Section 10.4 Vectors

Size: px
Start display at page:

Download "Section 10.4 Vectors"

Transcription

1 220 Section 10.4 Vectors In this section, we will define and explore the properties of vectors. Vectors can be used to represent the speed and the direction of an object, the force and direction acting on an object, and many other physical applications. A vector has two parts: its magnitude and direction. Thus, if a plane is traveling 180 mph with a bearing of S35 E, we can represent the speed and the direction as a velocity vector. Generally, we use directed line segments to graphically represent a vector. The initial point is where the vector starts and the arrow of the ray points to the terminal point where the vector ends. We will use boldface lowercase letter or we will use the uppercase letters of the initial and terminal points with an arrow above the two letters to represent a vector. Q PQ or v or v P v or PQ denotes the magnitude of the vector. If a vector has a magnitude of 0, then it is called the zero vector, 0 or 0. Two vectors are equal if and only if they have the same magnitude and the same direction. Let u, v, w be vectors. Addition of vectors have several properties that it satisfies: Commutative Property v + w = w + v Associative Property u + (v + w) = (u + v) + w Identity Property Inverse Property v + 0 = v v + ( v) = 0 Note: v w = v + ( w)

2 A scalar is simply a real number without direction. In other words, it has magnitude, but no direction. If we let v be a vector and α be a scalar, then we can define scalar multiplication as the following: Definition: Scalar Multiplication Case 1: If α > 0 and v 0, then αv is a vector with magnitude of α v in the same direction as v. Case 2: If α < 0 and v 0, then αv is a vector with magnitude of α v in the opposite direction of v. Case 3: If α = 0 or v = 0, then αv = 0. Scalar Multiplication has the following properties: 0 v = 0 1 v = v 1 v = v (α + β)v = αv + βv α(v + w) = αv + αw α(βv) = (αβ)v 221 v v 2v Objective 1: Graph Vectors. When adding or subtracting vectors, we draw the first vector and then draw the next such that the initial point of the second vector is the terminal point of the first vector. Use the vectors below to find the following: u v w Ex. 1a u 2w Ex. 1b 3w + 2v Ex. 1c 2u + v + 2w

3 a) First draw u and then draw 2w such that the initial point of 2w is the terminal point of u. 222 u 2w u 2w b) First draw 3w and then draw + 2v such that the initial point of 2v is the terminal point of 3w. 3w 2v 3w + 2v c) First draw 2u and then draw v such that the initial point of v is the terminal point of 2u. Finally, draw 2w such that the initial point of 2w is the terminal point of v. 2u v 2w 2u + v + 2w

4 223 The magnitude of v, denoted v, is the length of the directed line segment. The magnitude has the following properties: v Theorem Let v be a vector and α be a scalar, then 1) v 0 2) v = 0 if and only if v = 0. 3) v = v 4) αv = α v Definition A vector u is called a unit vector if u = 1. Objective #2: Find a Position Vector. We can think of a vector has being the hypotenuse of a right triangle. The hypotenuse of a right triangle is determined by the two legs a and b. Thus, using a and b, we can then represent a vector algebraically: Definition An algebraic vector v is represented as v = a, b where a and b are scalars and are called the components of v.if the initial point of v is at the origin and the teriminal point is (a, b), then v = a, b is called a position vector. A position vector always starts at the origin. Theorem If v is a vector with an initial point of (x 1, y 1 ) and a terminal point of (x 2, y 2 ), then v is equal to the position vector x 2 x 1, y 2 y 1. (x 2, y 2 ) (x 1, y 1 ) (x 2 x 1 ) Find the position vector: (y 2 y 1 ) Ex. 2 v = P 1 P 2 where P 1 = ( 3, 4) and P 2 = (5, 2). v = 5 ( 3), 2 4 = 8, 2 We can say that two vectors are equal if they have the same position vector. This leads to the following theorem:

5 224 Equality of Vectors Theorem Two vectors are equal if and only if their components are equal. In other words, if v = a 1, b 1 and w = a 2, b 2, then v = w if and only if a 1 = a 2 and b 1 = b 2. We now want to be able to represent vectors another way so that it will be easier to combine them algebraically: Definition Component Unit Vectors Let i = 1, 0 be the unit vector with direction along the positive x- axis. Let j = 0, 1 be the unit vector with direction along the positive y- axis. Using this definition, we can write any vector using the unit vectors i and j. Thus, we can say that v = a, b = a 1, 0 + b 0, 1 = ai + bj, where a and b are called the horizontal and vertical components of v respectively. Objective #3 & #4: Working with Vectors Algebraically. Definition Let v = a 1, b 1 = a 1 i + b 1 j and w = a 2, b 2 = a 2 i + b 2 j be two vectors and let α be a scalar. Then 1) v + w = (a 1 + a 2 )i + (b 1 + b 2 )j = a 1 + a 2, b 1 + b 2 2) v w = (a 1 a 2 )i + (b 1 b 2 )j = a 1 a 2, b 1 b 2 3) αv = (αa 1 )i + (αb 1 )j 4) v = a 1 2 +b 1 2 If v = 3i 4j and w = 2i + j, find the following: Ex. 3a v + w Ex. 3b v w Ex. 3c 4v 2w Ex. 3d v a) Think of combining like terms: v + w = (3i 4j) + ( 2i + j) = i 3j b) Think of combining like terms: v w = (3i 4j) ( 2i + j) = 3i 4j + 2i j = 5i 5j c) Distribute and combine like terms: 4v 2w = 4(3i 4j) 2( 2i + j) = 12i 16j + 4i 2j = 16i 18j d) v = (3) 2 +( 4) 2 = 25 = 5

6 225 Objective #5: Finding Unit Vectors. In some instances, it is useful to find a unit vector in the same direction as a vector v. Theorem Unit Vector in the Direction of v Given a nonzero vector v, the unit vector in the same direction as v is u = v v This also implies that v = v u. We will see where this relationship is important in the next few pages. Find a unit vector in the same direction as v: Ex. 4a v = 8i + 6j Ex. 4b v = 3i j a) First, find v : v = ( 8) 2 +(6) 2 = 100 = 10 Now, u = v v = 8i+6j 10 b) First, find v : = 0.8i + 0.6j v = (3) 2 +( 1) 2 = 10 Now, u = v v = 3i j = 3 i 1 j = i j Objective #6: Find a Vector from its Direction and Magnitude. There are many vectors that are describe in terms of its magnitude and direction. For instance, a velocity vector is describe in terms of its magnitude (speed) and direction. An object may be moving at 35 miles per hour at an angle of evaluation of 15. If we think of the magnitude v as a radius of a circle centered at the origin and the direction as an angle α from the positive x-axis or from i, then v = ai + bj can be expressed as: v = v cos(α)i + v sin(α)j = v (cos(α)i + sin(α)j) where 0 α < 360

7 226 Find the vector that satisfies the following: Ex. 5 v = 3 and α = 255 v = v (cos(α)i + sin(α)j) = 3(cos(255 )i + sin(255 )j) = 3cos(255 )i + 3sin(255 )j i j Write v in the form v (cos(α)i + sin(α)j): Ex. 6 v = 1.5i 2j Since a = 1.5 and b = 2, the terminal side is in quadrant IV First, calculate v : v = (1.5) 2 + ( 2) 2 = 6.25 = 2.5 Now, find α: tan(α) = α = tan 1 ( ) = But α needs to be in [0, 360 ), so we will add 360 to our answer: Thus, v = 2.5(cos( )i + sin( )j) Objective #7: Model with Vectors Since forces can be represented as vectors, we can combine two forces to represent a resultant force. In a system, the resultant force on an object is 0 and the object is at rest, then the object is in static equilibrium. Solve the following: Ex. 7 If a child pushes a cart with a force of 10 pounds up 20 incline, express the force vector in terms of i and j. F = F (cos(α)i + sin(α)j) = 10(cos(20 )i + sin(20 )j) 9.397i j Ex. 8 Suppose an object is suspended by two ropes as illustrated below. If the object weighs 600 pounds, find the tension on each rope

8 227 There are three forces i this system. Let F 1 be the tension on the rope on the right side, F 2 be the tension on the rope on the left side, and F 3 be the force due to gravity. Since alternate interior angles of two parallel lines cut by a transversal are equal, then angle between the rope on the right and the positive x-axis is 48. For the rope on the left, the alternate interior angle is 37, so the angle between the positive x-axis and that rope is = Thus, for the two ropes: F 1 = F 1 (cos(48 )i + F 1 (sin(48 )j F 2 = F 2 (cos(143 )i + F 2 (sin(143 )j For the weight of the object, gravity pulls it in the negative y-axis direction, so F 3 = 600j Since the object is in static equilibruim, the resultant force is 0. F r = F 1 + F 2 + F 3 = a r i + b r j = 0 which implies a r and b r are zero which means that the sum of each components will be zero: i component: F 1 (cos(48 ) + F 2 (cos(143 ) = 0 j component: F 1 (sin(48 ) + F 2 (sin(143 ) 600 = 0 Looking at the first equation, we can solve for F 1 : F 1 (cos(48 ) + F 2 (cos(143 ) = 0 F 1 (cos(48 ) = F 2 (cos(143 ) F 1 = F 2 (cos(143 )/(cos(48 ) = F 2 Now, substitute in for F 1 in the j component equation: F 1 (sin(48 ) + F 2 (sin(143 ) 600 = F 2 (sin(48 ) + F 2 (sin(143 ) 600 = 0 Now, solve for F 2 : F 2 (sin(48 ) + F 2 (sin(143 ) 600 = F 2 ( ) + F 2 ( ) 600 = F 2 + F 2 ( ) 600 = F = F 2 = 600 F Now, find F 1 :

9 F 1 = F 2 = ( ) The rope on the right has a tension of pounds and the rope on the left has a tension of pounds. Ex. 9 Rowing across a lake, Roger maintains a constant speed of 8 miles per hour due north. If the current is 3 miles per hour in a southeasterly direction, find the actual speed & direction of the boat. Let v b = the velocity of the boat v c = the velocity of the current v n = the net velocity (what we are trying to find) We need to diagram the situation so we can write down our vectors: Since v b lies on the positive y-axis, we can represent the vector as v b = 0i + 8j. v b The vector v c has a southeasterly direction so the angle v n from the positive x-axis to that vector is 45. Since the magnitude of the vector is 3, then v c v c = 3cos( 45 )i + 3sin( 45 )j = i j. v n = v b + v c = 8j i j = i + ( )j. The actual speed of the boat is v n = (1.5 2 ) 2 + ( ) 2 = = = mph To get the direction, we need to find the angle between v b and v n. First, we will find the angle between v n and the x-axis: tan(θ) = y x = θ = tan 1 ( ) = Thus, the angle between v b and v n is The boat is moving at 6.25 mph with a bearing of N19.84 E. 228

SECTION 6.3: VECTORS IN THE PLANE

SECTION 6.3: VECTORS IN THE PLANE (Section 6.3: Vectors in the Plane) 6.18 SECTION 6.3: VECTORS IN THE PLANE Assume a, b, c, and d are real numbers. PART A: INTRO A scalar has magnitude but not direction. We think of real numbers as scalars,

More information

OpenStax-CNX module: m Vectors. OpenStax College. Abstract

OpenStax-CNX module: m Vectors. OpenStax College. Abstract OpenStax-CNX module: m49412 1 Vectors OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section you will: Abstract View vectors

More information

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount. Name Unit #17: Spring Trig Unit Notes #1: Basic Trig Review I. Unit Circle A circle with center point and radius. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

9.4 Polar Coordinates

9.4 Polar Coordinates 9.4 Polar Coordinates Polar coordinates uses distance and direction to specify a location in a plane. The origin in a polar system is a fixed point from which a ray, O, is drawn and we call the ray the

More information

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is 1.1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector a is its length,

More information

Day 1: Introduction to Vectors + Vector Arithmetic

Day 1: Introduction to Vectors + Vector Arithmetic Day 1: Introduction to Vectors + Vector Arithmetic A is a quantity that has magnitude but no direction. You can have signed scalar quantities as well. A is a quantity that has both magnitude and direction.

More information

Monday Tuesday Block Friday 13 22/ End of 9-wks Pep-Rally Operations Vectors Two Vectors

Monday Tuesday Block Friday 13 22/ End of 9-wks Pep-Rally Operations Vectors Two Vectors Name: Period: Pre-Cal AB: Unit 6: Vectors Monday Tuesday Block Friday 13 14 15/16 PSAT/ASVAB 17 Pep Rally No School Solving Trig Equations TEST Vectors Intro 20 21 22/23 24 End of 9-wks Pep-Rally Operations

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Fall 2016 Math 150 Notes Chapter 9 Page 248 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional

More information

Geometric Interpretation of Vectors

Geometric Interpretation of Vectors Math 36 "Fall 08" 7.4 "Vectors" Skills Objectives: * Represent vectors geometrically and algebraically * Find the magnitude and direction of a vector * Add and subtract vectors * Perform scalar multiplication

More information

VECTORS. Section 6.3 Precalculus PreAP/Dual, Revised /11/ :41 PM 6.3: Vectors in the Plane 1

VECTORS. Section 6.3 Precalculus PreAP/Dual, Revised /11/ :41 PM 6.3: Vectors in the Plane 1 VECTORS Section 6.3 Precalculus PreAP/Dual, Revised 2017 Viet.dang@humbleisd.net 10/11/2018 11:41 PM 6.3: Vectors in the Plane 1 DEFINITIONS A. Vector is used to indicate a quantity that has both magnitude

More information

Introduction. Law of Sines. Introduction. Introduction. Example 2. Example 1 11/18/2014. Precalculus 6.1

Introduction. Law of Sines. Introduction. Introduction. Example 2. Example 1 11/18/2014. Precalculus 6.1 Introduction Law of Sines Precalculus 6.1 In this section, we will solve oblique triangles triangles that have no right angles. As standard notation, the angles of a triangle are labeled A, B, and C, and

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

BELLWORK feet

BELLWORK feet BELLWORK 1 A hot air balloon is being held in place by two people holding ropes and standing 35 feet apart. The angle formed between the ground and the rope held by each person is 40. Determine the length

More information

Section 8.2 Vector Angles

Section 8.2 Vector Angles Section 8.2 Vector Angles INTRODUCTION Recall that a vector has these two properties: 1. It has a certain length, called magnitude 2. It has a direction, indicated by an arrow at one end. In this section

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

8-1 Introduction to Vectors

8-1 Introduction to Vectors State whether each quantity described is a vector quantity or a scalar quantity. 1. a box being pushed at a force of 125 newtons This quantity has a magnitude of 125 newtons, but no direction is given.

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space Many quantities in geometry and physics, such as area, volume, temperature, mass, and time, can be characterized by a single real number scaled to appropriate units of

More information

Chapter 7.4: Vectors

Chapter 7.4: Vectors Chapter 7.4: Vectors In many mathematical applications, quantities are determined entirely by their magnitude. When calculating the perimeter of a rectangular field, determining the weight of a box, or

More information

Find the component form of with initial point A(1, 3) and terminal point B(1, 3). Component form = 1 1, 3 ( 3) (x 1., y 1. ) = (1, 3) = 0, 6 Subtract.

Find the component form of with initial point A(1, 3) and terminal point B(1, 3). Component form = 1 1, 3 ( 3) (x 1., y 1. ) = (1, 3) = 0, 6 Subtract. Express a Vector in Component Form Find the component form of with initial point A(1, 3) and terminal point B(1, 3). = x 2 x 1, y 2 y 1 Component form = 1 1, 3 ( 3) (x 1, y 1 ) = (1, 3) and ( x 2, y 2

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

PreCalculus Notes. MAT 129 Chapter 10: Polar Coordinates; Vectors. David J. Gisch. Department of Mathematics Des Moines Area Community College

PreCalculus Notes. MAT 129 Chapter 10: Polar Coordinates; Vectors. David J. Gisch. Department of Mathematics Des Moines Area Community College PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department of Mathematics Des Moines Area Community College October 25, 2011 1 Chapter 10 Section 10.1: Polar Coordinates

More information

6.3 Vectors in a Plane

6.3 Vectors in a Plane 6.3 Vectors in a Plane Plan: Represent ectors as directed line segments. Write the component form of ectors. Perform basic ector operations and represent ectors graphically. Find the direction angles of

More information

PHYSICS 149: Lecture 2

PHYSICS 149: Lecture 2 PHYSICS 149: Lecture 2 Chapter 1 1.1 Why study physics? 1.2 Talking physics 1.3 The Use of Mathematics 1.4 Scientific Notation and Significant Figures 15Units 1.5 1.6 Dimensional Analysis 1.7 Problem-Solving

More information

Vectors (Trigonometry Explanation)

Vectors (Trigonometry Explanation) Vectors (Trigonometry Explanation) CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

When two letters name a vector, the first indicates the and the second indicates the of the vector.

When two letters name a vector, the first indicates the and the second indicates the of the vector. 8-8 Chapter 8 Applications of Trigonometry 8.3 Vectors, Operations, and the Dot Product Basic Terminology Algeraic Interpretation of Vectors Operations with Vectors Dot Product and the Angle etween Vectors

More information

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head Vectors The study of motion involves the introduction of a variety of quantities which are used to describe the physical world. Examples of such quantities include distance, displacement, speed, velocity,

More information

Vector Supplement Part 1: Vectors

Vector Supplement Part 1: Vectors Vector Supplement Part 1: Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude

More information

C) ) cos (cos-1 0.4) 5) A) 0.4 B) 2.7 C) 0.9 D) 3.5 C) - 4 5

C) ) cos (cos-1 0.4) 5) A) 0.4 B) 2.7 C) 0.9 D) 3.5 C) - 4 5 Precalculus B Name Please do NOT write on this packet. Put all work and answers on a separate piece of paper. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

More information

Chapter 8: Polar Coordinates and Vectors

Chapter 8: Polar Coordinates and Vectors Chapter 8: Polar Coordinates and Vectors 8.1 Polar Coordinates This is another way (in addition to the x-y system) of specifying the position of a point in the plane. We give the distance r of the point

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. 1. An acute angle measure and the length of the hypotenuse are given, so the sine function can be used to find the length of the side opposite.

More information

(arrows denote positive direction)

(arrows denote positive direction) 12 Chapter 12 12.1 3-dimensional Coordinate System The 3-dimensional coordinate system we use are coordinates on R 3. The coordinate is presented as a triple of numbers: (a,b,c). In the Cartesian coordinate

More information

Vectors in the Plane

Vectors in the Plane Vectors in the Plane MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Vectors vs. Scalars scalar quantity having only a magnitude (e.g. temperature, volume, length, area) and

More information

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

The polar coordinates of a point are given. Find the rectangular coordinates of the point. 1) 7, 2 3 D) - 7 2, A) - 7 2, 7 3

The polar coordinates of a point are given. Find the rectangular coordinates of the point. 1) 7, 2 3 D) - 7 2, A) - 7 2, 7 3 Ch 9. Assignment Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The polar coordinates of a point are given. Find the rectangular coordinates

More information

Unit 11: Vectors in the Plane

Unit 11: Vectors in the Plane 135 Unit 11: Vectors in the Plane Vectors in the Plane The term ector is used to indicate a quantity (such as force or elocity) that has both length and direction. For instance, suppose a particle moes

More information

Chapter 6 Additional Topics in Trigonometry, Part II

Chapter 6 Additional Topics in Trigonometry, Part II Chapter 6 Additional Topics in Trigonometry, Part II Section 3 Section 4 Section 5 Vectors in the Plane Vectors and Dot Products Trigonometric Form of a Complex Number Vocabulary Directed line segment

More information

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS NAME: PERIOD: DATE: MATH ANALYSIS 2 MR. MELLINA CHAPTER 12: VECTORS & DETERMINANTS Sections: v 12.1 Geometric Representation of Vectors v 12.2 Algebraic Representation of Vectors v 12.3 Vector and Parametric

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Math 150 Chapter 9 Fall 2014 1 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional plane.

More information

11.8 Vectors Applications of Trigonometry

11.8 Vectors Applications of Trigonometry 00 Applications of Trigonometry.8 Vectors As we have seen numerous times in this book, Mathematics can be used to model and solve real-world problems. For many applications, real numbers suffice; that

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

CE 201 Statics. 2 Physical Sciences. Rigid-Body Deformable-Body Fluid Mechanics Mechanics Mechanics

CE 201 Statics. 2 Physical Sciences. Rigid-Body Deformable-Body Fluid Mechanics Mechanics Mechanics CE 201 Statics 2 Physical Sciences Branch of physical sciences 16 concerned with the state of Mechanics rest motion of bodies that are subjected to the action of forces Rigid-Body Deformable-Body Fluid

More information

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person.

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person. VECTORS The stud of ectors is closel related to the stud of such phsical properties as force, motion, elocit, and other related topics. Vectors allow us to model certain characteristics of these phenomena

More information

12.1 Three Dimensional Coordinate Systems (Review) Equation of a sphere

12.1 Three Dimensional Coordinate Systems (Review) Equation of a sphere 12.2 Vectors 12.1 Three Dimensional Coordinate Systems (Reiew) Equation of a sphere x a 2 + y b 2 + (z c) 2 = r 2 Center (a,b,c) radius r 12.2 Vectors Quantities like displacement, elocity, and force inole

More information

Question 01. A. Incorrect! This is not Newton s second law.

Question 01. A. Incorrect! This is not Newton s second law. College Physics - Problem Drill 06: Newton s Laws of Motion Question No. 1 of 10 1. Which of the options best describes the statement: Every object continues in a state of rest or uniform motion in a straight

More information

Chapter 3 Vectors Prof. Raymond Lee, revised

Chapter 3 Vectors Prof. Raymond Lee, revised Chapter 3 Vectors Prof. Raymond Lee, revised 9-2-2010 1 Coordinate systems Used to describe a point s position in space Coordinate system consists of fixed reference point called origin specific axes with

More information

Chapter 1: Analytic Trigonometry

Chapter 1: Analytic Trigonometry Chapter 1: Analytic Trigonometry Chapter 1 Overview Trigonometry is, literally, the study of triangle measures. Geometry investigated the special significance of the relationships between the angles and

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers Syllabus Objectives: 5.1 The student will eplore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

Newton s Laws and Free-Body Diagrams General Physics I

Newton s Laws and Free-Body Diagrams General Physics I Newton s Laws and Free-Body Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are

More information

Scalar Quantities - express only magnitude ie. time, distance, speed

Scalar Quantities - express only magnitude ie. time, distance, speed Chapter 6 - Vectors Scalar Quantities - express only magnitude ie. time, distance, speed Vector Quantities - express magnitude and direction. ie. velocity 80 km/h, 58 displacement 10 km (E) acceleration

More information

Vectors a vector is a quantity that has both a magnitude (size) and a direction

Vectors a vector is a quantity that has both a magnitude (size) and a direction Vectors In physics, a vector is a quantity that has both a magnitude (size) and a direction. Familiar examples of vectors include velocity, force, and electric field. For any applications beyond one dimension,

More information

u + v = u - v =, where c Directed Quantities: Quantities such as velocity and acceleration (quantities that involve magnitude as well as direction)

u + v = u - v =, where c Directed Quantities: Quantities such as velocity and acceleration (quantities that involve magnitude as well as direction) Pre-Calculus Section 10.3: Vectors & Their Applications (Part I) 1. Vocabulary (Summary): 4. Algebraic Operations on Vectors: If u = Scalar: A quantity possessing only magnitude (such weight or length

More information

Chapter 2 One-Dimensional Kinematics

Chapter 2 One-Dimensional Kinematics Review: Chapter 2 One-Dimensional Kinematics Description of motion in one dimension Copyright 2010 Pearson Education, Inc. Review: Motion with Constant Acceleration Free fall: constant acceleration g =

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Chapter 6 Additional Topics in Trigonometry

Chapter 6 Additional Topics in Trigonometry Chapter 6 Additional Topics in Trigonometry Overview: 6.1 Law of Sines 6.2 Law of Cosines 6.3 Vectors in the Plan 6.4 Vectors and Dot Products 6.1 Law of Sines What You ll Learn: #115 - Use the Law of

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( )

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( ) Syllabus Objectives: 5.1 The student will explore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume.

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume. Math 150 Prof. Beydler 7.4/7.5 Notes Page 1 of 6 Vectors Suppose a car is heading NE (northeast) at 60 mph. We can use a vector to help draw a picture (see right). v A vector consists of two parts: 1.

More information

Polar Coordinates; Vectors

Polar Coordinates; Vectors Chapter 10 Polar Coordinates; Vectors 10.R Chapter Review 1. 3, 6 x = 3cos 6 = 3 3. 4, 3 x = 4cos 3 = y = 3sin 6 = 3 3 3, 3 y =4sin 3 = 3 (, 3) 3., 4 3 x = cos 4 3 =1 4. 1, 5 4 x = 1cos 5 4 = y = sin 4

More information

Appendix D: Algebra and Trig Review

Appendix D: Algebra and Trig Review Appendix D: Algebra and Trig Review Find the domains of the following functions. x+2 x 2 5x+4 3 x 4 + x 2 9 7 x If f(x) = x 3, find f(8+h) f(8) h and simplify by rationalizing the numerator. 1 Converting

More information

ENT 151 STATICS. Statics of Particles. Contents. Resultant of Two Forces. Introduction

ENT 151 STATICS. Statics of Particles. Contents. Resultant of Two Forces. Introduction CHAPTER ENT 151 STATICS Lecture Notes: Azizul bin Mohamad KUKUM Statics of Particles Contents Introduction Resultant of Two Forces Vectors Addition of Vectors Resultant of Several Concurrent Forces Sample

More information

10.1 Vectors. c Kun Wang. Math 150, Fall 2017

10.1 Vectors. c Kun Wang. Math 150, Fall 2017 10.1 Vectors Definition. A vector is a quantity that has both magnitude and direction. A vector is often represented graphically as an arrow where the direction is the direction of the arrow, and the magnitude

More information

Tenth Edition STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University

Tenth Edition STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University T E CHAPTER 1 VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: Introduction John Chen California Polytechnic State University! Contents

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 70 Exam Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

Chapter 1E - Complex Numbers

Chapter 1E - Complex Numbers Fry Texas A&M University Math 150 Spring 2015 Unit 4 20 Chapter 1E - Complex Numbers 16 exists So far the largest (most inclusive) number set we have discussed and the one we have the most experience with

More information

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14 Agenda Today: Homework Quiz, Chapter 4 (Newton s Laws) Thursday: Applying Newton s Laws Start reading Chapter 5 Chapter 3, Problem 28 A ball with a horizontal speed of 1.25 m/s rolls off a bench 1.00 m

More information

Recall from Geometry the following facts about trigonometry: SOHCAHTOA: adjacent hypotenuse. cosa =

Recall from Geometry the following facts about trigonometry: SOHCAHTOA: adjacent hypotenuse. cosa = Chapter 1 Overview Trigonometry is, literally, the study of triangle measures. Geometry investigated the special significance of the relationships between the angles and sides of a triangle, especially

More information

PHYSICS 149: Lecture 7

PHYSICS 149: Lecture 7 PHYSICS 149: Lecture 7 Chapter 2 28Tension 2.8 2.9 Fundamental Forces Chapter 3 3.1 Position and Displacement Lecture 7 Purdue University, Physics 149 1 ILQ 1 Which statement about frictional forces is

More information

Student Exploration: Vectors

Student Exploration: Vectors Name: Date: Student Exploration: Vectors Vocabulary: component, dot product, magnitude, resultant, scalar, unit vector notation, vector Prior Knowledge Question (Do this BEFORE using the Gizmo.) An airplane

More information

Vectors. An Introduction

Vectors. An Introduction Vectors An Introduction There are two kinds of quantities Scalars are quantities that have magnitude only, such as position speed time mass Vectors are quantities that have both magnitude and direction,

More information

G r a d e 1 1 P h y s i c s ( 3 0 s ) Midterm Practice exam

G r a d e 1 1 P h y s i c s ( 3 0 s ) Midterm Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Midterm Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Midterm Practice Exam Instructions The final exam will be weighted as follows: Modules 1 6 100% The format

More information

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics FORCES Forces Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics Inertia Tendency of an object to remain in the same state of motion. Resists a change in motion.

More information

DISPLACEMENT AND FORCE IN TWO DIMENSIONS

DISPLACEMENT AND FORCE IN TWO DIMENSIONS DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient

More information

Chapter 3. Vectors and Two-Dimensional Motion

Chapter 3. Vectors and Two-Dimensional Motion Chapter 3 Vectors and Two-Dimensional Motion 1 Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size)

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14.

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14. For problems 9 use: u (,3) v (3, 4) s (, 7). w =. 3u v = 3. t = 4. 7u = u w (,3,5) 5. wt = t (,, 4) 6. Find the measure of the angle between w and t to the nearest degree. 7. Find the unit vector having

More information

Physics I (Navitas) EXAM #2 Spring 2015

Physics I (Navitas) EXAM #2 Spring 2015 95.141 Physics I (Navitas) EXAM #2 Spring 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning each

More information

Test # 3 Review Math Name (6.5 to 6.7, 10.1 to 10.3,and 10.5)

Test # 3 Review Math Name (6.5 to 6.7, 10.1 to 10.3,and 10.5) Test # Review Math 14 Name (6.5 to 6.7, 10.1 to 10.,and 10.5) Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the product of the complex

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar.

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar. UNIT-05 VECTORS Introduction: physical quantity that can be specified by just a number the magnitude is known as a scalar. In everyday life you deal mostly with scalars such as time, temperature, length

More information

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F Multiple choice Problem 1 A 5.-N bos sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at one instant the bos sliding to the right at 1.75 m/s

More information

Physics 2A Chapters 4 & 5 - Newton s Laws of Motion Fall Newton s Second Law, F = ma, is the only new equation for Chapter 4 and 5.

Physics 2A Chapters 4 & 5 - Newton s Laws of Motion Fall Newton s Second Law, F = ma, is the only new equation for Chapter 4 and 5. These notes are five pages. A quick summary: Newton s Second Law, F = ma, is the only new equation for Chapter 4 and 5. A free body diagram is an essential step in organizing information to solve force

More information

3 Vectors and Two- Dimensional Motion

3 Vectors and Two- Dimensional Motion May 25, 1998 3 Vectors and Two- Dimensional Motion Kinematics of a Particle Moving in a Plane Motion in two dimensions is easily comprehended if one thinks of the motion as being made up of two independent

More information

Chapter 4. The Laws of Motion. Dr. Armen Kocharian

Chapter 4. The Laws of Motion. Dr. Armen Kocharian Chapter 4 The Laws of Motion Dr. Armen Kocharian Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

Physics 40 HW#3 Chapter 3 Problems from Knight you should do (but don t turn in): Ch 3 Problems: 7, 10, 15, 23, 33, 37, 40, 42, 43

Physics 40 HW#3 Chapter 3 Problems from Knight you should do (but don t turn in): Ch 3 Problems: 7, 10, 15, 23, 33, 37, 40, 42, 43 Physics 40 HW#3 Chapter 3 Problems from Knight you should do (but don t turn in): Ch 3 Problems: 7, 10, 15, 23, 33, 37, 40, 42, 43 7, 10, 15, 23, 33, 37, 40, 42, 43 3.7. Visualiz e: Solve: (a) v = (10

More information

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow. POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams

More information

Graphing Review Part 1: Circles, Ellipses and Lines

Graphing Review Part 1: Circles, Ellipses and Lines Graphing Review Part : Circles, Ellipses and Lines Definition The graph of an equation is the set of ordered pairs, (, y), that satisfy the equation We can represent the graph of a function by sketching

More information

Have both a magnitude and direction Examples: Position, force, moment

Have both a magnitude and direction Examples: Position, force, moment Force Vectors Vectors Vector Quantities Have both a magnitude and direction Examples: Position, force, moment Vector Notation Vectors are given a variable, such as A or B Handwritten notation usually includes

More information

ARC241 Structural Analysis I Lecture 1, Sections ST1.1 ST2.4

ARC241 Structural Analysis I Lecture 1, Sections ST1.1 ST2.4 Lecture 1, Sections ST1.1 ST2.4 ST1.1-ST1.2) Introduction ST1.3) Units of Measurements ST1.4) The International System (SI) of Units ST1.5) Numerical Calculations ST1.6) General Procedure of Analysis ST2.1)

More information

Subject : Engineering Mechanics Subject Code : 1704 Page No: 1 / 6 ----------------------------- Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word

More information

Matrices and Vectors

Matrices and Vectors Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix

More information

Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion. The Laws of motion Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement Vector Supplement 1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 370 Exam 3 Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

An Introduction to Forces Forces-part 1. Forces are Interactions

An Introduction to Forces Forces-part 1. Forces are Interactions An Introduction to Forces Forces-part 1 PHYS& 114: Eyres Forces are Interactions A force is an interaction between 2 objects Touching At a distance See the Fundamental Particle Chart (http://www.cpepphysics.org/images/2014-fund-chart.jpg)

More information

A Level. A Level Physics. Mechanics: Equilibrium And Moments (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30

A Level. A Level Physics. Mechanics: Equilibrium And Moments (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA, Edexcel, OCR A Level A Level Physics Mechanics: Equilibrium And Moments (Answers) Name: Total Marks: /30 Maths Made Easy Complete

More information

Forces on an inclined plane Section 2.2

Forces on an inclined plane Section 2.2 Forces on an inclined plane Section 2.2 Examples of inclined planes Previous Knowledge Since some of the incline problems lets review friction (both kinetic and static) and normal force. Friction Friction

More information