Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Size: px
Start display at page:

Download "Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request."

Transcription

1

2 UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. Do not turn over until you are told to do so by the Invigilator. Copyright of the University of East Anglia

3 2 You may use the following vector identity, 2 u = ( u) ( u). In cylindrical polar coordinates, when u = u r + v θ +w ẑ, u = 1 r r θ ẑ r r θ z u rv w, 2 = 2 r r r r 2 θ 2, u = 1 r ψ θ, v = ψ, for streamfunction ψ. r In Cartesian coordinates, when u = ui + vj + wk, the Navier-Stokes equations are: ρ(u t + uu x + vu y + wu z ) = p x + µ(u xx + u yy + u zz ), ρ(v t + uv x + vv y + wv z ) = p y + µ(v xx + v yy + v zz ), ρ(w t + uw x + vw y + ww z ) = p z + µ(w xx + w yy + w zz ), u x + v y + w z = 0.

4 3 1. A plane jet of fluid of unit density penetrates an ambient gas, which is at atmospheric pressure p a. The undisturbed jet is confined between the lines y = a and y = a, where a > 0, and moves in the x direction at speed U at pressure P(x, y). Fix axes moving with the jet so that the fluid appears to be stationary. Let λ and ε be parameters, with ε 1. Perturb the jet such that its upper surface and lower surfaces are now at y = f(x, t) = ±a + εa 1 (t) cos(λx). Inside the jet, let εu(x, y, t), εv(x, y, t) be the perturbation velocities in the x and y directions respectively, and εp(x, y, t) the perturbation pressure, so that the new jet pressure is p(x, y, t) = P + εp. The velocity perturbation satisfies v t = p y, and the pressure perturbation p(x, y, t) satisfies Laplace s equation 2 p x + 2 p 2 y = 0. 2 At the upper and lower surfaces, the pressure discontinuities are p y=a p a = κ, p a p y= a = κ, respectively, with the curvature given by κ = f xx (1 + f 2 x) 3/2. (i) Neglecting terms of size ε 2 and higher, show that κ = ελ 2 a 1 cos(λx). Hence show that p(x, ±a, t) = ±λ 2 a 1 cos(λx). (ii) Write u = û(y, t) cos(λx), v = ˆv(y, t) cos(λx) and p = ˆp(y, t) cos(λx). Neglecting terms of size ε 2 and higher, use the kinematic conditions at y = ±a and the results from (i) to derive the conditions ( 1 ) 2ˆp λ 2 t ± ˆp 2 y = 0 at y = ±a. (iii) Write ˆp = e st g(y). Confirm by direct substitution that g(y) = A cosh λy + B sinh λy. By satisfying the conditions derived in (ii), show that s 2 = λ 3 tanh(λa) or s 2 = λ 3 coth(λa). TURN OVER

5 4 2. Define the rate of strain tensor e ij and the vorticity tensor ξ ij. Explain their meaning in terms of the kinematics of the flow. By considering a small cube of fluid, explain why, if e 11 + e 22 + e 33 = 0, the local rate of change of volume is zero and the fluid is incompressible. For a fluid of density ρ which is flowing with velocity u, the continuity equation is given by Dρ + ρ u = 0. Dt State the Reynolds transport theorem. By considering a moving fluid parcel of volume V (t) and surface area S(t), derive the Navier-Stokes equations for an incompressible Newtonian fluid in the absence of a body force.

6 5 3. Viscous fluid flows along an open rectangular channel which is bounded by two stationary parallel semi-infinite walls at y = 0, y = b and a bottom wall at z = 0. The fluid occupies the region 0 y b and 0 z <. The bottom wall moves at speed U in the positive x direction. The flow is assumed to be steady and unidirectional in the x direction with velocity component u. The fluid is at rest a long way from z = 0. Use the continuity equation to show that u = u(y, z). Write down the boundary conditions to be satisfied by u on z = 0, at y = 0 and y = b, and as z. By considering the momentum equations, show that the horizontal pressure gradient p/ x must be constant. Assuming this constant to be zero, deduce that the fluid velocity u satisfies the two-dimensional Laplace s equation, 2 u y + 2 u 2 z = 0. 2 By seeking a separable solution which satisfies the boundary conditions, show that in the fluid domain u = 4U π (2k + 1) 1 sin{(2k + 1)πy/b}e (2k+1)πz/b. k=0 Show that the volume flux Q along the channel is given by Q = 8Ub2 π 3 k=0 1 (2k + 1) 3. TURN OVER

7 6 4. Show that the steady two-dimensional equations of incompressible Stokes flow, given by 0 = p + µ 2 u, u = 0, are satisfied provided that where ψ(x, y) is the streamfunction. 4 ψ = 0, (1) A very viscous fluid in Stokes flow occupies the infinite region 0 < r <, which is bounded by two solid walls at θ = 0, θ = α, where r and θ are plane polar coordinates. The wall θ = 0 moves at constant speed U in the negative x direction. The other wall θ = α is fixed. Write down appropriate boundary conditions for the fluid velocity on θ = 0 and θ = α. Assuming that the flow is modelled by equation (1), seek a solution in the form ψ = Urf(θ), and show that f(θ) satisfies the equation f + 2f + f = 0. Solve this equation and apply the boundary conditions to show that f(θ) = θ sin2 α cosθ (α 2 kθ) sin θ α 2 sin 2, α where k = 1 (2α sin 2α). 2

8 7 5. Incompressible fluid of kinematic viscosity ν flows at high Reynolds number over a flat rigid plate which occupies 0 < x <, y = 0. Justify the reduction of the steady Navier-Stokes equations to the boundary layer form u u x + v u y = U(x) U (x) + ν 2 u y 2, u x + v y = 0, where (u, v) are the velocity components in the (x, y) directions, and U(x) is the external slip velocity at the top of the boundary layer. Explain why the pressure does not vary across the boundary layer. Suppose that the external slip velocity U(x) = U, which is constant. Introducing a streamfunction, ψ, defined by ψ = (νu x) 1/2 f(η), where η = show that the momentum equation reduces to the form f ff = 0. ( U νx ) 1/2 y, State the boundary conditions to be satisfied by f(η) at the solid plate and as η. If the boundary layer momentum thickness, θ, is defined as show that θ = 0 u ( 1 u ) dy, U U ( νx ) 1/2 θ = 2 f (0). U TURN OVER

9 8 6. Define the vorticity of a fluid motion and explain what is meant by a Stokes layer at a solid wall in an oscillating flow. An incompressible Newtonian fluid occupies the region y > 0 above a stationary flat wall at y = 0, < x <. A flow is driven in the fluid by a pressure gradient p/ x = G cosωt, where G and ω are constants. The fluid velocity is bounded as y. If the flow is unidirectional, with u = u(y, t) and v = 0, show that u satisfies the equation u t = (G/ρ) cosωt + u ν 2 y, 2 where ν, ρ are the kinematic viscosity and density of the fluid respectively. Supply the boundary condition at the wall y = 0. Let σ = (ω/2ν) 1/2. Find the solution for u(y, t) and demonstrate that it is π/2 out of phase with the pressure gradient. Compute the vorticity in the fluid and state whether it is in or out of phase with the pressure gradient. Deduce the existence of a Stokes layer at the wall when σ is large. Give an estimate for the thickness of this layer. END OF PAPER

UNIVERSITY OF EAST ANGLIA

UNIVERSITY OF EAST ANGLIA UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2007 2008 FLUIDS DYNAMICS WITH ADVANCED TOPICS Time allowed: 3 hours Attempt question ONE and FOUR other questions. Candidates must

More information

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used.

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used. UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2011 2012 FLUID DYNAMICS MTH-3D41 Time allowed: 3 hours Attempt FIVE questions. Candidates must show on each answer book the type

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 2012-13 MODULE TITLE: Introduction to Fluids DURATION OF

More information

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Exercise 5: Exact Solutions to the Navier-Stokes Equations I Fluid Mechanics, SG4, HT009 September 5, 009 Exercise 5: Exact Solutions to the Navier-Stokes Equations I Example : Plane Couette Flow Consider the flow of a viscous Newtonian fluid between two parallel

More information

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies 13th February 2015 Jorge Lindley email: J.V.M.Lindley@warwick.ac.uk 1 2D Flows - Shear flows Example 1. Flow over an inclined plane A

More information

2 Law of conservation of energy

2 Law of conservation of energy 1 Newtonian viscous Fluid 1 Newtonian fluid For a Newtonian we already have shown that σ ij = pδ ij + λd k,k δ ij + 2µD ij where λ and µ are called viscosity coefficient. For a fluid under rigid body motion

More information

F11AE1 1. C = ρν r r. r u z r

F11AE1 1. C = ρν r r. r u z r F11AE1 1 Question 1 20 Marks) Consider an infinite horizontal pipe with circular cross-section of radius a, whose centre line is aligned along the z-axis; see Figure 1. Assume no-slip boundary conditions

More information

α 2 )(k x ũ(t, η) + k z W (t, η)

α 2 )(k x ũ(t, η) + k z W (t, η) 1 3D Poiseuille Flow Over the next two lectures we will be going over the stabilization of the 3-D Poiseuille flow. For those of you who havent had fluids, that means we have a channel of fluid that is

More information

3 Generation and diffusion of vorticity

3 Generation and diffusion of vorticity Version date: March 22, 21 1 3 Generation and diffusion of vorticity 3.1 The vorticity equation We start from Navier Stokes: u t + u u = 1 ρ p + ν 2 u 1) where we have not included a term describing a

More information

Number of pages in the question paper : 06 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. MEK4300/9300 Viscous flow og turbulence

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. MEK4300/9300 Viscous flow og turbulence UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in: Day of examination: Friday 15. June 212 Examination hours: 9. 13. This problem set consists of 5 pages. Appendices: Permitted

More information

Part II. Fluid Dynamics II. Year

Part II. Fluid Dynamics II. Year Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 2, Section II 38C 41 An initially unperturbed two-dimensional inviscid jet in h < y < h has uniform speed U

More information

ME 509, Spring 2016, Final Exam, Solutions

ME 509, Spring 2016, Final Exam, Solutions ME 509, Spring 2016, Final Exam, Solutions 05/03/2016 DON T BEGIN UNTIL YOU RE TOLD TO! Instructions: This exam is to be done independently in 120 minutes. You may use 2 pieces of letter-sized (8.5 11

More information

Laminar Boundary Layers. Answers to problem sheet 1: Navier-Stokes equations

Laminar Boundary Layers. Answers to problem sheet 1: Navier-Stokes equations Laminar Boundary Layers Answers to problem sheet 1: Navier-Stokes equations The Navier Stokes equations for d, incompressible flow are + v ρ t + u + v v ρ t + u v + v v = 1 = p + µ u + u = p ρg + µ v +

More information

CHAPTER 4 ANALYTICAL SOLUTIONS OF COUPLE STRESS FLUID FLOWS THROUGH POROUS MEDIUM BETWEEN PARALLEL PLATES WITH SLIP BOUNDARY CONDITIONS

CHAPTER 4 ANALYTICAL SOLUTIONS OF COUPLE STRESS FLUID FLOWS THROUGH POROUS MEDIUM BETWEEN PARALLEL PLATES WITH SLIP BOUNDARY CONDITIONS CHAPTER 4 ANALYTICAL SOLUTIONS OF COUPLE STRESS FLUID FLOWS THROUGH POROUS MEDIUM BETWEEN PARALLEL PLATES WITH SLIP BOUNDARY CONDITIONS Introduction: The objective of this chapter is to establish analytical

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

5.8 Laminar Boundary Layers

5.8 Laminar Boundary Layers 2.2 Marine Hydrodynamics, Fall 218 ecture 19 Copyright c 218 MIT - Department of Mechanical Engineering, All rights reserved. 2.2 - Marine Hydrodynamics ecture 19 5.8 aminar Boundary ayers δ y U potential

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Computational Fluid Dynamics (CFD) 9//005 Topic7_NS_ F0 1 Momentum equation 9//005 Topic7_NS_ F0 1 Consider the moving fluid element model shown in Figure.b Basis is Newton s nd Law which says

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

A Simple Turbulence Closure Model. Atmospheric Sciences 6150 A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: V = V + v V = U i + u i Mean velocity: V = Ui + V j + W k =(U, V, W ) U i =(U

More information

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Proceedings of,, BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Yunho Jang Department of Mechanical and Industrial Engineering University of Massachusetts Amherst, MA 01002 Email:

More information

TOPICS IN MATHEMATICAL PHYSICS: FLUID DYNAMICS

TOPICS IN MATHEMATICAL PHYSICS: FLUID DYNAMICS TOPICS IN MATHEMATICAL PHYSICS: FLUID DYNAMICS PROF. VLADIMIR VLADIMIROV 1. The Kinematics of Continuous Medium 1.1. Lagrangian and Eulerian Coordinates General Idea Fluid flow is represented mathematically

More information

A Simple Turbulence Closure Model

A Simple Turbulence Closure Model A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: Mean velocity: Turbulent velocity: Gradient operator: Advection operator: V =

More information

Chapter 6 Laminar External Flow

Chapter 6 Laminar External Flow Chapter 6 aminar Eternal Flow Contents 1 Thermal Boundary ayer 1 2 Scale analysis 2 2.1 Case 1: δ t > δ (Thermal B.. is larger than the velocity B..) 3 2.2 Case 2: δ t < δ (Thermal B.. is smaller than

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

FLUID DYNAMICS, THEORY AND COMPUTATION MTHA5002Y

FLUID DYNAMICS, THEORY AND COMPUTATION MTHA5002Y UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2017 18 FLUID DYNAMICS, THEORY AND COMPUTATION MTHA5002Y Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

0 = p. 2 x + 2 w. z +ν w

0 = p. 2 x + 2 w. z +ν w Solution (Elliptical pipe flow (a Using the Navier Stokes equations in three dimensional cartesian coordinates, given that u =, v = and w = w(x,y only, and assuming no body force, we are left with = p

More information

Exercise: concepts from chapter 10

Exercise: concepts from chapter 10 Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

VISCOUS FLOW DUE TO A SHRINKING SHEET

VISCOUS FLOW DUE TO A SHRINKING SHEET QUARTERLY OF APPLIED MATHEMATICS VOLUME, NUMBER 0 XXXX XXXX, PAGES 000 000 S 0000-0000(XX)0000-0 VISCOUS FLOW DUE TO A SHRINKING SHEET By M. MIKLAVČIČ (Department of Mathematics, Michigan State University,

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

Exam in Fluid Mechanics 5C1214

Exam in Fluid Mechanics 5C1214 Eam in Fluid Mechanics 5C1214 Final eam in course 5C1214 13/01 2004 09-13 in Q24 Eaminer: Prof. Dan Henningson The point value of each question is given in parenthesis and you need more than 20 points

More information

INDIAN INSTITUTE OF TECHNOOGY, KHARAGPUR Date: -- AN No. of Students: 5 Sub. No.: ME64/ME64 Time: Hours Full Marks: 6 Mid Autumn Semester Examination Sub. Name: Convective Heat and Mass Transfer Instructions:

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics of Fluids and Transport Processes Chapter 9 Professor Fred Stern Fall 009 1 Chapter 9 Flow over Immersed Bodies Fluid flows are broadly categorized: 1. Internal flows such as ducts/pipes,

More information

Hydrodynamic Lubrication

Hydrodynamic Lubrication ME 383S Bryant February 15, 2005 1 Hydrodynamic Lubrication Fluid Lubricant: liquid or gas (gas bearing) Mechanism: Pressures separate surfaces o Normal loads on bodies o Convergent profile between surfaces

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

Part IB Fluid Dynamics

Part IB Fluid Dynamics Part IB Fluid Dynamics Based on lectures by P. F. Linden Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

Stability of Shear Flow

Stability of Shear Flow Stability of Shear Flow notes by Zhan Wang and Sam Potter Revised by FW WHOI GFD Lecture 3 June, 011 A look at energy stability, valid for all amplitudes, and linear stability for shear flows. 1 Nonlinear

More information

PAPER 333 FLUID DYNAMICS OF CLIMATE

PAPER 333 FLUID DYNAMICS OF CLIMATE MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 1:30 pm to 4:30 pm Draft 21 June, 2016 PAPER 333 FLUID DYNAMICS OF CLIMATE Attempt no more than THREE questions. There are FOUR questions in total.

More information

Boundary Layer Theory. v = 0, ( v)v = p + 1 Re 2 v. Consider a cylinder of length L kept in a inviscid irrotational flow.

Boundary Layer Theory. v = 0, ( v)v = p + 1 Re 2 v. Consider a cylinder of length L kept in a inviscid irrotational flow. 1 Boundary Layer Theory 1 Introduction Consider the steady flow of a viscous fluid. The governing equations based on length scale L and velocity scale U is given by v =, ( v)v = p + 1 Re 2 v For small

More information

Governing Equations of Fluid Dynamics

Governing Equations of Fluid Dynamics Chapter 3 Governing Equations of Fluid Dynamics The starting point of any numerical simulation are the governing equations of the physics of the problem to be solved. In this chapter, we first present

More information

. p.1/31. Department Mathematics and Statistics Arizona State University. Don Jones

. p.1/31. Department Mathematics and Statistics Arizona State University. Don Jones Modified-Truncation Finite Difference Schemes. p.1/31 Department Mathematics and Statistics Arizona State University Don Jones dajones@math.asu.edu . p.2/31 Heat Equation t u = λu xx + f . p.2/31 Heat

More information

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 ESS5203.03 - Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 Text: J.R.Garratt, The Atmospheric Boundary Layer, 1994. Cambridge Also some material from J.C. Kaimal and

More information

Turbulent drag reduction by streamwise traveling waves

Turbulent drag reduction by streamwise traveling waves 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA Turbulent drag reduction by streamwise traveling waves Armin Zare, Binh K. Lieu, and Mihailo R. Jovanović Abstract For

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion http://www.nd.edu/~gtryggva/cfd-course/ http://www.nd.edu/~gtryggva/cfd-course/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation

More information

Effect of Couple Stresses on the MHD of a Non-Newtonian Unsteady Flow between Two Parallel Porous Plates

Effect of Couple Stresses on the MHD of a Non-Newtonian Unsteady Flow between Two Parallel Porous Plates Effect of Couple Stresses on the MHD of a Non-Newtonian Unsteady Flow between Two Parallel Porous Plates N. T. M. Eldabe A. A. Hassan and Mona A. A. Mohamed Department of Mathematics Faculty of Education

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

7.6 Example von Kármán s Laminar Boundary Layer Problem

7.6 Example von Kármán s Laminar Boundary Layer Problem CEE 3310 External Flows (Boundary Layers & Drag, Nov. 11, 2016 157 7.5 Review Non-Circular Pipes Laminar: f = 64/Re DH ± 40% Turbulent: f(re DH, ɛ/d H ) Moody chart for f ± 15% Bernoulli-Based Flow Metering

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2014 15 FLUID DYNAMICS - THEORY AND COMPUTATION MTHA5002Y Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

Lecture 3: 1. Lecture 3.

Lecture 3: 1. Lecture 3. Lecture 3: 1 Lecture 3. Lecture 3: 2 Plan for today Summary of the key points of the last lecture. Review of vector and tensor products : the dot product (or inner product ) and the cross product (or vector

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

3.5 Vorticity Equation

3.5 Vorticity Equation .0 - Marine Hydrodynamics, Spring 005 Lecture 9.0 - Marine Hydrodynamics Lecture 9 Lecture 9 is structured as follows: In paragraph 3.5 we return to the full Navier-Stokes equations (unsteady, viscous

More information

MAE 101A. Homework 7 - Solutions 3/12/2018

MAE 101A. Homework 7 - Solutions 3/12/2018 MAE 101A Homework 7 - Solutions 3/12/2018 Munson 6.31: The stream function for a two-dimensional, nonviscous, incompressible flow field is given by the expression ψ = 2(x y) where the stream function has

More information

Exam in Fluid Mechanics SG2214

Exam in Fluid Mechanics SG2214 Exam in Fluid Mecanics G2214 Final exam for te course G2214 23/10 2008 Examiner: Anders Dalkild Te point value of eac question is given in parentesis and you need more tan 20 points to pass te course including

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Introduction to Fluid Mechanics Tien-Tsan Shieh April 16, 2009 What is a Fluid? The key distinction between a fluid and a solid lies in the mode of resistance to change of shape. The fluid, unlike the

More information

Symmetries and invariant solutions of mathematical models of plastic ow during linear friction welding

Symmetries and invariant solutions of mathematical models of plastic ow during linear friction welding Symmetries and invariant solutions of mathematical models of plastic ow during linear friction welding Artur Araslanov Ufa State Aviation Technical University, Ufa, Russia. Laboratory of Group Analysis

More information

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

Chapter 2. General concepts. 2.1 The Navier-Stokes equations Chapter 2 General concepts 2.1 The Navier-Stokes equations The Navier-Stokes equations model the fluid mechanics. This set of differential equations describes the motion of a fluid. In the present work

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas April 14, 2011 1 Introduction In the last two decades, the Lattice Boltzmann method (LBM) has emerged as a promising tool

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Spatial discretization scheme for incompressible viscous flows

Spatial discretization scheme for incompressible viscous flows Spatial discretization scheme for incompressible viscous flows N. Kumar Supervisors: J.H.M. ten Thije Boonkkamp and B. Koren CASA-day 2015 1/29 Challenges in CFD Accuracy a primary concern with all CFD

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

David Abrecht. February 17, 2012

David Abrecht. February 17, 2012 Addendum to An analytical solution method for the unsteady, unbounded, incompressible three-dimensional Navier-Stokes equations in Cartesian coordinates using coordinate axis symmetry degeneracy David

More information

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow OCEN 678-600 Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow Date distributed : 9.18.2005 Date due : 9.29.2005 at 5:00 pm Return your solution either in class or in my mail

More information

0.2. CONSERVATION LAW FOR FLUID 9

0.2. CONSERVATION LAW FOR FLUID 9 0.2. CONSERVATION LAW FOR FLUID 9 Consider x-component of Eq. (26), we have D(ρu) + ρu( v) dv t = ρg x dv t S pi ds, (27) where ρg x is the x-component of the bodily force, and the surface integral is

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability Jeffrey B. Weiss; notes by Duncan Hewitt and Pedram Hassanzadeh June 18, 2012 1 Introduction 1.1 What

More information

Week 2 Notes, Math 865, Tanveer

Week 2 Notes, Math 865, Tanveer Week 2 Notes, Math 865, Tanveer 1. Incompressible constant density equations in different forms Recall we derived the Navier-Stokes equation for incompressible constant density, i.e. homogeneous flows:

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

Part IB. Fluid Dynamics. Year

Part IB. Fluid Dynamics. Year Part IB Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2018 14 Paper 1, Section I 5D Show that the flow with velocity potential φ = q 2π ln r in two-dimensional,

More information

Mathematical Concepts & Notation

Mathematical Concepts & Notation Mathematical Concepts & Notation Appendix A: Notation x, δx: a small change in x t : the partial derivative with respect to t holding the other variables fixed d : the time derivative of a quantity that

More information

Multiscale Hydrodynamic Phenomena

Multiscale Hydrodynamic Phenomena M2, Fluid mechanics 2014/2015 Friday, December 5th, 2014 Multiscale Hydrodynamic Phenomena Part I. : 90 minutes, NO documents 1. Quick Questions In few words : 1.1 What is dominant balance? 1.2 What is

More information

Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass

Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass Vladimír Prokop, Karel Kozel Czech Technical University Faculty of Mechanical Engineering Department of Technical Mathematics Vladimír

More information

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem 1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem Objective of the Chapter: Formulation of the potential flow around the hull of a ship advancing and oscillationg in waves Results of the Chapter:

More information

In this section, mathematical description of the motion of fluid elements moving in a flow field is

In this section, mathematical description of the motion of fluid elements moving in a flow field is Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 7

Classical Mechanics III (8.09) Fall 2014 Assignment 7 Classical Mechanics III (8.09) Fall 2014 Assignment 7 Massachusetts Institute of Technology Physics Department Due Wed. November 12, 2014 Mon. November 3, 2014 6:00pm (This assignment is due on the Wednesday

More information

Review of fluid dynamics

Review of fluid dynamics Chapter 2 Review of fluid dynamics 2.1 Preliminaries ome basic concepts: A fluid is a substance that deforms continuously under stress. A Material olume is a tagged region that moves with the fluid. Hence

More information

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum)

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum) 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 4 2.20 - Marine Hydrodynamics Lecture 4 Introduction Governing Equations so far: Knowns Equations # Unknowns # density ρ( x, t) Continuity 1 velocities

More information

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation A Study on Numerical Solution to the Incompressible Navier-Stokes Equation Zipeng Zhao May 2014 1 Introduction 1.1 Motivation One of the most important applications of finite differences lies in the field

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW 4.1 Introduction Boundary layer concept (Prandtl 1904): Eliminate selected terms in the governing equations Two key questions (1) What are the

More information

Lecture 8: Tissue Mechanics

Lecture 8: Tissue Mechanics Computational Biology Group (CoBi), D-BSSE, ETHZ Lecture 8: Tissue Mechanics Prof Dagmar Iber, PhD DPhil MSc Computational Biology 2015/16 7. Mai 2016 2 / 57 Contents 1 Introduction to Elastic Materials

More information

Dynamics of Glaciers

Dynamics of Glaciers Dynamics of Glaciers McCarthy Summer School 01 Andy Aschwanden Arctic Region Supercomputing Center University of Alaska Fairbanks, USA June 01 Note: This script is largely based on the Physics of Glaciers

More information

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations Math 575-Lecture 13 In 1845, tokes extended Newton s original idea to find a constitutive law which relates the Cauchy stress tensor to the velocity gradient, and then derived a system of equations. The

More information

ENGR Heat Transfer II

ENGR Heat Transfer II ENGR 7901 - Heat Transfer II Convective Heat Transfer 1 Introduction In this portion of the course we will examine convection heat transfer principles. We are now interested in how to predict the value

More information

9. Boundary layers. Flow around an arbitrarily-shaped bluff body. Inner flow (strong viscous effects produce vorticity) BL separates

9. Boundary layers. Flow around an arbitrarily-shaped bluff body. Inner flow (strong viscous effects produce vorticity) BL separates 9. Boundary layers Flow around an arbitrarily-shaped bluff body Inner flow (strong viscous effects produce vorticity) BL separates Wake region (vorticity, small viscosity) Boundary layer (BL) Outer flow

More information

Basic concepts in viscous flow

Basic concepts in viscous flow Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Adapted from Chapter 1 of Cambridge Texts in Applied Mathematics 1 The fluid dynamic equations Navier-Stokes equations Dimensionless

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information