7. Post Glacial Rebound. Ge 163 4/16/14-

Size: px
Start display at page:

Download "7. Post Glacial Rebound. Ge 163 4/16/14-"

Transcription

1 7. Post Glacial Rebound Ge 163 4/16/14-

2 Outline Overview Order of magnitude estimate of mantle viscosity Essentials of fluid mechanics Viscosity Stokes Flow Biharmonic equation Half-space model Channel Flow Deep Flow versus Channel Flow Relaxation spectra GPS constraint GRACE Constraints Latest models with variable viscosity

3 Fowler

4 Deglaciation Last deglaciation started around 18,000 years ago Addition to the oceans of approximately kg of water which effected a mean global rise of sea level of about 80 meters. Source of this meltwater: Laurentide complex of North America & Fennoscandian complex of N.W. Europe From time series of 0 16 and 0 18 obtained from deep sea sediment cores, major ice sheets existed on the surface for the 10 5 years prior to their disintegration (when ice sheets where slowly, if not monotonically, approaching their maximum extents). Obtain relative sea-level histories (RSL s) from C 14 dating of marine shells and other materials from relic beaches.

5 Geophysical observations Correlation of Δg FA with topography Correlation of Δg FA with geomorphologically inferred position of the ice sheets Direct measurements of surface displacements with GPS GRACE (time-dependent gravity)

6 Retreat of the Laurentide Ice Sheet Reproduced in Cathles [1975]

7 Retreat of the Ice Sheet in Fennoscandia Reproduced in Cathles [1975]

8 Ice History -- This is a Model (ICE-1) 18 Kyr 12 Kyr 8 Kyr Peltier [1981]

9 Porsangerfjord, northern Norway. Ridges are 1-4 m high with a 4 to 5 meter spacing. Prominent ridges are Holocene 6,000 to 7,000 yr BP. From cover of GSA Memoir 180.

10 Relative Sea Level (RSL) Curve

11 Free Air Gravity Over Hudson Bay

12 Gravity anomalies from 363 days of GRACE data (GGM02S)

13 Using Oxygen Isotopes as a proxy for Ice volume From a Peltier paper

14 Order of Magnitude Estimate of Newtonian Viscosity of the mantle L h h σ = 2η ε σ = ρgh ε h L why? η = σ 2 ε ~ ρghl 2 h

15 η ~ ρghl 2 h Remaining uplift will be approximated with the Bouguer Formula Δg = 2πρGh h Δg FA 2πρG η ~ gδg FA L 4πG h

16 η ~ gδg FA L 4πG h Laurentide Fennoscandia Dimensions Length X width Mean Free-air gravity anomaly Present rate of uplift η [Dimensional scaling] 4 x x 10 6 m 2.25 x x 10 6 m -35 mgal -16 mgal 1.7 cm/yr 0.9 cm/yr 2 x Pa-s 1 x Pa-s Using Rebound Parameters in Walcott[1973]

17 Viscosity We will need a constitutive relation, which for fluid mechanics relates strain rates to stress. Bulk viscosity shear viscosity σ ij = pδ ij + λ θδ ij + 2η ε ij ε ij = 1 2 u i x j + u j x i θ= ε kk (dilitation) dilitation is the strain rate tensor; u is velocity For an incompressible fluid (i.e. u = 0), ε kk = 0 σ ij = pδ ij + 2η ε ij

18 σ ij = pδ ij + 2η ε ij We may think of η (the shear or 'dynamic viscosity') as a constant, but is it?

19 We start with Stoke s formula Which for an incompressible fluid (i.e. u = 0) is 0 = p + η 2 u 0 = p + η 2 u + ρgŷ with buoyancy where η is the dynamic viscosity u is the fluid velocity p is the pressure and this is only valid in the limit of viscosuly dominated fluids. That is, the inertial term that appears in the Navier-Stokes equation does not appear. Is this valid for the mantle?

20 Navier-Stokes NS: p + η 2 u + ρgŷ = ρ Du Dt Viscous forces are: η 2 u or η u L 2 Inertial forces are proportional to ρ Du Dt ρ( u )u ρ u2 L Ratio of these forces inertial viscous ~ ρu2 L L 2 ηu = ρul η = ul υ Re = Reynolds Number A characteristic length scale (η /ρ = ν, the kinematic viscosity) (ρ / η = υ, the kinematic viscosity)

21 Re = ul υ L = 1000 km u = 5 cm/yr υ = m 2 / s (notice the units!) Re = m s m s effectively 0. ( 10 6 m) = 10 22

22 For 2-D, incompressible problems (with no lateral variations in viscosity), it is helpful to 'transform' the Stokes equation into another form (Stream Function form). 0 = p + η 2 u + ρgŷ (Stokes equation) where ρ, is a constant ( ρ / x = 0). Put the pressure, p, into a form so that there is a dynamic part, P, and a hydrostatic part P = p ρgy Substitute this into the Stokes equation and write out in component form 0 = P x + η 2 u x 0 = P y + η 2 u y

23 We can define a quantity called the Stream Function, ψ u x = ψ y u y = ψ x This definition automatically satisfies the 2-D, incompressible continuity equation u = 0

24 Streamline Continuous line drawn through the fluid so that it has the direction of the velocity vector at that point; the streamline is everywhere tangent to the velocity field. In steady flow, the streamline inclination is fixed at every point and is therefore fixed in space; a streamline is a particle path. However, in unsteady flow, the streamlines will shift in space from instant to instant.

25 Using the Stokes equation in component form, 0 = P x + η 2 u x, 0 = P y + η 2 u y Using the definition of the stream function u x = ψ y 0 = P x + η - 0 = P y + η 3 ψ x 3 u y = ψ x 3 ψ x 2 y + 3 ψ y ψ y 2 x then / y & ( 1) then / x 0 = η 4 ψ x + 4 ψ 4 x 2 y + 4 ψ 2 2 y 4 0 = 4 ψ This is called the Biharmonic equation

26 If we didn't assume ρ / x = 0, then η 4 ψ = g ρ x The flow is generated by lateral variations in density. The equation reduces to a balance between a gravitational buoyancy force and viscous resistance.

27 Response of a semi-infinite half-space to a periodic load (all details are given in section 6-10 in Turcotte and Schubert w ρ 2 ρ 1 g Δρ = ρ 1 ρ 2 Solve 4 ψ = 0, the biharmonic equation y w = w o cos 2π x initial condition. λ w = vertical displacement ("topography").

28 Want w as a function of time, w(t) This appears odd. We previously eliminated the element of time when we derived the Stoke s equation (upon which the the biharmonic equation is based). Will equate vertical velocity, u y, at y=0 to dw/dt Other constraints: Stream function, ψ, must remain finite with depth w<<λ u x =0 at y=w (or approximately y=0 because w<<λ) noslip condition on upper boundary, geophysically the presence of lithosphere. Equate hydrostatic head (of deformed surface) to normal stress (σ yy ) at upper boundary.

29 To solve 4 ψ = 0 use separation of variables ψ = X(x)Y (y) Guess ψ = A'sin 2π x λ 2π x + B'cos λ Y (y)...using the fact that the solution must be bounded as y and the no-slip boundary condition: u y = A 2π λ cos 2π λ x e 2π y/λ 1+ 2π λ y

30 To evaluate A Equate hydrostatic head, ρgw, to the total normal stress at the upper boundary of the fluid half-space. From the stress tensor: σ yy = p τ yy = p 2η u y y Set σ yy = ρgw (notice that w appears for the first time). Find p by setting up a horizontal balance, e.g. 0 = p + +ηη 2 u 2 x u x Then integrate one p = 2ηA 2π 2 λ cos 2π λ x ρgw(x) = p y=0 w(x) y=0 = 1 ρg 2ηA 2π 2 λ cos 2π λ x put A in terms of w

31 However dw dt is the vertical velocity on the top surface dw dt y=w = u y (y = w) Again, assume that w << λ Using our previous result for u y u y (y = 0) = A 2π λ cos 2π λ x = dw dw dt = λρg w nice ode 4πη dw w = λρg 4πη dt t = 0 w(0) = w o w = w o exp λρg 4πη t dt y=0

32 τ R = 4πη ρgλ = 4πυ gλ where υ kinematic viscosity w = w o e t /τ R From Turcotte & Schubert: t o = 10,000 years ago w o = 300 m, 30 me still to occur best fit τ R = 4400 years Angerman River data λ = 3000 km ρ = 3300 kg m -3 g = 10 m s -2 η = Pa-s

33 Why is there an inverse relation between relaxation time and wavelength? τ R = 4πη ρgλ τ R h h h h = 4πη ρgλ ρgh = 4πη h λ stress=(viscosity) (strain-rate) Practical: Have you ever poured honey back into a bowl of Honey? First there is a wide ridge, but after time there is a Sharp line that persists for a long time.

34 Cathles [1975]

35 Alternative model of Post-glacial rebound (flow confined to a channel). r w R w w Lithosphere on top H η Asthenosphere u x It can be shown for a cylindrical problem that τ R 2ηR2 ρgh 3

36 Cathles [1975]

37 Post-glacial rebound using a channel flow model η τ RρgH 3 2R 2 Fennoscandian radius ~ 500 km Angermann River τ R = 4,400 years η = Pa-s (not much different from our other estimates). Flow confined to Upper mantle

38 Cathles [1975]

39 RSLs at different Distances from the Ice Cap Peltier

40 Unloading of peripheral glacial lakes Circa 14,000 years ago

41 Crittenden [1963]: Shorelines [of Lake Bonneville], originally level are domed upward about 64 meters in the center of the basin, showing that during both loading and subsequent unloading, the earth reached a high degree of isostatic adjustment. To attain this degree of compensation the isostatic anomaly created during loading or unloading must be reduced to 1/e of its initial value in about 4,000 years Now this time-scale is about the same as Fennoscandia, but Bonneville has ~1/10 the diameter Channel Flow τ R = 2ηR2 Note the strong trade-off between H and η 3 ρgh η B = R F η F R B 2 H B = 70 km H F = 700 km H B H F 3 = 100 H B H F η F ~ Pa-s η B ~ Pa-s (Cathles: 4x10 19 Pa-s) 3

42 Cathles [1975]

43 Except for a low viscosity channel beneath the lithosphere does the mantle have a uniform, Pas-s, viscosity as Cathles [1975] argues?

44 Deep flow: τ R = 4πυ gλ Channel Flow: τ R = 2υR2 gh 3 channel Half-space Relaxation time λ wavenumber

45 Models like this can give the appropriate relaxation spectrum viscosity Weak upper mantle depth

46 Can the relaxation spectra be observed? (I.e. relaxation time versus wavelength) Several attempts over the years. Most recent, is to look at the localization of gravity (spectrogram of the gravity)

47 Spectogram of gravity field: Hudson s Bay is A unique feature of the gravity field. Simons & Hager [1997]

48 1. Gravity is highly correlated with former ice caps 2. Use a model for the time load (such as ICE-1) 3. Isostatically compensate ice-load (mantle viscosity is not needed) 4. Remove ice load instantly and calculate gravity 5. Correlate the model gravity with observed gravity versus wavelength, F l Simons and Hager [1997]

49 F l Simons and Hager [1997]

50 Simons and Hager [1997]

51 3-D Velocities from present Day GPS Milne et al. [2001]

52 Radial Inversion of GPS Data for Mantle Viscosity Horizontal Both Milne et al. [2001]

53 Secular change in gravity from GRACE (In units of µgal/yr) ) Homogeneous mantle models fit GRACE & RSL have viscosities of 1.4 to 2.3 X Pa s Paulson et al [2007]

54 Viscosity Structure Used in Spherical FEM model of post-glacial rebound Paulson, et al. [2005]

55 Difference in RSL between radial and FEM model with full (lateral and radial) variations in viscosity Paulson et al. [2005]

Gravitational constraints

Gravitational constraints Gravitational constraints Reading: Fowler p172 187 Gravity anomalies Free-air anomaly: g F = g g( λ ) + δg obs F Corrected for expected variations due to the spheroid elevation above the spheroid Bouguer

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

(b) What is the amplitude at the altitude of a satellite of 400 km?

(b) What is the amplitude at the altitude of a satellite of 400 km? Practice final quiz 2015 Geodynamics 2015 1 a) Complete the following table. parameter symbol units temperature T C or K thermal conductivity heat capacity density coefficient of thermal expansion volumetric)

More information

Constraints on lithosphere and mantle rheology from in-situ observations

Constraints on lithosphere and mantle rheology from in-situ observations Constraints on lithosphere and mantle rheology from in-situ observations Shijie Zhong Department of Physics University of Colorado at Boulder Collaborators: Archie Paulson and John Wahr on post-glacial

More information

B6 Isostacy. B6.1 Airy and Pratt hypotheses. Geophysics 210 September 2008

B6 Isostacy. B6.1 Airy and Pratt hypotheses. Geophysics 210 September 2008 B6 Isostacy B6.1 Airy and Pratt hypotheses Himalayan peaks on the Tibet-Bhutan border In the 19 th century surveyors used plumblines and theodolites to map India. A plumb line was used when measuring the

More information

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies 13th February 2015 Jorge Lindley email: J.V.M.Lindley@warwick.ac.uk 1 2D Flows - Shear flows Example 1. Flow over an inclined plane A

More information

Constraints on Mantle Structure from Surface Observables

Constraints on Mantle Structure from Surface Observables MYRES I: Heat, Helium & Whole Mantle Convection Constraints on Mantle Structure from Surface Observables Magali Billen University of California, Davis Department of Geology The Goal Use observations of

More information

Basic concepts in viscous flow

Basic concepts in viscous flow Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Adapted from Chapter 1 of Cambridge Texts in Applied Mathematics 1 The fluid dynamic equations Navier-Stokes equations Dimensionless

More information

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used.

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used. UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2011 2012 FLUID DYNAMICS MTH-3D41 Time allowed: 3 hours Attempt FIVE questions. Candidates must show on each answer book the type

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum)

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum) 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 4 2.20 - Marine Hydrodynamics Lecture 4 Introduction Governing Equations so far: Knowns Equations # Unknowns # density ρ( x, t) Continuity 1 velocities

More information

How important are elastic deflections in the Fennoscandian postglacial uplift?

How important are elastic deflections in the Fennoscandian postglacial uplift? How important are elastic deflections in the Fennoscandian postglacial uplift? WILLY FJELDSKAAR Fjeldskaar, W. How important are elastic deftections in the Fennoscandian postglacial uplift? Norsk Geologisk

More information

Exercise: concepts from chapter 10

Exercise: concepts from chapter 10 Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

More information

Subduction II Fundamentals of Mantle Dynamics

Subduction II Fundamentals of Mantle Dynamics Subduction II Fundamentals of Mantle Dynamics Thorsten W Becker University of Southern California Short course at Universita di Roma TRE April 18 20, 2011 Rheology Elasticity vs. viscous deformation η

More information

Review of fluid dynamics

Review of fluid dynamics Chapter 2 Review of fluid dynamics 2.1 Preliminaries ome basic concepts: A fluid is a substance that deforms continuously under stress. A Material olume is a tagged region that moves with the fluid. Hence

More information

Postglacial Rebound Modeling with Power-Law Rheology

Postglacial Rebound Modeling with Power-Law Rheology Postglacial Rebound Modeling with Power-Law Rheology Patrick Wu Dept. of Geology & Geophysics, University of Calgary, Calgary, Alberta T2N-1N4, Canada, ppwu@acs.ucalgary.ca Keywords: rheology, power law

More information

Course Business. Today: isostasy and Earth rheology, paper discussion

Course Business. Today: isostasy and Earth rheology, paper discussion Course Business Today: isostasy and Earth rheology, paper discussion Next week: sea level and glacial isostatic adjustment Email did you get my email today? Class notes, website Your presentations: November

More information

Can we see evidence of post-glacial geoidal adjustment in the current slowing rate of rotation of the Earth?

Can we see evidence of post-glacial geoidal adjustment in the current slowing rate of rotation of the Earth? Can we see evidence of post-glacial geoidal adjustment in the current slowing rate of rotation of the Earth? BARRETO L., FORTIN M.-A., IREDALE A. In this simple analysis, we compare the historical record

More information

Continuum mechanism: Stress and strain

Continuum mechanism: Stress and strain Continuum mechanics deals with the relation between forces (stress, σ) and deformation (strain, ε), or deformation rate (strain rate, ε). Solid materials, rigid, usually deform elastically, that is the

More information

Three-dimensional finite-element modelling of Earth s viscoelastic deformation: effects of lateral variations in lithospheric thickness

Three-dimensional finite-element modelling of Earth s viscoelastic deformation: effects of lateral variations in lithospheric thickness Geophys. J. Int. (23) 1, 679 695 Three-dimensional finite-element modelling of Earth s viscoelastic deformation: effects of lateral variations in lithospheric thickness Shijie Zhong, Archie Paulson and

More information

Limitations on the inversion for mantle viscosity from postglacial rebound

Limitations on the inversion for mantle viscosity from postglacial rebound Geophys. J. Int. (27) 168, 119 129 doi: 1.1111/j.136-246X.26.3222.x Limitations on the inversion for mantle viscosity from postglacial rebound Archie Paulson, Shijie Zhong and John Wahr Department of Physics,

More information

1 Scaling analysis and non-dimensional numbers

1 Scaling analysis and non-dimensional numbers 1 Scaling analysis and non-dimensional numbers While this is a textbook on numerical analysis, it is crucial to keep the nature of the physical processes which we would like to model in mind. This will

More information

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid.

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid. CEE 3310 Thermodynamic Properties, Aug. 27, 2010 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 2012-13 MODULE TITLE: Introduction to Fluids DURATION OF

More information

MECHANICAL PROPERTIES OF FLUIDS

MECHANICAL PROPERTIES OF FLUIDS CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

More information

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Exercise 5: Exact Solutions to the Navier-Stokes Equations I Fluid Mechanics, SG4, HT009 September 5, 009 Exercise 5: Exact Solutions to the Navier-Stokes Equations I Example : Plane Couette Flow Consider the flow of a viscous Newtonian fluid between two parallel

More information

ESS314. Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe. Conservation Laws

ESS314. Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe. Conservation Laws ESS314 Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe Conservation Laws The big differences between fluids and other forms of matter are that they are continuous and they deform internally

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

Dynamics of Glaciers

Dynamics of Glaciers Dynamics of Glaciers McCarthy Summer School 01 Andy Aschwanden Arctic Region Supercomputing Center University of Alaska Fairbanks, USA June 01 Note: This script is largely based on the Physics of Glaciers

More information

Lecture 3: 1. Lecture 3.

Lecture 3: 1. Lecture 3. Lecture 3: 1 Lecture 3. Lecture 3: 2 Plan for today Summary of the key points of the last lecture. Review of vector and tensor products : the dot product (or inner product ) and the cross product (or vector

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

Fluid Mechanics. Spring 2009

Fluid Mechanics. Spring 2009 Instructor: Dr. Yang-Cheng Shih Department of Energy and Refrigerating Air-Conditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 1-1 General Remarks 1-2 Scope

More information

Continuum mechanism: Plates

Continuum mechanism: Plates Observations of plate tectonics imply that the thin near-surface rocks, that constitute the lithosphere, are rigid, and therefore behave elastically on geological time scales. From the observed bending,

More information

Inference of mantle viscosity from GRACE and relative sea level data

Inference of mantle viscosity from GRACE and relative sea level data Geophys. J. Int. (7) 7, 97 58 doi:./j.365-6x.7.3556.x FAST TRACK PAPER Inference of mantle viscosity from GRACE and relative sea level data Archie Paulson, Shijie Zhong and John Wahr Department of Physics,

More information

Exercise 1: Vertical structure of the lower troposphere

Exercise 1: Vertical structure of the lower troposphere EARTH SCIENCES SCIENTIFIC BACKGROUND ASSESSMENT Exercise 1: Vertical structure of the lower troposphere In this exercise we will describe the vertical thermal structure of the Earth atmosphere in its lower

More information

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a DETAILS ABOUT THE TECHNIQUE We use a global mantle convection model (Bunge et al., 1997) in conjunction with a global model of the lithosphere (Kong and Bird, 1995) to compute plate motions consistent

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Introduction to Fluid Mechanics Tien-Tsan Shieh April 16, 2009 What is a Fluid? The key distinction between a fluid and a solid lies in the mode of resistance to change of shape. The fluid, unlike the

More information

Isostacy: Compensation of Topography and Isostatic Geoid Anomalies

Isostacy: Compensation of Topography and Isostatic Geoid Anomalies Isostacy: Compensation of Topography and Isostatic Geoid Anomalies November 3, 2016 1 Isostacy One of the major goals of interpreting planetary gravity fields is to understand how topography positive (

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

F11AE1 1. C = ρν r r. r u z r

F11AE1 1. C = ρν r r. r u z r F11AE1 1 Question 1 20 Marks) Consider an infinite horizontal pipe with circular cross-section of radius a, whose centre line is aligned along the z-axis; see Figure 1. Assume no-slip boundary conditions

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

High-Harmonic Geoid Signatures due to Glacial Isostatic Adjustment, Subduction and Seismic Deformation

High-Harmonic Geoid Signatures due to Glacial Isostatic Adjustment, Subduction and Seismic Deformation High-Harmonic Geoid Signatures due to Glacial Isostatic Adjustment, Subduction and Seismic Deformation L.L.A. Vermeersen (1), H. Schotman (1), M.-W. Jansen (1), R. Riva (1) and R. Sabadini (2) (1) DEOS,

More information

Ice on Earth: An overview and examples on physical properties

Ice on Earth: An overview and examples on physical properties Ice on Earth: An overview and examples on physical properties - Ice on Earth during the Pleistocene - Present-day polar and temperate ice masses - Transformation of snow to ice - Mass balance, ice deformation,

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

Previously Documented Basin-localized Extension on Mercury

Previously Documented Basin-localized Extension on Mercury GSA DATA REPOSITORY 2012323 Watters et al. Previously Documented Basin-localized Extension on Mercury The most widely distributed extensional landforms on Mercury seen in images from the Mariner 10 and

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

CHAPTER X. Second Half Review 2017

CHAPTER X. Second Half Review 2017 CHAPTER X Second Half Review 217 Here is a quick overview of what we covered in the second half of the class. Remember that the final covers the whole course but there will naturally be a bias towards

More information

Neogene Uplift of The Barents Sea

Neogene Uplift of The Barents Sea Neogene Uplift of The Barents Sea W. Fjeldskaar A. Amantov Tectonor/UiS, Stavanger, Norway FORCE seminar April 4, 2013 The project (2010-2012) Funding companies Flat Objective The objective of the work

More information

HOMEWORK 3 Draft presentations due November 4 Oral presentations of Group problems, November 6, November 8

HOMEWORK 3 Draft presentations due November 4 Oral presentations of Group problems, November 6, November 8 HOMEWORK 3 Draft presentations due November 4 Oral presentations of Group problems, November 6, November 8 Group A1 Modeling marine magnetic anomalies Write a Matlab program to generate marine magnetic

More information

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth References: Turcotte and Schubert, Geodynamics, Sections 2.1,-2.4, 2.7, 3.1-3.8, 6.1, 6.2, 6.8, 7.1-7.4. Jaeger and Cook, Fundamentals of

More information

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry Planetary Surfaces Gravity & Rotation Polar flattening caused by rotation is the largest deviation from a sphere for a planet sized object (as

More information

Rheology of the Mantle and Plates (part 1): Deformation mechanisms and flow rules of mantle minerals

Rheology of the Mantle and Plates (part 1): Deformation mechanisms and flow rules of mantle minerals (part 1): Deformation mechanisms and flow rules of mantle minerals What is rheology? Rheology is the physical property that characterizes deformation behavior of a material (solid, fluid, etc) solid mechanics

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

Chapter 1: Basic Concepts

Chapter 1: Basic Concepts What is a fluid? A fluid is a substance in the gaseous or liquid form Distinction between solid and fluid? Solid: can resist an applied shear by deforming. Stress is proportional to strain Fluid: deforms

More information

Stress, Strain, and Viscosity. San Andreas Fault Palmdale

Stress, Strain, and Viscosity. San Andreas Fault Palmdale Stress, Strain, and Viscosity San Andreas Fault Palmdale Solids and Liquids Solid Behavior: Liquid Behavior: - elastic - fluid - rebound - no rebound - retain original shape - shape changes - small deformations

More information

Geophysics Departmental Exam: 2004 Part 1

Geophysics Departmental Exam: 2004 Part 1 2004 Geophysics Departmental Exam: 2004 Part 1 This section is 90 minutes, closed book, and consists of questions designed to test your knowledge of facts and figures in the geosciences. The focus will

More information

12.1 Viscous potential flow (VPF)

12.1 Viscous potential flow (VPF) 1 Energy equation for irrotational theories of gas-liquid flow:: viscous potential flow (VPF), viscous potential flow with pressure correction (VCVPF), dissipation method (DM) 1.1 Viscous potential flow

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

5.1 Fluid momentum equation Hydrostatics Archimedes theorem The vorticity equation... 42

5.1 Fluid momentum equation Hydrostatics Archimedes theorem The vorticity equation... 42 Chapter 5 Euler s equation Contents 5.1 Fluid momentum equation........................ 39 5. Hydrostatics................................ 40 5.3 Archimedes theorem........................... 41 5.4 The

More information

UNIVERSITY OF EAST ANGLIA

UNIVERSITY OF EAST ANGLIA UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2007 2008 FLUIDS DYNAMICS WITH ADVANCED TOPICS Time allowed: 3 hours Attempt question ONE and FOUR other questions. Candidates must

More information

Seismotectonics of intraplate oceanic regions. Thermal model Strength envelopes Plate forces Seismicity distributions

Seismotectonics of intraplate oceanic regions. Thermal model Strength envelopes Plate forces Seismicity distributions Seismotectonics of intraplate oceanic regions Thermal model Strength envelopes Plate forces Seismicity distributions Cooling of oceanic lithosphere also increases rock strength and seismic velocity. Thus

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

Surface changes caused by erosion and sedimentation were treated by solving: (2)

Surface changes caused by erosion and sedimentation were treated by solving: (2) GSA DATA REPOSITORY 214279 GUY SIMPSON Model with dynamic faulting and surface processes The model used for the simulations reported in Figures 1-3 of the main text is based on two dimensional (plane strain)

More information

Vorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. N-S equation: v. Now: v = v + = 0 incompressible

Vorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. N-S equation: v. Now: v = v + = 0 incompressible 13.01 Marine Hydrodynamics, Fall 004 Lecture 9 Copyright c 004 MIT - Department of Ocean Engineering, All rights reserved. Vorticity Equation 13.01 - Marine Hydrodynamics Lecture 9 Return to viscous incompressible

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

Vertical Motion from Satellite Altimetry and Tide gauges

Vertical Motion from Satellite Altimetry and Tide gauges Vertical Motion from Satellite Altimetry and Tide gauges Alexander Braun, C.K. Shum and C.-Y. Kuo Byrd Polar Research Center and Laboratory for Space Geodesy and Remote Sensing, The Ohio State University,

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Dynamics of the Mantle and Lithosphere ETH Zürich Continuum Mechanics in Geodynamics: Equation cheat sheet

Dynamics of the Mantle and Lithosphere ETH Zürich Continuum Mechanics in Geodynamics: Equation cheat sheet Dynamics of the Mantle and Lithosphere ETH Zürich Continuum Mechanics in Geodynamics: Equation cheat sheet or all equations you will probably ever need Definitions 1. Coordinate system. x,y,z or x 1,x

More information

ASTR 320: Solutions to Problem Set 2

ASTR 320: Solutions to Problem Set 2 ASTR 320: Solutions to Problem Set 2 Problem 1: Streamlines A streamline is defined as a curve that is instantaneously tangent to the velocity vector of a flow. Streamlines show the direction a massless

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Normal stress causes normal strain σ 22

Normal stress causes normal strain σ 22 Normal stress causes normal strain blue box = before yellow box = after x 2 = Eɛ 22 ɛ 22 = E x 3 x 1 force is acting on the x2 face force is acting in the x2 direction Why do I draw this with equal stresses

More information

1 Exercise: Linear, incompressible Stokes flow with FE

1 Exercise: Linear, incompressible Stokes flow with FE Figure 1: Pressure and velocity solution for a sinking, fluid slab impinging on viscosity contrast problem. 1 Exercise: Linear, incompressible Stokes flow with FE Reading Hughes (2000), sec. 4.2-4.4 Dabrowski

More information

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep Rheology III Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep Ideal materials fall into one of the following categories:

More information

Laminar Boundary Layers. Answers to problem sheet 1: Navier-Stokes equations

Laminar Boundary Layers. Answers to problem sheet 1: Navier-Stokes equations Laminar Boundary Layers Answers to problem sheet 1: Navier-Stokes equations The Navier Stokes equations for d, incompressible flow are + v ρ t + u + v v ρ t + u v + v v = 1 = p + µ u + u = p ρg + µ v +

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Lecture 3: Fundamentals of Fluid Flow: fluid properties and types; Boundary layer structure; unidirectional flows

Lecture 3: Fundamentals of Fluid Flow: fluid properties and types; Boundary layer structure; unidirectional flows GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lecture 3: Fundamentals of Fluid Flow: fluid properties and types; Boundary layer structure; unidirectional flows Why study

More information

ISSN Scientific Technical Report STR 07/05. DOI: /GFZ.b GeoForschungsZentrum Potsdam

ISSN Scientific Technical Report STR 07/05. DOI: /GFZ.b GeoForschungsZentrum Potsdam ISSN 1610-0956 Ingo Sasgen, Robert Mulvaney, Volker Klemann and Detlef Wolf Glacial-isostatic adjustment and sea-level change near Berkner Island, Antarctica Ingo Sasgen Dep. 1: Geodesy and Remote Sensing

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

INDIAN INSTITUTE OF TECHNOOGY, KHARAGPUR Date: -- AN No. of Students: 5 Sub. No.: ME64/ME64 Time: Hours Full Marks: 6 Mid Autumn Semester Examination Sub. Name: Convective Heat and Mass Transfer Instructions:

More information

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) Test Midterm 1 F2013 MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct nswer in the Questions Below.) 1. The absolute viscosity µ of a fluid is primarily a function

More information

MS 20 Introduction To Oceanography. Lab 3: Density, Specific Gravity, Archimedes and Isostasy

MS 20 Introduction To Oceanography. Lab 3: Density, Specific Gravity, Archimedes and Isostasy Grade 10/10 MS 20 Introduction To Oceanography Lab 3: Density, Specific Gravity, Archimedes and Isostasy Team Number: 1 Team Leader: Team Members MS 20 Laboratory Density, Specific Gravity, Archimedes

More information

Chapter 4: Fundamental Forces

Chapter 4: Fundamental Forces Chapter 4: Fundamental Forces Newton s Second Law: F=ma In atmospheric science it is typical to consider the force per unit mass acting on the atmosphere: Force mass = a In order to understand atmospheric

More information

12 Gravity and Topography

12 Gravity and Topography 12. Gravity and Topography 126 12 Gravity and Topography In the limit of perfect hydrostatic equilibrium, there is an exact relationship between gravity and topography... and no new information emerges:

More information

Continental Hydrology, Rapid Climate Change, and the Intensity of the Atlantic MOC: Insights from Paleoclimatology

Continental Hydrology, Rapid Climate Change, and the Intensity of the Atlantic MOC: Insights from Paleoclimatology Continental Hydrology, Rapid Climate Change, and the Intensity of the Atlantic MOC: Insights from Paleoclimatology W.R. Peltier Department of Physics University of Toronto WOCE derived N-S salinity section

More information

Constraints on Shallow Low-Viscosity Earth Layers from Future GOCE Data

Constraints on Shallow Low-Viscosity Earth Layers from Future GOCE Data Constraints on Shallow Low-Viscosity Earth Layers from Future GOCE Data Hugo Schotman 1,2, Bert Vermeersen 2, Pieter Visser 2 1 2 3 rd International GOCE User Workshop, ESA Esrin, 7 November 2006 glacial-isostatic

More information

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

More information

GOCE-GDC: Towards a better understanding of the Earth s interior and geophysical exploration research Work Package 5 - Geophysics B

GOCE-GDC: Towards a better understanding of the Earth s interior and geophysical exploration research Work Package 5 - Geophysics B GOCE-GDC: Towards a better understanding of the Earth s interior and geophysical exploration research Work Package 5 - Geophysics B Zdeněk Martinec Dublin Institute for Advanced Studies 5 Merrion Square,

More information

compare to Mannings equation

compare to Mannings equation 330 Fluid dynamics Density and viscosity help to control velocity and shear in fluids Density ρ (rho) of water is about 700 times greater than air (20 degrees C) Viscosity of water about 55 times greater

More information

NAME IGNEOUS & METAMORPHIC PETROLOGY INTRUSION OF MAGMA

NAME IGNEOUS & METAMORPHIC PETROLOGY INTRUSION OF MAGMA NAME 89.304 - IGNEOUS & METAMORPHIC PETROLOGY INTRUSION OF MAGMA 1. The summit of Mauna Loa is 8192 m above the floor of the Pacific Ocean, but only 4169 m of this is above sea level. About 150 m of ocean-floor

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction OCN/ATM/ESS 587 The wind-driven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The wind-driven ocean. The major ocean gyres

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

Final Polymer Processing

Final Polymer Processing 030319 Final Polymer Processing I) Blow molding is used to produce plastic bottles and a blow molding machine was seen during the Equistar tour. In blow molding a tubular parison is produced by extrusion

More information

Introduction to the use of gravity measurements in Ge111A

Introduction to the use of gravity measurements in Ge111A Introduction to the use of gravity measurements in Ge111A Background & basic intuition Data reduction Use of the instrument See Reynolds for detailed quantitative discussion What and Why Gravity measures

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

Week 2 Notes, Math 865, Tanveer

Week 2 Notes, Math 865, Tanveer Week 2 Notes, Math 865, Tanveer 1. Incompressible constant density equations in different forms Recall we derived the Navier-Stokes equation for incompressible constant density, i.e. homogeneous flows:

More information