equation with two exceptions: The unsteady temporal terms have been averaged out and a new set of termsemergesonthe right-hand-side. Looking more carefully at the new terms they actually arose from the nonlinear terms on the left-hand side but it is customary to move them to the right hand side as they can be viewed as the turbulent analog to the viscous stress terms, why? Let s look at these terms, known as the Reynolds stress terms, a bit more carefully. These terms are of the form u w. Let s try to get a physical sense for what these sort of terms are doing.

11 Canonical Turbulent Flows 11 Consider a turbulent shear flow with u/ z >0. A shear flow is any flow with a mean gradient. A picture of our flow might look like: If a parcel sitting at the point (x o,z o ) has a fluctuating vertical velocity w > 0 it has high probability that u < 0 since it is low momentum fluid moving to a region of high momentum. Now consider hundreds and thousands of such parcels, onaverageweex- pect u w < 0. If parcels have w < 0 then they have high probability that u > 0 since high momentum fluid is moving to a region of lower mean momentum u w < 0 again. Therefore u w < 0 in a turbulent shear flow with mean gradient u/ z >0. What does this mean? Consider that the w term is an advection term - meaning it is responsible for transporting stuff with it up or down (positive or negative). What is the stuff? It is u in our example what is u? Well, what if we multiply by the density, ρ? Wegetthatw is transporting ρu horizontal momentum! Thus we can think of u w as the turbulent vertical advection of streamwise turbulent momentum, or more simply the vertical flux of streamwise momentum. In general terms like u w are known as momentum flux terms. What would u c be (where c is a scalar concentration fluctuation)? A scalar flux - the turbulent streamwise flux of mass! If you make the same back-of-the-envelope analysis for u/ z <0youfindthatu w > 0.

12 12 Canonical Turbulent Flows Thus the sign of the momentum flux terms tell whether the flux is inducing a net increase or decrease in momentum (positive and negative, respectively). The momentum flux terms are frequently referred to as the Reynolds stress terms as they play an analogous role in the governing equations to the viscous stress. The sign convention is such that the Reynolds stress is most properly written in the form ρu v but frequently, the terms of the form u v will be referred to as the Reynolds stress. Looking at our Reynolds Averaged Navier Stokes (RANS) equations (equations ) we see that there are six independent Reynolds stress terms, three tangential stress terms ρu v, ρu w,and ρv w and three normal stress terms, ρu 2, ρv 2,and ρw 2.We should note that for modelers this is a problem, we have introduced no new equations yet we have six new terms, i.e., six new unknowns! This is referred to as a closure problem as the RANS equations are not a closed set of equations. It is solved by developing models for the new terms based on resolved quantities. The best known of these models is perhaps the k ε model which developed the models for the Reynolds stress terms based on the turbulent kinetic energy k = 1 2 (u 2 + v 2 + w 2 )andε and includes two new equations to track k and ε. This is part of a broad class of solutions to the closure problem known as 2-equation models since two new equations are introduced. Significantly, experimentalist have no closure problem - we can directly measure the Reynolds stresses!

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size L Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size 0.01L or smaller are subject to substantial viscous

More information

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing.

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. Lecture 14 Turbulent Combustion 1 We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. In a fluid flow, turbulence is characterized by fluctuations of

More information

J. Szantyr Lecture No. 4 Principles of the Turbulent Flow Theory The phenomenon of two markedly different types of flow, namely laminar and

J. Szantyr Lecture No. 4 Principles of the Turbulent Flow Theory The phenomenon of two markedly different types of flow, namely laminar and J. Szantyr Lecture No. 4 Principles of the Turbulent Flow Theory The phenomenon of two markedly different types of flow, namely laminar and turbulent, was discovered by Osborne Reynolds (184 191) in 1883

More information

Lecture 2. Turbulent Flow

Lecture 2. Turbulent Flow Lecture 2. Turbulent Flow Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of this turbulent water jet. If L is the size of the largest eddies, only very small

More information

Turbulent Rankine Vortices

Turbulent Rankine Vortices Turbulent Rankine Vortices Roger Kingdon April 2008 Turbulent Rankine Vortices Overview of key results in the theory of turbulence Motivation for a fresh perspective on turbulence The Rankine vortex CFD

More information

Modeling of turbulence in stirred vessels using large eddy simulation

Modeling of turbulence in stirred vessels using large eddy simulation Modeling of turbulence in stirred vessels using large eddy simulation André Bakker (presenter), Kumar Dhanasekharan, Ahmad Haidari, and Sung-Eun Kim Fluent Inc. Presented at CHISA 2002 August 25-29, Prague,

More information

Turbulence Instability

Turbulence Instability Turbulence Instability 1) All flows become unstable above a certain Reynolds number. 2) At low Reynolds numbers flows are laminar. 3) For high Reynolds numbers flows are turbulent. 4) The transition occurs

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

Applied Computational Fluid Dynamics

Applied Computational Fluid Dynamics Lecture 9 - Kolmogorov s Theory Applied Computational Fluid Dynamics Instructor: André Bakker André Bakker (2002-2005) Fluent Inc. (2002) 1 Eddy size Kolmogorov s theory describes how energy is transferred

More information

2.3 The Turbulent Flat Plate Boundary Layer

2.3 The Turbulent Flat Plate Boundary Layer Canonical Turbulent Flows 19 2.3 The Turbulent Flat Plate Boundary Layer The turbulent flat plate boundary layer (BL) is a particular case of the general class of flows known as boundary layer flows. The

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

Project Topic. Simulation of turbulent flow laden with finite-size particles using LBM. Leila Jahanshaloo

Project Topic. Simulation of turbulent flow laden with finite-size particles using LBM. Leila Jahanshaloo Project Topic Simulation of turbulent flow laden with finite-size particles using LBM Leila Jahanshaloo Project Details Turbulent flow modeling Lattice Boltzmann Method All I know about my project Solid-liquid

More information

2.2 The Turbulent Round Jet

2.2 The Turbulent Round Jet Canonical Turbulent Flows 13. The Turbulent Round Jet Jet flows are a subset of the general class of flows known as free shear flows where free indicates that the shear arises in the absence of a boundary

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

Lecture 7. Turbulence

Lecture 7. Turbulence Lecture 7 Content Basic features of turbulence Energy cascade theory scales mixing Basic features of turbulence What is turbulence? spiral galaxies NGC 2207 and IC 2163 Turbulent jet flow Volcano jet flow

More information

Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto

Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto Nonequilibrium Dynamics in Astrophysics and Material Science 2011-11-02 @ YITP, Kyoto Multi-scale coherent structures and their role in the Richardson cascade of turbulence Susumu Goto (Okayama Univ.)

More information

Turbulens Teori och modellering

Turbulens Teori och modellering Turbulens Teori och modellering Introduction Two questions: Why did you chose this course? What are your expectations? Turbulence Theory and modelling Goals Understanding the phenomena that affects the

More information

LES of Turbulent Flows: Lecture 3

LES of Turbulent Flows: Lecture 3 LES of Turbulent Flows: Lecture 3 Dr. Jeremy A. Gibbs Department of Mechanical Engineering University of Utah Fall 2016 1 / 53 Overview 1 Website for those auditing 2 Turbulence Scales 3 Fourier transforms

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly 1. Introduction to Turbulent Flows Coverage of this section: Definition of Turbulence Features of Turbulent Flows Numerical Modelling Challenges History of Turbulence Modelling 1 1.1 Definition of Turbulence

More information

Mass Transfer in Turbulent Flow

Mass Transfer in Turbulent Flow Mass Transfer in Turbulent Flow ChEn 6603 References: S.. Pope. Turbulent Flows. Cambridge University Press, New York, 2000. D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, La Caada CA, 2000.

More information

Chapter 6 An introduction of turbulent boundary layer

Chapter 6 An introduction of turbulent boundary layer Chapter 6 An introduction of turbulent boundary layer T-S Leu May. 23, 2018 Chapter 6: An introduction of turbulent boundary layer Reading assignments: 1. White, F. M., Viscous fluid flow. McGraw-Hill,

More information

DNS Study on Small Length Scale in Turbulent Flow

DNS Study on Small Length Scale in Turbulent Flow DNS Study on Small ength Scale in Turbulent Flow Yonghua Yan Jie Tang Chaoqun iu Technical Report 2014-11 http://www.uta.edu/math/preprint/ DNS Study on Small ength Scale in Turbulent Flow Yonghua Yan,

More information

Chapter 7. Basic Turbulence

Chapter 7. Basic Turbulence Chapter 7 Basic Turbulence The universe is a highly turbulent place, and we must understand turbulence if we want to understand a lot of what s going on. Interstellar turbulence causes the twinkling of

More information

Eulerian models. 2.1 Basic equations

Eulerian models. 2.1 Basic equations 2 Eulerian models In this chapter we give a short overview of the Eulerian techniques for modelling turbulent flows, transport and chemical reactions. We first present the basic Eulerian equations describing

More information

Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows

Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows Remark 7.1. Turbulent flows. The usually used model for turbulent incompressible flows are the incompressible Navier Stokes equations

More information

Turbulence and its modelling. Outline. Department of Fluid Mechanics, Budapest University of Technology and Economics.

Turbulence and its modelling. Outline. Department of Fluid Mechanics, Budapest University of Technology and Economics. Outline Department of Fluid Mechanics, Budapest University of Technology and Economics October 2009 Outline Outline Definition and Properties of Properties High Re number Disordered, chaotic 3D phenomena

More information

The mean shear stress has both viscous and turbulent parts. In simple shear (i.e. U / y the only non-zero mean gradient):

The mean shear stress has both viscous and turbulent parts. In simple shear (i.e. U / y the only non-zero mean gradient): 8. TURBULENCE MODELLING 1 SPRING 2019 8.1 Eddy-viscosity models 8.2 Advanced turbulence models 8.3 Wall boundary conditions Summary References Appendix: Derivation of the turbulent kinetic energy equation

More information

Turbulence: Basic Physics and Engineering Modeling

Turbulence: Basic Physics and Engineering Modeling DEPARTMENT OF ENERGETICS Turbulence: Basic Physics and Engineering Modeling Numerical Heat Transfer Pietro Asinari, PhD Spring 2007, TOP UIC Program: The Master of Science Degree of the University of Illinois

More information

Physical Properties of Fluids

Physical Properties of Fluids Physical Properties of Fluids Viscosity: Resistance to relative motion between adjacent layers of fluid. Dynamic Viscosity:generally represented as µ. A flat plate moved slowly with a velocity V parallel

More information

Accretion Disks I. High Energy Astrophysics: Accretion Disks I 1/60

Accretion Disks I. High Energy Astrophysics: Accretion Disks I 1/60 Accretion Disks I References: Accretion Power in Astrophysics, J. Frank, A. King and D. Raine. High Energy Astrophysics, Vol. 2, M.S. Longair, Cambridge University Press Active Galactic Nuclei, J.H. Krolik,

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

2. Conservation Equations for Turbulent Flows

2. Conservation Equations for Turbulent Flows 2. Conservation Equations for Turbulent Flows Coverage of this section: Review of Tensor Notation Review of Navier-Stokes Equations for Incompressible and Compressible Flows Reynolds & Favre Averaging

More information

Simulations for Enhancing Aerodynamic Designs

Simulations for Enhancing Aerodynamic Designs Simulations for Enhancing Aerodynamic Designs 2. Governing Equations and Turbulence Models by Dr. KANNAN B T, M.E (Aero), M.B.A (Airline & Airport), PhD (Aerospace Engg), Grad.Ae.S.I, M.I.E, M.I.A.Eng,

More information

7. TURBULENCE SPRING 2019

7. TURBULENCE SPRING 2019 7. TRBLENCE SPRING 2019 7.1 What is turbulence? 7.2 Momentum transfer in laminar and turbulent flow 7.3 Turbulence notation 7.4 Effect of turbulence on the mean flow 7.5 Turbulence generation and transport

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i Turbulence Modeling Cuong Nguyen November 05, 2005 1 Incompressible Case 1.1 Reynolds-averaged Navier-Stokes equations The incompressible Navier-Stokes equations in conservation form are u i x i = 0 (1)

More information

Buoyancy Fluxes in a Stratified Fluid

Buoyancy Fluxes in a Stratified Fluid 27 Buoyancy Fluxes in a Stratified Fluid G. N. Ivey, J. Imberger and J. R. Koseff Abstract Direct numerical simulations of the time evolution of homogeneous stably stratified shear flows have been performed

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

Modelling of turbulent flows: RANS and LES

Modelling of turbulent flows: RANS and LES Modelling of turbulent flows: RANS and LES Turbulenzmodelle in der Strömungsmechanik: RANS und LES Markus Uhlmann Institut für Hydromechanik Karlsruher Institut für Technologie www.ifh.kit.edu SS 2012

More information

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration Lecture 10. Equations of Motion Centripetal Acceleration, Gravitation and Gravity The centripetal acceleration of a body located on the Earth's surface at a distance from the center is the force (per unit

More information

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream Turbulence injection of a water jet into a water tank Reynolds number EF$ 1. There is no clear definition and range of turbulence (multi-scale phenomena) 2. Reynolds number is an indicator for turbulence

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

A Simple Turbulence Closure Model

A Simple Turbulence Closure Model A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: Mean velocity: Turbulent velocity: Gradient operator: Advection operator: V =

More information

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

A Simple Turbulence Closure Model. Atmospheric Sciences 6150 A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: V = V + v V = U i + u i Mean velocity: V = Ui + V j + W k =(U, V, W ) U i =(U

More information

Turbulence and transport

Turbulence and transport and transport ` is the most important unsolved problem of classical physics.' - Richard Feynman - Da Vinci 14521519 Image: General Atomics Reynolds, Richardson, Kolmogorov Dr Ben Dudson, University of

More information

Wall turbulence with arbitrary mean velocity profiles

Wall turbulence with arbitrary mean velocity profiles Center for Turbulence Research Annual Research Briefs 7 Wall turbulence with arbitrary mean velocity profiles By J. Jiménez. Motivation The original motivation for this work was an attempt to shorten the

More information

ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS

ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS Karsten Lindegård Jensen 1, B. Mutlu Sumer 1, Giovanna Vittori 2 and Paolo Blondeaux 2 The pressure field in an oscillatory boundary layer

More information

Publication 97/2. An Introduction to Turbulence Models. Lars Davidson, lada

Publication 97/2. An Introduction to Turbulence Models. Lars Davidson,   lada ublication 97/ An ntroduction to Turbulence Models Lars Davidson http://www.tfd.chalmers.se/ lada Department of Thermo and Fluid Dynamics CHALMERS UNVERSTY OF TECHNOLOGY Göteborg Sweden November 3 Nomenclature

More information

Evolution of the pdf of a high Schmidt number passive scalar in a plane wake

Evolution of the pdf of a high Schmidt number passive scalar in a plane wake Evolution of the pdf of a high Schmidt number passive scalar in a plane wake ABSTRACT H. Rehab, L. Djenidi and R. A. Antonia Department of Mechanical Engineering University of Newcastle, N.S.W. 2308 Australia

More information

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical Outline Department of Fluid Mechanics, Budapest University of Technology and Economics Spring 2011 Outline Outline Part I First Lecture Connection between time and ensemble average Ergodicity1 Ergodicity

More information

Turbulent drag reduction by streamwise traveling waves

Turbulent drag reduction by streamwise traveling waves 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA Turbulent drag reduction by streamwise traveling waves Armin Zare, Binh K. Lieu, and Mihailo R. Jovanović Abstract For

More information

B.1 NAVIER STOKES EQUATION AND REYNOLDS NUMBER. = UL ν. Re = U ρ f L μ

B.1 NAVIER STOKES EQUATION AND REYNOLDS NUMBER. = UL ν. Re = U ρ f L μ APPENDIX B FLUID DYNAMICS This section is a brief introduction to fluid dynamics. Historically, a simplified concept of the boundary layer, the unstirred water layer, has been operationally used in the

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 19 Turbulent Flows Fausto Arpino f.arpino@unicas.it Introduction All the flows encountered in the engineering practice become unstable

More information

Dimensionality influence on energy, enstrophy and passive scalar transport.

Dimensionality influence on energy, enstrophy and passive scalar transport. Dimensionality influence on energy, enstrophy and passive scalar transport. M. Iovieno, L. Ducasse, S. Di Savino, L. Gallana, D. Tordella 1 The advection of a passive substance by a turbulent flow is important

More information

Characteristics of Linearly-Forced Scalar Mixing in Homogeneous, Isotropic Turbulence

Characteristics of Linearly-Forced Scalar Mixing in Homogeneous, Isotropic Turbulence Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 2012 ICCFD7-1103 Characteristics of Linearly-Forced Scalar Mixing in Homogeneous, Isotropic Turbulence

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

Introduction to Turbulence Modeling

Introduction to Turbulence Modeling Introduction to Turbulence Modeling UPV/EHU - Universidad del País Vasco Escuela Técnica Superior de Ingeniería de Bilbao March 26, 2014 G. Stipcich BCAM- Basque Center for Applied Mathematics, Bilbao,

More information

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza REPRESENTING PRESENCE OF SUBSURFACE CURRENT TURBINES IN OCEAN MODELS Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza 1 Momentum Equations 2 Effect of inclusion of Coriolis force

More information

arxiv: v1 [physics.flu-dyn] 11 Oct 2012

arxiv: v1 [physics.flu-dyn] 11 Oct 2012 Low-Order Modelling of Blade-Induced Turbulence for RANS Actuator Disk Computations of Wind and Tidal Turbines Takafumi Nishino and Richard H. J. Willden ariv:20.373v [physics.flu-dyn] Oct 202 Abstract

More information

DNS, LES, and wall-modeled LES of separating flow over periodic hills

DNS, LES, and wall-modeled LES of separating flow over periodic hills Center for Turbulence Research Proceedings of the Summer Program 4 47 DNS, LES, and wall-modeled LES of separating flow over periodic hills By P. Balakumar, G. I. Park AND B. Pierce Separating flow in

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Exercises in Combustion Technology

Exercises in Combustion Technology Exercises in Combustion Technology Exercise 4: Turbulent Premixed Flames Turbulent Flow: Task 1: Estimation of Turbulence Quantities Borghi-Peters diagram for premixed combustion Task 2: Derivation of

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics!

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics! http://www.nd.edu/~gtryggva/cfd-course/! Modeling Complex Flows! Grétar Tryggvason! Spring 2011! Direct Numerical Simulations! In direct numerical simulations the full unsteady Navier-Stokes equations

More information

CVS filtering to study turbulent mixing

CVS filtering to study turbulent mixing CVS filtering to study turbulent mixing Marie Farge, LMD-CNRS, ENS, Paris Kai Schneider, CMI, Université de Provence, Marseille Carsten Beta, LMD-CNRS, ENS, Paris Jori Ruppert-Felsot, LMD-CNRS, ENS, Paris

More information

Multiscale Computation of Isotropic Homogeneous Turbulent Flow

Multiscale Computation of Isotropic Homogeneous Turbulent Flow Multiscale Computation of Isotropic Homogeneous Turbulent Flow Tom Hou, Danping Yang, and Hongyu Ran Abstract. In this article we perform a systematic multi-scale analysis and computation for incompressible

More information

36. TURBULENCE. Patriotism is the last refuge of a scoundrel. - Samuel Johnson

36. TURBULENCE. Patriotism is the last refuge of a scoundrel. - Samuel Johnson 36. TURBULENCE Patriotism is the last refuge of a scoundrel. - Samuel Johnson Suppose you set up an experiment in which you can control all the mean parameters. An example might be steady flow through

More information

From the last time, we ended with an expression for the energy equation. u = ρg u + (τ u) q (9.1)

From the last time, we ended with an expression for the energy equation. u = ρg u + (τ u) q (9.1) Lecture 9 9. Administration None. 9. Continuation of energy equation From the last time, we ended with an expression for the energy equation ρ D (e + ) u = ρg u + (τ u) q (9.) Where ρg u changes in potential

More information

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical Outline Geurts Book Department of Fluid Mechanics, Budapest University of Technology and Economics Spring 2013 Outline Outline Geurts Book 1 Geurts Book Origin This lecture is strongly based on the book:

More information

Chuichi Arakawa Graduate School of Interdisciplinary Information Studies, the University of Tokyo. Chuichi Arakawa

Chuichi Arakawa Graduate School of Interdisciplinary Information Studies, the University of Tokyo. Chuichi Arakawa Direct Numerical Simulations of Fundamental Turbulent Flows with the Largest Grid Numbers in the World and its Application of Modeling for Engineering Turbulent Flows Project Representative Chuichi Arakawa

More information

Chapter 13. Eddy Diffusivity

Chapter 13. Eddy Diffusivity Chapter 13 Eddy Diffusivity Glenn introduced the mean field approximation of turbulence in two-layer quasigesotrophic turbulence. In that approximation one must solve the zonally averaged equations for

More information

The Johns Hopkins Turbulence Databases (JHTDB)

The Johns Hopkins Turbulence Databases (JHTDB) The Johns Hopkins Turbulence Databases (JHTDB) HOMOGENEOUS BUOYANCY DRIVEN TURBULENCE DATA SET Data provenance: D. Livescu 1 Database Ingest and Web Services: C. Canada 1, K. Kalin 2, R. Burns 2 & IDIES

More information

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Proceedings of,, BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Yunho Jang Department of Mechanical and Industrial Engineering University of Massachusetts Amherst, MA 01002 Email:

More information

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS June - July, 5 Melbourne, Australia 9 7B- NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS Werner M.J. Lazeroms () Linné FLOW Centre, Department of Mechanics SE-44

More information

WALL PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER AFTER BLOWING OR SUCTION

WALL PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER AFTER BLOWING OR SUCTION WALL PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER AFTER BLOWING OR SUCTION Joongnyon Kim, Kyoungyoun Kim, Hyung Jin Sung Department of Mechanical Engineering, Korea Advanced Institute of Science

More information

Several forms of the equations of motion

Several forms of the equations of motion Chapter 6 Several forms of the equations of motion 6.1 The Navier-Stokes equations Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information

A Solution Method for the Reynolds-Averaged Navier-Stokes Equation

A Solution Method for the Reynolds-Averaged Navier-Stokes Equation A Solution Method for the Reynolds-Averaged Navier-Stokes Equation T.-W. Lee Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ, 8587 Abstract- Navier-Stokes equations are difficult

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

Process Chemistry Toolbox - Mixing

Process Chemistry Toolbox - Mixing Process Chemistry Toolbox - Mixing Industrial diffusion flames are turbulent Laminar Turbulent 3 T s of combustion Time Temperature Turbulence Visualization of Laminar and Turbulent flow http://www.youtube.com/watch?v=kqqtob30jws

More information

Turbulence Solutions

Turbulence Solutions School of Mechanical, Aerospace & Civil Engineering 3rd Year/MSc Fluids Turbulence Solutions Question 1. Decomposing into mean and fluctuating parts, we write M = M + m and Ũ i = U i + u i a. The transport

More information

Homogeneous Turbulence Dynamics

Homogeneous Turbulence Dynamics Homogeneous Turbulence Dynamics PIERRE SAGAUT Universite Pierre et Marie Curie CLAUDE CAMBON Ecole Centrale de Lyon «Hf CAMBRIDGE Щ0 UNIVERSITY PRESS Abbreviations Used in This Book page xvi 1 Introduction

More information

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations Math 575-Lecture 13 In 1845, tokes extended Newton s original idea to find a constitutive law which relates the Cauchy stress tensor to the velocity gradient, and then derived a system of equations. The

More information

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Johan Hoffman May 14, 2006 Abstract In this paper we use a General Galerkin (G2) method to simulate drag crisis for a sphere,

More information

Physics of Aquatic Systems

Physics of Aquatic Systems Physics of Aquatic Systems 4. Turbulent Transport in Surface Waters Contents of Session 4: Transport 4.1 Turbulent (eddy) fusion 4. Measurement of eddy fusivity in lakes Tracer methods (artificial tracer)

More information

ESCI 485 Air/sea Interaction Lesson 2 Turbulence Dr. DeCaria

ESCI 485 Air/sea Interaction Lesson 2 Turbulence Dr. DeCaria ESCI 485 Air/sea Interaction Lesson Turbulence Dr. DeCaria References: Air-sea Interaction: Laws and Mechanisms, Csanady An Introduction to Dynamic Meteorology ( rd edition), J.R. Holton An Introduction

More information

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Diffusive Transport Enhanced by Thermal Velocity Fluctuations Diffusive Transport Enhanced by Thermal Velocity Fluctuations Aleksandar Donev 1 Courant Institute, New York University & Alejandro L. Garcia, San Jose State University John B. Bell, Lawrence Berkeley

More information

Review of fluid dynamics

Review of fluid dynamics Chapter 2 Review of fluid dynamics 2.1 Preliminaries ome basic concepts: A fluid is a substance that deforms continuously under stress. A Material olume is a tagged region that moves with the fluid. Hence

More information

Grid-generated turbulence, drag, internal waves and mixing in stratified fluids

Grid-generated turbulence, drag, internal waves and mixing in stratified fluids Grid-generated turbulence, drag, internal waves and mixing in stratified fluids Not all mixing is the same! Stuart Dalziel, Roland Higginson* & Joanne Holford Introduction DAMTP, University of Cambridge

More information

12.1 Viscous potential flow (VPF)

12.1 Viscous potential flow (VPF) 1 Energy equation for irrotational theories of gas-liquid flow:: viscous potential flow (VPF), viscous potential flow with pressure correction (VCVPF), dissipation method (DM) 1.1 Viscous potential flow

More information

1 Mean Flow Equations

1 Mean Flow Equations ME 543 Averaged Equations 23 January 2018 These notes are meant as a supplement to the text, and as an aid for the class notes, but not as an independent document. 1 Mean Flow Equations 1.1 Mean flow equations

More information