Lecture 10. Vertical coordinates General vertical coordinate

Size: px
Start display at page:

Download "Lecture 10. Vertical coordinates General vertical coordinate"

Transcription

1 Lectue 10 Vetical coodinates We have exclusively used height as the vetical coodinate but thee ae altenative vetical coodinates in use in ocean models, most notably the teainfollowing coodinate models and isopycnal models. We ll fist tansfom the equations of motion to a geneal vetical coodinate,, befoe consideing the most common specific vetical coodinates. A good efeence fo the tansfomation is the book by Haltine and Williams, 1980, section 1-9. The book by Haidvogel and Beckmann, 1999, descibes models using all thee vetical coodinates Geneal vetical coodinate Conside a geneal vetical coodinate,, which is assumed to be a monotonic function of height, z. Tansfoming the equations of motion into the coodinates (x, y,, t) makes z = z(x, y,, t) a dependent vaiable. Any dependent vaiable, A = A(x, y, z, t), that can be descibed in the oiginal coodinate can be descibed as a function of the new coodinates: A = A(x, y, z(x, y,, t), t) The vetical patial deivative in the new coodinate is o equivalently A = A A = A 137

2 Atmospheic and Oceanic Modeling, Sping A patial deivative with espect to any othe odinate, s, whee s is one of x, y o t, is obtained using the chain ule: A = A + A s s z s o, substituting in fo z A fom above, A s = A + A s z Hee, the vetical ba with suffix indicates the patial deivative holding constant the suffix. We can now wite down the hoizontal gadient of a scala A in height coodinates expessed in tems of deivatives in coodinates: z A = A A A z Similaly, the hoizontal divegence of a hoizontal vecto, v can be expessed: z v = v v z The vetical velocity in height coodinates, w, can be expessed: w = D t z = + D t x t x + D y t y + D t = + v t z + ṙ Finally, the total deivative of A in z coodinates is the total deivative in coodinates: D t A = A + v t z A + w A z = A ( + v t A + w ) A v t z = A + v t A + ṙ A

3 Atmospheic and Oceanic Modeling, Sping Now we can use the above elations to tansfom the tems in the equations of motion. Hydostatic balance becomes = gρ o moe natually = ρ gz The hoizontal pessue gadient in the momentum equations becomes z p = p z = p + ρ gz whee gz is the geopotential. The incompessible continuity (o non-divegence) equation is: z v + z w = v + w v z The tem w can be found fom the definition of w = D t z above: w = ( + v t z + ṙ ) = ( t z) + v ( z) + ṙ ( z) + v z + ṙ = D t ( z) + v z + ṙ so that continuity in coodinates is D t + ( v + ṙ ) This can be witten equivalently as o D t ln + v + ṙ t + v + ṙ

4 Atmospheic and Oceanic Modeling, Sping Combining all the above elations, the inviscid and adiabatic HPEs can then be witten in coodinates as: D t v + f ˆk v + 1 ρ p + 1 ρ ρ gz + ρ gz D t + ( v + ṙ ) ρ = ρ(θ, S, z) D t θ D t s We ll now chose specific vetical coodinates and see how the above equations simplify o othewise tun out in each case Teain following coodinates The epesentation of bottom topogaphy in z-coodinates has histoically been cude 1. An elegant appoach to incopoate the topogaphy smoothly into models is to nomalize the vetical coodinate by the fluid depth. Thee ae many choices of teain following coodinate but we will demonstate the simplest, known as σ-coodinates (sigma) whee z σ = H(x, y) This maps the bottom at z = H(x, y) to σ = 1 and so the domain is made squae. Using = σ = z/h simplifies the scaling facto = 1 o H = H In the hydostatic equation, the vetical deivative of gz is tivial since z = H = σh. The esulting σ-coodinate equations ae: D t v + f ˆk v + 1 ρ σp 1 ρh σ σz 1 The finite volume method (o patial cell epesentation) has somewhat alleviated this poblem. Howeve, thee ae still advantages to teain-following coodinates such as fixed domain, the ability to use a modal epesentation in the vetical, etc...

5 Atmospheic and Oceanic Modeling, Sping a) 20 b) Figue 10.1: Schematic of sigma-coodinates (a) and s-coodinates (b) in physical x z plane. σ + ρgh σ H v + σ H σ Thee ae two gadient tems in the momentum equations. To a lage degee, these cancel but cannot necessaily be canceled analytically. To see this, imagine a esting fluid of constant density. The pessue is simply a function of height, z. Howeve, wheeve the topogaphy, H, slopes, the coodinate sufaces above must slope too. This means that σ p is non-zeo and indeed is canceled by gρ σ z. At a numeical level, it is impossible to make these two tems balance exactly fo an abitay static initial condition and so leads to spontaneous motion. The imbalance of tems is known as the pessue gadient eo and a lot of effot has been put into educing this eo. With moden schemes, a typical eo will be of the ode of millimetes pe second fo common cicumstances. Ove shallow topogaphy, the effective vetical esolution is inceased. This can be an advantage but cae must be taken to avoid numeical instability due to small gid lengths (CFL). The implicit teatment of vetical tems is theefoe used in models such as SPEM/SCRUM o SEOM. Thee ae many vaiants on the teain following coodinates whee diffeent functions of bottom depth and height ae used. Some also include the

6 Atmospheic and Oceanic Modeling, Sping fee-suface height in the nomalization; the s-coodinate is defined as s = z η H + η so that all though the fee-suface can move the computational domain is fixed ( 1 s 0). The suface vaiations intoduce elatively mino slopes to the coodinate sufaces compaed to those induced by the bottom topogaphy. Teain following coodinates have seveal advantages ove z-coodinate models: Smooth epesentation of bottom topogaphy. Allow concentation of coodinate lines in bounday layes. but have the following dis-advantages: Pessue gadient eo can be significant and/o lead to spontaneous motion. Repesentation of hoizontal o along isopycnal pocesses is awkwad Isopycnal coodinates Whee the fluid is adiabatic, (potential) density is conseved and since, unde statically stable conditions, density is a monotonic function of height it makes a useful vetical coodinate. The eal advantage of isopycnal coodinates is thei Lagangian teatment of vetical motion; explicit advection acts only in the hoizontal. This makes the models models vey adiabatic allowing them to avoid numeical diffusion in the vetical that can be toublesome in z-coodinate and teain-following coodinate models. Stictly speaking, the vetical coodinate is potential density, σ θ but we will use ρ as the vetical coodinate to avoid confusion with the teain following coodinate. Setting = ρ, the continuity equation becomes: t ρ z + ρ z v + ρ ρz ρ

7 Atmospheic and Oceanic Modeling, Sping whee ρ is non-zeo only whee diabatic tems foce flow acoss isopycnals. The continuity equation has become a laye thickness equation fo each density class. The hydostatic equation is ρ + ρ gz = ρ ρ + ρgz gz ρ = ρm gz ρ whee M = p/ρ+gz is the Montgomey potential. The momentum equations become D t v + f ˆk v + 1 ρ ρρm Isopycnal models have seveal advantages ove the height and teain-following coodinates: Ideal fo modeling lateal tansfe pocesses. Adiabatic motions modeled without any spuious diabatic tems. Smooth epesentation of topogaphy. The bottom topogaphy is epesented as piecewise-linea and is included in the model though a vanishing of the laye thickness. Conseves volume of density classes Some dis-advantages ae: Full o non-linea equation of state is difficult. Non-hydostatic effects/dynamics ae not possible. Density is not a natual coodinate fo epesenting mixing pocesses such as the suface BBL (shallow and deep mixed layes). Vetical and hoizontal esolution ae tightly connected in egions whee isopycnals outcop. This can lead to inadequate hoizontal esolution in egions such as the ACC.

8 Atmospheic and Oceanic Modeling, Sping a) a) Figue 10.2: A schematic of (a) step topogaphy in a z-coodinate model and (b) a patial cell epesentation z-coodinate models Note that the z-coodinate equations ae eadily ecoveed. Setting = z means that z = 1, D t z, gz and gz = g. Since we ae so familia with z-coodinates we will efain fom witing them out once moe. One of the poblems with z-coodinates used to be with the cude epesentation of topogaphy as a seies of giant steps (see Fig. 10.2). Now, howeve, we epesent the bottom eithe via a vaiable thickness bottom laye (patial cells) o with a piecewise-linea epesentation. This appoach has been tested and favouably compaed to esults fom a sigma-coodinate model. The thee main z-coodinate models have some fom of patial cells implemented. Some advantages of using z-coodinates ae: Simple to implement and use! The full equation of state can be used. Diabatic pocesses, including the mixed-laye, can be epesented easily. Non-hydostatic and non-boussinesq tems can be included. Some dis-advantages ae: Repesentation of along isopycnal pocesses ae awkwad. Repesenting the bottom bounday laye is awkwad.

9 Atmospheic and Oceanic Modeling, Sping Pimitive equations in pessue coodinates The othe natual choice of vetical coodinate is pessue. Hee, howeve, the non-boussinesq equations ae the best stating point. This leads to equations vey simila to those used in meteoology. They have the advantage of not needing to simplify the equation of state dependence on pessue but have a majo difficulty in epesenting the bottom. Use of the Philip s nomalized pessue coodinate (a sigma-coodinate) endes equations vey simila to the teain-following coodinate outlined above. The compessible, non-boussinesq hydostatic equations in height coodinates ae: D t v + f ˆk v + 1 ρ zp + gρ 1 ρ D tρ + z v + w ρ = ρ(θ, S, p) D t θ D t s Using the same tansfomation ules as befoe, the non-boussinesq equations witten in a geneal coodinate become: D t v + f ˆk v + 1 ρ p + gz + ρ gz D t + ( 1 ρ D tρ + v + ṙ ) ρ = ρ(θ, S, p) D t θ D t s The continuity equation looks unusual. having two total deivatives. A judicious choice of coodinates, = p, will cause these tems to cancel. With

10 Atmospheic and Oceanic Modeling, Sping = p, the hydostaic equation becomes which is nomally witten 1 + ρg α + Φ whee α = 1/ρ is the specific volume and Φ = gz is the geopotential. We can now examine the two total deivatives in the continuity equation: D t + 1 ρ D tρ = D t ( 1 gρ ) 1 gρ D tρ 2 = 1 gρ D tρ 1 2 gρ D tρ 2 The othe majo simplification is that the gadient of pessue on a pessue suface is zeo ( p p ) so that the momentum equation etains only one gadient tem. Making the above substitutions we aive at the pimitive equations in pessue coodinates: D t v + f ˆk v + p Φ α + Φ p v + ω α = α(θ, S, p) D t θ D t s whee ω = ṗ is the coss coodinate flow in pessue coodinates. The equation of state is now witten in tems of specific volume. Examination of the above equations and compaison with the Boussinesq, hydostaic equations in height coodinates eveals a one-to-one coespondance of tems and vaiables; the equations ae isomophic. They take the same stuctual fom and this caies though to the bounday conditions also (de Szoeke and Samelson, 2002; Mashall et al., MWR 2004). Because the

11 Atmospheic and Oceanic Modeling, Sping equations ae isomophic, all of the algoithmic consideations and coodinate tansfomations we discussed can be applied to the pimitive equations in pessue coodinates. This is an appoach used in the MIT GCM to model the atmosphee o non-boussinesq ocean using the same code that is used to model the Boussinesq ocean Atmospheeic equations in pessue coodinates Fo the atmosphee, we simply need to eplace the equation of state with that of the atmosphee (we ll use the ideal gas equation, p = ρrt ) and dop salinity fom the equations. Thee is one simplifying step that can be made due to the ideal gas equation which uses a function called the Exne function, Π: Π = c p ( p p o ) κ Hee, c p is the specific heat at constant pessue, R is the gas constant and κ = R/c p and p o is a efeence pessue used to define the potential tempeaute: θ = c ( ) κ pt p Π = T Note that p Π = c pκ p ( p p o p o ) κ = κ p Π and α = RT p = κc pt = κπθ = θ p Π p p so that the pimitive equations fo an ideal dy atmosphee can be witten: D t v + f ˆk v + p Φ θ + Φ Π p v + ω D t θ Integating the continuity equation vetically ove the ai column and applying appopiate bounday conditions yields the suface pessue equation t p s + p s v

12 Atmospheic and Oceanic Modeling, Sping Hybid coodinates The choice of vetical coodinate is pehaps the single most impotant featue that diffeentiates between models and is still an active aea of eseach. Many goups ae examining how to use hybid coodinates whee the coodinate may be a function of height in the mixed laye, a function of isentopes in the inteio and some function of the teain in the bottom bounday laye.

Lecture 23. Vertical coordinates General vertical coordinate

Lecture 23. Vertical coordinates General vertical coordinate Lecture 23 Vertical coordinates We have exclusively used height as the vertical coordinate but there are alternative vertical coordinates in use in ocean models, most notably the terrainfollowing coordinate

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Classical Mechanics Homework set 7, due Nov 8th: Solutions

Classical Mechanics Homework set 7, due Nov 8th: Solutions Classical Mechanics Homewok set 7, due Nov 8th: Solutions 1. Do deivation 8.. It has been asked what effect does a total deivative as a function of q i, t have on the Hamiltonian. Thus, lets us begin with

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

Stress, Cauchy s equation and the Navier-Stokes equations

Stress, Cauchy s equation and the Navier-Stokes equations Chapte 3 Stess, Cauchy s equation and the Navie-Stokes equations 3. The concept of taction/stess Conside the volume of fluid shown in the left half of Fig. 3.. The volume of fluid is subjected to distibuted

More information

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Fall 06 Semeste METR 33 Atmospheic Dynamics I: Intoduction to Atmospheic Kinematics Dynamics Lectue 7 Octobe 3 06 Topics: Scale analysis of the equations of hoizontal motion Geostophic appoximation eostophic

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

DonnishJournals

DonnishJournals DonnishJounals 041-1189 Donnish Jounal of Educational Reseach and Reviews. Vol 1(1) pp. 01-017 Novembe, 014. http:///dje Copyight 014 Donnish Jounals Oiginal Reseach Pape Vecto Analysis Using MAXIMA Savaş

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

Numerical Integration

Numerical Integration MCEN 473/573 Chapte 0 Numeical Integation Fall, 2006 Textbook, 0.4 and 0.5 Isopaametic Fomula Numeical Integation [] e [ ] T k = h B [ D][ B] e B Jdsdt In pactice, the element stiffness is calculated numeically.

More information

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS The 8 th Intenational Confeence of the Slovenian Society fo Non-Destuctive Testing»pplication of Contempoay Non-Destuctive Testing in Engineeing«Septembe 1-3, 5, Potoož, Slovenia, pp. 17-1 MGNETIC FIELD

More information

(read nabla or del) is defined by, k. (9.7.1*)

(read nabla or del) is defined by, k. (9.7.1*) 9.7 Gadient of a scala field. Diectional deivative Some of the vecto fields in applications can be obtained fom scala fields. This is vey advantageous because scala fields can be handled moe easily. The

More information

1 Similarity Analysis

1 Similarity Analysis ME43A/538A/538B Axisymmetic Tubulent Jet 9 Novembe 28 Similaity Analysis. Intoduction Conside the sketch of an axisymmetic, tubulent jet in Figue. Assume that measuements of the downsteam aveage axial

More information

On the integration of the equations of hydrodynamics

On the integration of the equations of hydrodynamics Uebe die Integation de hydodynamischen Gleichungen J f eine u angew Math 56 (859) -0 On the integation of the equations of hydodynamics (By A Clebsch at Calsuhe) Tanslated by D H Delphenich In a pevious

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems ! Revised Apil 11, 2017 1:48 PM! 1 Vectos, Vecto Calculus, and Coodinate Systems David Randall Physical laws and coodinate systems Fo the pesent discussion, we define a coodinate system as a tool fo descibing

More information

Liquid gas interface under hydrostatic pressure

Liquid gas interface under hydrostatic pressure Advances in Fluid Mechanics IX 5 Liquid gas inteface unde hydostatic pessue A. Gajewski Bialystok Univesity of Technology, Faculty of Civil Engineeing and Envionmental Engineeing, Depatment of Heat Engineeing,

More information

Hydroelastic Analysis of a 1900 TEU Container Ship Using Finite Element and Boundary Element Methods

Hydroelastic Analysis of a 1900 TEU Container Ship Using Finite Element and Boundary Element Methods TEAM 2007, Sept. 10-13, 2007,Yokohama, Japan Hydoelastic Analysis of a 1900 TEU Containe Ship Using Finite Element and Bounday Element Methods Ahmet Egin 1)*, Levent Kaydıhan 2) and Bahadı Uğulu 3) 1)

More information

Three dimensional flow analysis in Axial Flow Compressors

Three dimensional flow analysis in Axial Flow Compressors 1 Thee dimensional flow analysis in Axial Flow Compessos 2 The ealie assumption on blade flow theoies that the flow inside the axial flow compesso annulus is two dimensional means that adial movement of

More information

I. CONSTRUCTION OF THE GREEN S FUNCTION

I. CONSTRUCTION OF THE GREEN S FUNCTION I. CONSTRUCTION OF THE GREEN S FUNCTION The Helmohltz equation in 4 dimensions is 4 + k G 4 x, x = δ 4 x x. In this equation, G is the Geen s function and 4 efes to the dimensionality. In the vey end,

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

Right-handed screw dislocation in an isotropic solid

Right-handed screw dislocation in an isotropic solid Dislocation Mechanics Elastic Popeties of Isolated Dislocations Ou study of dislocations to this point has focused on thei geomety and thei ole in accommodating plastic defomation though thei motion. We

More information

Fluid flow in curved geometries: Mathematical Modeling and Applications

Fluid flow in curved geometries: Mathematical Modeling and Applications Fluid flow in cuved geometies: Mathematical Modeling and Applications D. Muhammad Sajid Theoetical Plasma Physics Division PINSTECH, P.O. Niloe, PAEC, Islamabad Mach 01-06, 010 Islamabad, Paistan Pesentation

More information

Radial Inflow Experiment:GFD III

Radial Inflow Experiment:GFD III Radial Inflow Expeiment:GFD III John Mashall Febuay 6, 003 Abstact We otate a cylinde about its vetical axis: the cylinde has a cicula dain hole in the cente of its bottom. Wate entes at a constant ate

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Dynamics (Stömningsläa), 2013-05-31, kl 9.00-15.00 jälpmedel: Students may use any book including the textbook Lectues on Fluid Dynamics.

More information

ATMO 551a Fall 08. Diffusion

ATMO 551a Fall 08. Diffusion Diffusion Diffusion is a net tanspot of olecules o enegy o oentu o fo a egion of highe concentation to one of lowe concentation by ando olecula) otion. We will look at diffusion in gases. Mean fee path

More information

Conservative Averaging Method and its Application for One Heat Conduction Problem

Conservative Averaging Method and its Application for One Heat Conduction Problem Poceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER THERMAL ENGINEERING and ENVIRONMENT Elounda Geece August - 6 (pp6-) Consevative Aveaging Method and its Application fo One Heat Conduction Poblem

More information

Numerical solution of diffusion mass transfer model in adsorption systems. Prof. Nina Paula Gonçalves Salau, D.Sc.

Numerical solution of diffusion mass transfer model in adsorption systems. Prof. Nina Paula Gonçalves Salau, D.Sc. Numeical solution of diffusion mass tansfe model in adsoption systems Pof., D.Sc. Agenda Mass Tansfe Mechanisms Diffusion Mass Tansfe Models Solving Diffusion Mass Tansfe Models Paamete Estimation 2 Mass

More information

A Relativistic Electron in a Coulomb Potential

A Relativistic Electron in a Coulomb Potential A Relativistic Electon in a Coulomb Potential Alfed Whitehead Physics 518, Fall 009 The Poblem Solve the Diac Equation fo an electon in a Coulomb potential. Identify the conseved quantum numbes. Specify

More information

TheWaveandHelmholtzEquations

TheWaveandHelmholtzEquations TheWaveandHelmholtzEquations Ramani Duaiswami The Univesity of Mayland, College Pak Febuay 3, 2006 Abstact CMSC828D notes (adapted fom mateial witten with Nail Gumeov). Wok in pogess 1 Acoustic Waves 1.1

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk Appendix A Appendices A1 ɛ and coss poducts A11 Vecto Opeations: δ ij and ɛ These ae some notes on the use of the antisymmetic symbol ɛ fo expessing coss poducts This is an extemely poweful tool fo manipulating

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

S7: Classical mechanics problem set 2

S7: Classical mechanics problem set 2 J. Magoian MT 9, boowing fom J. J. Binney s 6 couse S7: Classical mechanics poblem set. Show that if the Hamiltonian is indepdent of a genealized co-odinate q, then the conjugate momentum p is a constant

More information

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ... MODULE 5a and 5b (Stewat, Sections 2.2, 2.3) INTRO: In MATH 4 vectos wee witten eithe as ows (a, a2,..., an) o as columns a a 2... a n and the set of all such vectos of fixed length n was called the vecto

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in Supplementay Figue 1. Cicula paallel lamellae gain size as a function of annealing time at 50 C. Eo bas epesent the σ uncetainty in the measued adii based on image pixilation and analysis uncetainty contibutions

More information

I( x) t e. is the total mean free path in the medium, [cm] tis the total cross section in the medium, [cm ] A M

I( x) t e. is the total mean free path in the medium, [cm] tis the total cross section in the medium, [cm ] A M t I ( x) I e x x t Ie (1) whee: 1 t is the total mean fee path in the medium, [cm] N t t -1 tis the total coss section in the medium, [cm ] A M 3 is the density of the medium [gm/cm ] v 3 N= is the nuclea

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.07: Electomagnetism II Septembe 5, 202 Pof. Alan Guth PROBLEM SET 2 DUE DATE: Monday, Septembe 24, 202. Eithe hand it in at the lectue,

More information

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics AE301 Aeodynamics I UNIT B: Theoy of Aeodynamics ROAD MAP... B-1: Mathematics fo Aeodynamics B-2: Flow Field Repesentations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis AE301

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS L. MICU Hoia Hulubei National Institute fo Physics and Nuclea Engineeing, P.O. Box MG-6, RO-0775 Buchaest-Maguele, Romania, E-mail: lmicu@theoy.nipne.o (Received

More information

COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS

COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS Pogess In Electomagnetics Reseach, PIER 73, 93 105, 2007 COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS T.-X. Song, Y.-H. Liu, and J.-M. Xiong School of Mechanical Engineeing

More information

MATH 415, WEEK 3: Parameter-Dependence and Bifurcations

MATH 415, WEEK 3: Parameter-Dependence and Bifurcations MATH 415, WEEK 3: Paamete-Dependence and Bifucations 1 A Note on Paamete Dependence We should pause to make a bief note about the ole played in the study of dynamical systems by the system s paametes.

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

arxiv: v1 [physics.flu-dyn] 21 Dec 2018

arxiv: v1 [physics.flu-dyn] 21 Dec 2018 1 axiv:1812.921v1 [physics.flu-dyn] 21 Dec 218 The cicula capillay jump Rajesh K. Bhagat 1, and P. F. Linden 2, 1 Depatment of Chemical Engineeing and Biotechnology, Univesity of Cambidge, Philippa Fawcett

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLIN MODUL 5 ADVANCD MCHANICS GRAVITATIONAL FILD: MOTION OF PLANTS AND SATLLITS SATLLITS: Obital motion of object of mass m about a massive object of mass M (m

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

CBE Transport Phenomena I Final Exam. December 19, 2013

CBE Transport Phenomena I Final Exam. December 19, 2013 CBE 30355 Tanspot Phenomena I Final Exam Decembe 9, 203 Closed Books and Notes Poblem. (20 points) Scaling analysis of bounday laye flows. A popula method fo measuing instantaneous wall shea stesses in

More information

Boundary Layers and Singular Perturbation Lectures 16 and 17 Boundary Layers and Singular Perturbation. x% 0 Ω0æ + Kx% 1 Ω0æ + ` : 0. (9.

Boundary Layers and Singular Perturbation Lectures 16 and 17 Boundary Layers and Singular Perturbation. x% 0 Ω0æ + Kx% 1 Ω0æ + ` : 0. (9. Lectues 16 and 17 Bounday Layes and Singula Petubation A Regula Petubation In some physical poblems, the solution is dependent on a paamete K. When the paamete K is vey small, it is natual to expect that

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS DOING PHYIC WITH MTLB COMPUTTIONL OPTIC FOUNDTION OF CLR DIFFRCTION THEORY Ian Coope chool of Physics, Univesity of ydney ian.coope@sydney.edu.au DOWNLOD DIRECTORY FOR MTLB CRIPT View document: Numeical

More information

13. Adiabatic Invariants and Action-Angle Variables Michael Fowler

13. Adiabatic Invariants and Action-Angle Variables Michael Fowler 3 Adiabatic Invaiants and Action-Angle Vaiables Michael Fowle Adiabatic Invaiants Imagine a paticle in one dimension oscillating back and foth in some potential he potential doesn t have to be hamonic,

More information

2. Plane Elasticity Problems

2. Plane Elasticity Problems S0 Solid Mechanics Fall 009. Plane lasticity Poblems Main Refeence: Theoy of lasticity by S.P. Timoshenko and J.N. Goodie McGaw-Hill New Yok. Chaptes 3..1 The plane-stess poblem A thin sheet of an isotopic

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r.

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r. The Laplace opeato in pola coodinates We now conside the Laplace opeato with Diichlet bounday conditions on a cicula egion Ω {(x,y) x + y A }. Ou goal is to compute eigenvalues and eigenfunctions of the

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

Lecture 2 - Thermodynamics Overview

Lecture 2 - Thermodynamics Overview 2.625 - Electochemical Systems Fall 2013 Lectue 2 - Themodynamics Oveview D.Yang Shao-Hon Reading: Chapte 1 & 2 of Newman, Chapte 1 & 2 of Bad & Faulkne, Chaptes 9 & 10 of Physical Chemisty I. Lectue Topics:

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions EN10: Continuum Mechanics Homewok 7: Fluid Mechanics Solutions School of Engineeing Bown Univesity 1. An ideal fluid with mass density ρ flows with velocity v 0 though a cylindical tube with cosssectional

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

Transformation of the Navier-Stokes Equations in Curvilinear Coordinate Systems with Maple

Transformation of the Navier-Stokes Equations in Curvilinear Coordinate Systems with Maple Global Jounal of Pue and Applied Mathematics. ISSN 0973-1768 Volume 12, Numbe 4 2016, pp. 3315 3325 Reseach India Publications http://www.ipublication.com/gjpam.htm Tansfomation of the Navie-Stokes Equations

More information

Euclidean Figures and Solids without Incircles or Inspheres

Euclidean Figures and Solids without Incircles or Inspheres Foum Geometicoum Volume 16 (2016) 291 298. FOUM GEOM ISSN 1534-1178 Euclidean Figues and Solids without Incicles o Insphees Dimitis M. Chistodoulou bstact. ll classical convex plana Euclidean figues that

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

π(x, y) = u x + v y = V (x cos + y sin ) κ(x, y) = u y v x = V (y cos x sin ) v u x y

π(x, y) = u x + v y = V (x cos + y sin ) κ(x, y) = u y v x = V (y cos x sin ) v u x y F17 Lectue Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V φ = uî + vθˆ is a constant. In 2-D, this velocit

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface . CONICAL PROJECTIONS In elementay texts on map pojections, the pojection sufaces ae often descibed as developable sufaces, such as the cylinde (cylindical pojections) and the cone (conical pojections),

More information

PES 3950/PHYS 6950: Homework Assignment 6

PES 3950/PHYS 6950: Homework Assignment 6 PES 3950/PHYS 6950: Homewok Assignment 6 Handed out: Monday Apil 7 Due in: Wednesday May 6, at the stat of class at 3:05 pm shap Show all woking and easoning to eceive full points. Question 1 [5 points]

More information

3-7 FLUIDS IN RIGID-BODY MOTION

3-7 FLUIDS IN RIGID-BODY MOTION 3-7 FLUIDS IN IGID-BODY MOTION S-1 3-7 FLUIDS IN IGID-BODY MOTION We ae almost eady to bein studyin fluids in motion (statin in Chapte 4), but fist thee is one cateoy of fluid motion that can be studied

More information

Solution of a Spherically Symmetric Static Problem of General Relativity for an Elastic Solid Sphere

Solution of a Spherically Symmetric Static Problem of General Relativity for an Elastic Solid Sphere Applied Physics eseach; Vol. 9, No. 6; 7 ISSN 96-969 E-ISSN 96-9647 Published by Canadian Cente of Science and Education Solution of a Spheically Symmetic Static Poblem of Geneal elativity fo an Elastic

More information

1D2G - Numerical solution of the neutron diffusion equation

1D2G - Numerical solution of the neutron diffusion equation DG - Numeical solution of the neuton diffusion equation Y. Danon Daft: /6/09 Oveview A simple numeical solution of the neuton diffusion equation in one dimension and two enegy goups was implemented. Both

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden Applied Mathematical Sciences, Vol. 7, 13, no. 7, 335-348 Mathematical Model of Magnetometic Resistivity Sounding fo a Conductive Host with a Bulge Ovebuden Teeasak Chaladgan Depatment of Mathematics Faculty

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

MONTE CARLO STUDY OF PARTICLE TRANSPORT PROBLEM IN AIR POLLUTION. R. J. Papancheva, T. V. Gurov, I. T. Dimov

MONTE CARLO STUDY OF PARTICLE TRANSPORT PROBLEM IN AIR POLLUTION. R. J. Papancheva, T. V. Gurov, I. T. Dimov Pliska Stud. Math. Bulga. 14 (23), 17 116 STUDIA MATHEMATICA BULGARICA MOTE CARLO STUDY OF PARTICLE TRASPORT PROBLEM I AIR POLLUTIO R. J. Papancheva, T. V. Guov, I. T. Dimov Abstact. The actual tanspot

More information

Final Review of AerE 243 Class

Final Review of AerE 243 Class Final Review of AeE 4 Class Content of Aeodynamics I I Chapte : Review of Multivaiable Calculus Chapte : Review of Vectos Chapte : Review of Fluid Mechanics Chapte 4: Consevation Equations Chapte 5: Simplifications

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e.,

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e., Stella elaxation Time [Chandasekha 1960, Pinciples of Stella Dynamics, Chap II] [Ostike & Davidson 1968, Ap.J., 151, 679] Do stas eve collide? Ae inteactions between stas (as opposed to the geneal system

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

On the Sun s Electric-Field

On the Sun s Electric-Field On the Sun s Electic-Field D. E. Scott, Ph.D. (EE) Intoduction Most investigatos who ae sympathetic to the Electic Sun Model have come to agee that the Sun is a body that acts much like a esisto with a

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information