is the instantaneous position vector of any grid point or fluid

Size: px
Start display at page:

Download "is the instantaneous position vector of any grid point or fluid"

Transcription

1 Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in integal and diffeential foms in absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume and evaluate the advantages and disadvantages of using the thee coodinates. Appoach The govening diffeential equations of motion ae deived and solved in the absolute inetial eath-fixed coodinates (X,Y,Z), non-inetial ship-fixed coodinates (x,y,z), and elative inetial coodinates (X,Y,Z ) that tanslate at a constant velocity in (i.e. with espect to) (X,Y,Z) fo an abitay moving but non-defoming contol volume (C), as shown in Figue 1. The contol volume is fo eithe the ship in ed o backgound in geen while the solution domain includes both. The oigin of (x,y,z) o is located at the cente of gavity of the ship. The oigin of (X,Y,Z ) is located at the intesection of the bow and the static wate line. paticle in (x,y,z). is the instantaneous position vecto of any gid point o fluid In the absolute inetial eath-fixed coodinates (Fig. 1(a)), the position vecto of o is. S = + is the instantaneous position vectos of any gid point o fluid paticle. The ship tanslation velocity is = t = ui ˆ ˆ i + vi j + wk i, whee ˆ î, ĵ, and ˆk ae the unit vectos of X, Y, and Z axes, espectively, and u i, v i, and w i ae the suge, sway, and heave velocities Ω=Ω ˆ +Ω ˆ +Ω ˆ of of the ship espect to (X,Y,Z). The ship otation is angula velocity Xi Y j Zk (x,y,z) in (X,Y,Z). The velocity of the contol volume is defined by: = +Ω (1) 1

2 In elative inetial coodinates (Fig. 1(b)), the position vecto of o is in (X,Y,Z ). S S = + S = + and ae the instantaneous position vectos of any gid point o fluid paticle in (X,Y,Z ) and (X,Y,Z), espectively. The ship tanslation velocity is = t = ui ˆ + v ˆj + wk ˆ i i i (X,Y,Z). u i, v i, and w i, whee unit vectos of (X,Y,Z ) ae the same as those fo ae the suge, sway, and heave velocities of the ship espect to (X,Y,Z ). The ship otation is angula velocity Ω=Ω X i +Ω Y j +Ω Z k of (x,y,z) in (X,Y,Z ). The velocities of the contol volume in (X,Y,Z ) and (X,Y,Z) ae: = +Ω (2) = + +Ω whee the elative inetial coodinates ae moving at a constant speed C espect to (X,Y,Z), = iˆ C. Compaison between equations (2) and (3) shows: ˆ ˆ ˆ (3) = + (4) The ed contol volume pefoms up to 6 degees of feedom (6DF) motions (suge, sway, heave, oll, pitch, and yaw). The geen contol volume pefoms up to 3DF (suge, sway, yaw) motions copied fom the coesponding degees of feedom of the ship s motions. Any numbe of degees of feedom can be imposed and the est is pedicted by 6DF solves, which esults in captive, fee, o semi-captive motions. î, ĵ, and ˆk ae the unit vectos of x, y, and z axes, espectively. 2

3 (a) (b) Figue 1 Definition of diffeent coodinates fo ship Hydodynamics simulations with absolute inetial eath-fixed coodinates (X,Y,Z), non-inetial ship-fixed coodinates (x,y,z), and elative inetial coodinates (X,Y,Z ): (a) solve in (X,Y,Z), (b) solve in (X,Y,Z ). 1. elocity coelations 1.1 Coelation between (X,Y,Z) and (x,y,z) If epesents the position vecto of a fluid paticle in (x,y,z), the position vecto of that fluid paticle in (X,Y,Z) is: S = + (5) The absolute velocity in (X,Y,Z) and elative velocity in (x,y,z) ae defined by Eqns. (6) and (7), espectively: = ds (6) = d (7) Diffeentiate Eqn. (5) is diffeentiated espect to time and with use of the coelation of d in (X,Y,Z) and d in (x,y,z) [eenwood, 1988]: 3

4 The velocities ae elated by: d d = +Ω (8) = + (9) 1.2 Coelation between (X,Y,Z) and (X,Y,Z ) Deivation simila to 1.1 is applied in (X,Y,Z ). The absolute velocity in (X,Y,Z) and elative velocity in (X,Y,Z ) ae defined by equations (1) and (11), espectively: Use Equation (8) and diffeentiate S = + espect to time: = ds (1) = ds (11) = + (12) Diffeentiate S S = + espect to time: = d + S = + (13) 2. eynolds tanspot theoem (TT) TT fo flow with an abitay C moving at db SYS d = + is applied: Fo a non-defoming C, TT fo incompessible flow: db syst βρ d βρ n da (14) C β = ρ + ρ β d nda (15) C To convet it to the diffeential fom of TT, the flux tem is tansfomed to a volume 4

5 integal using the auss divegence theoem: db syst β = ρ d + ρ ( β ) d C C C β = ρ + ( β ) d (16) Taking limit fo elemental C fo which integand is independent of the volume and divided by : db syst β = ρ + ( β ) (17) 3. Application of TT fo ( XYZ,, ): 3.1 Integal fom fo a C Consevation of mass with = M, β = 1 fo Eqn.(15) and note steady flow with =, Consevation of momentum with ( ) nda= (18) = M and β = fo Eqn. (15): dm Fo steady flow: 3.2 Diffeential fom = F = ρ d + ρ ( ) nda (19) C F = ρ ( ) nda (2) Fo mass consevation, substitute β = and = (when the = M, 1 5

6 C is limited to a point, is the local gid velocity so = ) to Eqn. (17) and note = : = (21) Fo momentum equation, substitute = M and β = to Eqn. (17): d M = syst + = f ρ (22) The 2 nd tem on the left-hand-side can be simplified using the divegence opeato expansion with the use of the continuity equation, = + (23) = continuity Afte the body and suface foces ae expessed pe unit volume, the NS equation in (X,Y,Z) is: ρ + ( ) = ( p+ γz ) + μ Application of TT fo ( X, Y, Z ) 4.1 Integal fom fo a C Fo mass consevation, steady flow: (24) 2 : = M and 1 β = fo Eqn. (15) and note =. Fo nda= (25) 6

7 Consevation of momentum with B M ( ) syst = +, β = + and = ( + ) dm [ ] = ( + ) F = ρ d + ρ ( + ) nda C (26) Fo steady flow with the use of continuity: F = ρ + nda = ρ nda+ ρ nda (27) F = ρ nda (28) 4.2 Diffeential fom Fo mass consevation, eplace in Eqn. (21) using Eqn. (13): Fo consevation of momentum, = (29) and in equation (24) ae substituted by Eqns. (4) and (13). Note the time deivatives in (X,Y,Z ) and (X,Y,Z) ae the same as they ae both inetial coodinates, tem [1] in equation (24) becomes: Fo tem [2] in Eqn. (24), = + = ( ) ( ) = + + = (3) (31) 7

8 Fo tem [3] in Eqn. (24), = + = (32) Equations (3) to (32) ae substituted back to equation (24) and note gadient, divegence, and Laplacian opeatos ae fame invaiant. The govening equations in tems of ae obtained: ( 2 ) p Z ρ + = + γ + μ (33) 5. Application of TT fo (x,y,z): 5.1 Integal fom fo a C Fo mass consevation, = M, β = 1 fo Eqn.(15) and note steady flow, nda= (34) Consevation of momentum with B M M ( ) syst = = +, β = d M = F = ρ d + ρ ( + ) nda C = ρ d + ρ nda + ρ nda C (35) ( ) Ω = + + = + + 2Ω +Ω +Ω ( Ω ) (36) a el 8

9 So, whee Ω Ω Ω Ω= = +Ω Ω= F a dm = ρ d + ρ nda = el C C (37) (38) Note when the C is moving togethe with (x,y,z), the will be eplaced by Fin the above equations 5.2 Diffeential fom Fo mass consevation, eplace in Eqn. (21) using Eqn. (9): = (39) The diffeential fom fo momentum equation in (x,y,z) can be deived fom Eqn. (24), note = +Ω (4) = + (41) Fo tem [1], fom Eqn.(36), Fo tem [2], = + a el (42) = + = (43) 9

10 Fo tem [3], = + = (44) The above fou equations ae substituted back to the diffeential fom of the momentum equation in (X,Y,Z) and note gadient, divegence, and Laplacian opeatos ae fame invaiant. The govening equations in tems of whee ae obtained: 2 ρ + = ρael p+ γz + μ body foce (45) a = + 2Ω +Ω Ω +Ω el (46) 6. Comments on application of diffeent appoaches 6.1 Solving fluid mechanics poblems analytically using integal foms As shown in the lectue notes, it is easie to solve the continuity and momentum equation in the elative inetial coodinates. 6.2 Solving diffeential equations using CFD [Xing et al., 28] The govening diffeential equations (DEs) fo continuity and momentum in (X,Y,Z) and (X,Y,Z ) ae tansfomed fom the physical domain in Catesian coodinates ( X, Y, Z, t ) to the computational domain in non-othogonal cuvilinea coodinates ( ξ, η, ζ, τ ) using the chain ule without involving gid velocity fo the time deivative tansfomation: 1 J j ξ j ( bu i i) = (47) 1

11 j k k l Ui 1 k Ui 1 k p 1 bi bi U b i j ν U t b i j + b ( U U ) = b + S k k j k + + k l τ J ξ J ξ J ξ J eeff ξ J ξ J ξ j j j i i (48) Eqs. (47) and (48) ae identical to Wasi et al., who tansfomed the standad NS equations in ( X, Y, Z, t) to a fixed computational domain ( ξ, η, ζ, τ ) with the inclusion of the gid velocity X i τ in the time deivative tansfomation. In the pesent deivation of Eqs. (24) and (33) the solution domain and contol volume ae coincident with each othe, which conceptually bette shows the elationship between the moving but non-defoming contol volume and solution domain and additionally povides the continuous / fom of the NS equations. Compaed with Eq. (33), Eq. (24) allows non-constant C. When C =, Eq. (33) educes to Eq. (24). Tansfomation of the continuous fom of the NS equations in (X,Y,Z) into (x,y,z) clealy shows the diffeence of DEs using the absolute inetial eath-fixed o non-inetial ship-fixed coodinate systems. Compaed with Eq. (45), application of Eq. (24) simplifies the specification of bounday conditions, saves computational cost by educing the solution domain size, and can be easily applied to simulate multi-objects such as ship-ship inteactions. In geneal, implementation of Eq. (24) to simulate captive, semi-captive, o full 6DF ship motions is staightfowad. efeences [1] Xing, T., Caica, P., Sten, F., Computational Towing Tank Pocedues fo Single un Cuves of esistance and Populsion, ASME Jounal of Fluids Engineeing, ol. 13, No.1, 28, pp [2] eenwood, D. T., 1988, Pinciples of Dynamics, 2nd edition, Pentice-Hall Inc [3] Wasi, Z. U. A., 25, Fluid Dynamics, Theoetical and Computational Appoaches, 3d edition, Taylo & Fancis oup. 11

(read nabla or del) is defined by, k. (9.7.1*)

(read nabla or del) is defined by, k. (9.7.1*) 9.7 Gadient of a scala field. Diectional deivative Some of the vecto fields in applications can be obtained fom scala fields. This is vey advantageous because scala fields can be handled moe easily. The

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics AE301 Aeodynamics I UNIT B: Theoy of Aeodynamics ROAD MAP... B-1: Mathematics fo Aeodynamics B-2: Flow Field Repesentations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis AE301

More information

3D-Central Force Problems I

3D-Central Force Problems I 5.73 Lectue #1 1-1 Roadmap 1. define adial momentum 3D-Cental Foce Poblems I Read: C-TDL, pages 643-660 fo next lectue. All -Body, 3-D poblems can be educed to * a -D angula pat that is exactly and univesally

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

Correlation between System (Lagrangian) concept Control-volume (Eulerian) concept for comprehensive understanding of fluid motion?

Correlation between System (Lagrangian) concept Control-volume (Eulerian) concept for comprehensive understanding of fluid motion? The Reynolds Tanspot Theoem Coelation between System (Lagangian) concept Contol-volume (Euleian) concept fo compehensive undestanding of fluid motion? Reynolds Tanspot Theoem Let s set a fundamental equation

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS L. MICU Hoia Hulubei National Institute fo Physics and Nuclea Engineeing, P.O. Box MG-6, RO-0775 Buchaest-Maguele, Romania, E-mail: lmicu@theoy.nipne.o (Received

More information

Transformation of the Navier-Stokes Equations in Curvilinear Coordinate Systems with Maple

Transformation of the Navier-Stokes Equations in Curvilinear Coordinate Systems with Maple Global Jounal of Pue and Applied Mathematics. ISSN 0973-1768 Volume 12, Numbe 4 2016, pp. 3315 3325 Reseach India Publications http://www.ipublication.com/gjpam.htm Tansfomation of the Navie-Stokes Equations

More information

Fluid flow in curved geometries: Mathematical Modeling and Applications

Fluid flow in curved geometries: Mathematical Modeling and Applications Fluid flow in cuved geometies: Mathematical Modeling and Applications D. Muhammad Sajid Theoetical Plasma Physics Division PINSTECH, P.O. Niloe, PAEC, Islamabad Mach 01-06, 010 Islamabad, Paistan Pesentation

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

On the integration of the equations of hydrodynamics

On the integration of the equations of hydrodynamics Uebe die Integation de hydodynamischen Gleichungen J f eine u angew Math 56 (859) -0 On the integation of the equations of hydodynamics (By A Clebsch at Calsuhe) Tanslated by D H Delphenich In a pevious

More information

Three dimensional flow analysis in Axial Flow Compressors

Three dimensional flow analysis in Axial Flow Compressors 1 Thee dimensional flow analysis in Axial Flow Compessos 2 The ealie assumption on blade flow theoies that the flow inside the axial flow compesso annulus is two dimensional means that adial movement of

More information

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3) Physics 506 Winte 2008 Homewok Assignment #10 Solutions Textbook poblems: Ch. 12: 12.10, 12.13, 12.16, 12.19 12.10 A chaged paticle finds itself instantaneously in the equatoial plane of the eath s magnetic

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems ! Revised Apil 11, 2017 1:48 PM! 1 Vectos, Vecto Calculus, and Coodinate Systems David Randall Physical laws and coodinate systems Fo the pesent discussion, we define a coodinate system as a tool fo descibing

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

3-7 FLUIDS IN RIGID-BODY MOTION

3-7 FLUIDS IN RIGID-BODY MOTION 3-7 FLUIDS IN IGID-BODY MOTION S-1 3-7 FLUIDS IN IGID-BODY MOTION We ae almost eady to bein studyin fluids in motion (statin in Chapte 4), but fist thee is one cateoy of fluid motion that can be studied

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

Hydroelastic Analysis of a 1900 TEU Container Ship Using Finite Element and Boundary Element Methods

Hydroelastic Analysis of a 1900 TEU Container Ship Using Finite Element and Boundary Element Methods TEAM 2007, Sept. 10-13, 2007,Yokohama, Japan Hydoelastic Analysis of a 1900 TEU Containe Ship Using Finite Element and Bounday Element Methods Ahmet Egin 1)*, Levent Kaydıhan 2) and Bahadı Uğulu 3) 1)

More information

Final Review of AerE 243 Class

Final Review of AerE 243 Class Final Review of AeE 4 Class Content of Aeodynamics I I Chapte : Review of Multivaiable Calculus Chapte : Review of Vectos Chapte : Review of Fluid Mechanics Chapte 4: Consevation Equations Chapte 5: Simplifications

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lectue 5 Cental Foce Poblem (Chapte 3) What We Did Last Time Intoduced Hamilton s Pinciple Action integal is stationay fo the actual path Deived Lagange s Equations Used calculus

More information

DonnishJournals

DonnishJournals DonnishJounals 041-1189 Donnish Jounal of Educational Reseach and Reviews. Vol 1(1) pp. 01-017 Novembe, 014. http:///dje Copyight 014 Donnish Jounals Oiginal Reseach Pape Vecto Analysis Using MAXIMA Savaş

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t.

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t. Diffusion and Tanspot 10. Fiction and the Langevin Equation Now let s elate the phenomena of ownian motion and diffusion to the concept of fiction, i.e., the esistance to movement that the paticle in the

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

Stress, Cauchy s equation and the Navier-Stokes equations

Stress, Cauchy s equation and the Navier-Stokes equations Chapte 3 Stess, Cauchy s equation and the Navie-Stokes equations 3. The concept of taction/stess Conside the volume of fluid shown in the left half of Fig. 3.. The volume of fluid is subjected to distibuted

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II Reading: Matin, Section. ROTATING REFERENCE FRAMES ESCI 34 Atmospheic Dnamics I Lesson 3 Fundamental Foces II A efeence fame in which an object with zeo net foce on it does not acceleate is known as an

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is thee a magnification paadox in gavitational ing? Olaf Wucknitz wucknitz@asto.uni-bonn.de Astophysics semina/colloquium, Potsdam, 6 Novembe 7 Is thee a magnification paadox in gavitational ing? gavitational

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

2. Plane Elasticity Problems

2. Plane Elasticity Problems S0 Solid Mechanics Fall 009. Plane lasticity Poblems Main Refeence: Theoy of lasticity by S.P. Timoshenko and J.N. Goodie McGaw-Hill New Yok. Chaptes 3..1 The plane-stess poblem A thin sheet of an isotopic

More information

I. CONSTRUCTION OF THE GREEN S FUNCTION

I. CONSTRUCTION OF THE GREEN S FUNCTION I. CONSTRUCTION OF THE GREEN S FUNCTION The Helmohltz equation in 4 dimensions is 4 + k G 4 x, x = δ 4 x x. In this equation, G is the Geen s function and 4 efes to the dimensionality. In the vey end,

More information

MATH Homework #1 Solution - by Ben Ong

MATH Homework #1 Solution - by Ben Ong MATH 46 - Homewok #1 Solution - by Ben Ong Deivation of the Eule Equations We pesent a fist pinciples deivation of the Eule Equations fo two-dimensional fluid flow in thee-dimensional cylndical cooodinates

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM Poceedings of the ASME 2010 Intenational Design Engineeing Technical Confeences & Computes and Infomation in Engineeing Confeence IDETC/CIE 2010 August 15-18, 2010, Monteal, Quebec, Canada DETC2010-28496

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Computational Methods of Solid Mechanics. Project report

Computational Methods of Solid Mechanics. Project report Computational Methods of Solid Mechanics Poject epot Due on Dec. 6, 25 Pof. Allan F. Bowe Weilin Deng Simulation of adhesive contact with molecula potential Poject desciption In the poject, we will investigate

More information

dq 1 (5) q 1 where the previously mentioned limit has been taken.

dq 1 (5) q 1 where the previously mentioned limit has been taken. 1 Vecto Calculus And Continuum Consevation Equations In Cuvilinea Othogonal Coodinates Robet Maska: Novembe 25, 2008 In ode to ewite the consevation equations(continuit, momentum, eneg) to some cuvilinea

More information

TheWaveandHelmholtzEquations

TheWaveandHelmholtzEquations TheWaveandHelmholtzEquations Ramani Duaiswami The Univesity of Mayland, College Pak Febuay 3, 2006 Abstact CMSC828D notes (adapted fom mateial witten with Nail Gumeov). Wok in pogess 1 Acoustic Waves 1.1

More information

Liquid gas interface under hydrostatic pressure

Liquid gas interface under hydrostatic pressure Advances in Fluid Mechanics IX 5 Liquid gas inteface unde hydostatic pessue A. Gajewski Bialystok Univesity of Technology, Faculty of Civil Engineeing and Envionmental Engineeing, Depatment of Heat Engineeing,

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

2.25 Advanced Fluid Mechanics

2.25 Advanced Fluid Mechanics MIT Depatment of Mechanical Engineeing 2.25 Advanced Fluid Mechanics Poblem 4.27 This poblem is fom Advanced Fluid Mechanics Poblems by A.H. Shapio and A.A. Sonin u(,t) pg Gas Liquid, density Conside a

More information

Applied Aerodynamics

Applied Aerodynamics Applied Aeodynamics Def: Mach Numbe (M), M a atio of flow velocity to the speed of sound Compessibility Effects Def: eynolds Numbe (e), e ρ c µ atio of inetial foces to viscous foces iscous Effects If

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

Lecture 10. Vertical coordinates General vertical coordinate

Lecture 10. Vertical coordinates General vertical coordinate Lectue 10 Vetical coodinates We have exclusively used height as the vetical coodinate but thee ae altenative vetical coodinates in use in ocean models, most notably the teainfollowing coodinate models

More information

Exercise 4: Adimensional form and Rankine vortex. Example 1: adimensional form of governing equations

Exercise 4: Adimensional form and Rankine vortex. Example 1: adimensional form of governing equations Fluid Mechanics, SG4, HT9 Septembe, 9 Execise 4: Adimensional fom and Rankine votex Example : adimensional fom of govening equations Calculating the two-dimensional flow aound a cylinde (adius a, located

More information

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March EN4: Dynaics and Vibations Midte Exaination Tuesday Mach 8 16 School of Engineeing Bown Univesity NME: Geneal Instuctions No collaboation of any kind is peitted on this exaination. You ay bing double sided

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

Right-handed screw dislocation in an isotropic solid

Right-handed screw dislocation in an isotropic solid Dislocation Mechanics Elastic Popeties of Isolated Dislocations Ou study of dislocations to this point has focused on thei geomety and thei ole in accommodating plastic defomation though thei motion. We

More information

Central Force Motion

Central Force Motion Cental Foce Motion Cental Foce Poblem Find the motion of two bodies inteacting via a cental foce. Examples: Gavitational foce (Keple poblem): m1m F 1, ( ) =! G ˆ Linea estoing foce: F 1, ( ) =! k ˆ Two

More information

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e.,

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e., Stella elaxation Time [Chandasekha 1960, Pinciples of Stella Dynamics, Chap II] [Ostike & Davidson 1968, Ap.J., 151, 679] Do stas eve collide? Ae inteactions between stas (as opposed to the geneal system

More information

Relative motion (Translating axes)

Relative motion (Translating axes) Relative motion (Tanslating axes) Paticle to be studied This topic Moving obseve (Refeence) Fome study Obseve (no motion) bsolute motion Relative motion If motion of the efeence is known, absolute motion

More information

PES 3950/PHYS 6950: Homework Assignment 6

PES 3950/PHYS 6950: Homework Assignment 6 PES 3950/PHYS 6950: Homewok Assignment 6 Handed out: Monday Apil 7 Due in: Wednesday May 6, at the stat of class at 3:05 pm shap Show all woking and easoning to eceive full points. Question 1 [5 points]

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

Class #16 Monday, March 20, 2017

Class #16 Monday, March 20, 2017 D. Pogo Class #16 Monday, Mach 0, 017 D Non-Catesian Coodinate Systems A point in space can be specified by thee numbes:, y, and z. O, it can be specified by 3 diffeent numbes:,, and z, whee = cos, y =

More information

Dymore User s Manual Two- and three dimensional dynamic inflow models

Dymore User s Manual Two- and three dimensional dynamic inflow models Dymoe Use s Manual Two- and thee dimensional dynamic inflow models Contents 1 Two-dimensional finite-state genealized dynamic wake theoy 1 Thee-dimensional finite-state genealized dynamic wake theoy 1

More information

Antennas & Propagation

Antennas & Propagation Antennas & Popagation 1 Oveview of Lectue II -Wave Equation -Example -Antenna Radiation -Retaded potential THE KEY TO ANY OPERATING ANTENNA ot H = J +... Suppose: 1. Thee does exist an electic medium,

More information

Quantum theory of angular momentum

Quantum theory of angular momentum Quantum theoy of angula momentum Igo Mazets igo.mazets+e141@tuwien.ac.at (Atominstitut TU Wien, Stadionallee 2, 1020 Wien Time: Fiday, 13:00 14:30 Place: Feihaus, Sem.R. DA gün 06B (exception date 18 Nov.:

More information

S7: Classical mechanics problem set 2

S7: Classical mechanics problem set 2 J. Magoian MT 9, boowing fom J. J. Binney s 6 couse S7: Classical mechanics poblem set. Show that if the Hamiltonian is indepdent of a genealized co-odinate q, then the conjugate momentum p is a constant

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 5: Aeodynamics D ABM Toufique Hasan Pofesso Depatment of Mechanical Engineeing, BUET Lectue- 8 Apil 7 teachebuetacbd/toufiquehasan/ toufiquehasan@mebuetacbd ME5: Aeodynamics (Jan 7) Flow ove a stationay

More information

The Divergence Theorem

The Divergence Theorem 13.8 The ivegence Theoem Back in 13.5 we ewote Geen s Theoem in vecto fom as C F n ds= div F x, y da ( ) whee C is the positively-oiented bounday cuve of the plane egion (in the xy-plane). Notice this

More information

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law AY 7A - Fall 00 Section Woksheet - Solutions Enegy and Keple s Law. Escape Velocity (a) A planet is obiting aound a sta. What is the total obital enegy of the planet? (i.e. Total Enegy = Potential Enegy

More information

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Dynamics (Stömningsläa), 2013-05-31, kl 9.00-15.00 jälpmedel: Students may use any book including the textbook Lectues on Fluid Dynamics.

More information

Momentum is conserved if no external force

Momentum is conserved if no external force Goals: Lectue 13 Chapte 9 v Employ consevation of momentum in 1 D & 2D v Examine foces ove time (aka Impulse) Chapte 10 v Undestand the elationship between motion and enegy Assignments: l HW5, due tomoow

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

Vector d is a linear vector function of vector d when the following relationships hold:

Vector d is a linear vector function of vector d when the following relationships hold: Appendix 4 Dyadic Analysis DEFINITION ecto d is a linea vecto function of vecto d when the following elationships hold: d x = a xxd x + a xy d y + a xz d z d y = a yxd x + a yy d y + a yz d z d z = a zxd

More information

Radial Inflow Experiment:GFD III

Radial Inflow Experiment:GFD III Radial Inflow Expeiment:GFD III John Mashall Febuay 6, 003 Abstact We otate a cylinde about its vetical axis: the cylinde has a cicula dain hole in the cente of its bottom. Wate entes at a constant ate

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract A themodynamic degee of feedom solution to the galaxy cluste poblem of MOND E.P.J. de Haas (Paul) Nijmegen, The Nethelands (Dated: Octobe 23, 2015) Abstact In this pape I discus the degee of feedom paamete

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

Theoretical Competition:Solution Question 1 Page 1 of 8. I. Solution Q1_THEORY_SOLUTION_1700_SENT_TO_LEADER.DOCX. r 2. r 1

Theoretical Competition:Solution Question 1 Page 1 of 8. I. Solution Q1_THEORY_SOLUTION_1700_SENT_TO_LEADER.DOCX. r 2. r 1 Q_THEOY_SOLUTION_7_SENT_TO_LEADE.DOCX Theoetical Competition:Solution Question Page of 8 I. Solution M O m. Let O be thei cente of mass. Hence M m () m M GMm GMm () G M m Fom Eq. (), o using educed mass,

More information

Conservation of Linear Momentum using RTT

Conservation of Linear Momentum using RTT 07/03/2017 Lectue 21 Consevation of Linea Momentum using RTT Befoe mi-semeste exam, we have seen the 1. Deivation of Reynols Tanspot Theoem (RTT), 2. Application of RTT in the Consevation of Mass pinciple

More information

Steady State and Transient Performance Analysis of Three Phase Induction Machine using MATLAB Simulations

Steady State and Transient Performance Analysis of Three Phase Induction Machine using MATLAB Simulations Intenational Jounal of Recent Tends in Engineeing, Vol, No., May 9 Steady State and Tansient Pefomance Analysis of Thee Phase Induction Machine using MATAB Simulations Pof. Himanshu K. Patel Assistant

More information

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation Physics 201, Lectue 22 Review Today s Topics n Univesal Gavitation (Chapte 13.1-13.3) n Newton s Law of Univesal Gavitation n Popeties of Gavitational Foce n Planet Obits; Keple s Laws by Newton s Law

More information

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925)

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925) 1 Lectue 1: The beginnings of quantum physics 1. The Sten-Gelach expeiment. Atomic clocks 3. Planck 1900, blackbody adiation, and E ω 4. Photoelectic effect 5. Electon diffaction though cystals, de Boglie

More information

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in ME 01 DYNAMICS Chapte 1: Kinematics of a Paticle Chapte 1 Kinematics of a Paticle A. Bazone 1.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS Pola Coodinates Pola coodinates ae paticlaly sitable fo solving

More information

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces. 4.8. Cental foces The most inteesting poblems in classical mechanics ae about cental foces. Definition of a cental foce: (i) the diection of the foce F() is paallel o antipaallel to ; in othe wods, fo

More information

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion Reading Assignment: Lab #9: The Kinematics & Dynamics of Cicula Motion & Rotational Motion Chapte 6 Section 4 Chapte 11 Section 1 though Section 5 Intoduction: When discussing motion, it is impotant to

More information

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions EN10: Continuum Mechanics Homewok 7: Fluid Mechanics Solutions School of Engineeing Bown Univesity 1. An ideal fluid with mass density ρ flows with velocity v 0 though a cylindical tube with cosssectional

More information

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface . CONICAL PROJECTIONS In elementay texts on map pojections, the pojection sufaces ae often descibed as developable sufaces, such as the cylinde (cylindical pojections) and the cone (conical pojections),

More information