MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE

Size: px
Start display at page:

Download "MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE"

Transcription

1 VISUAL PHYSICS ONLIN MODUL 5 ADVANCD MCHANICS GRAVITATIONAL FILD: MOTION OF PLANTS AND SATLLITS SATLLITS: Obital motion of object of mass m about a massive object of mass M (m << M assume M stationay w..t m) with an obital adius, obital speed v ob and peiod T G M m Gavitational foce (magnitude) FG Centipetal foce (magnitude) mv F F F C C G Obital speed v ob Angula momentum G M T L mvob constant Gavitational potential enegy P G M m P U P Kinetic enegy K mv 1 ob G M m Total enegy G M m K P Consevation of enegy 0 P K 1

2 How the planets move aound the Sun: Keple s Laws 1 st Law: A planet descibes an ellipse with the Sun at one focus. The distance fom the Sun to the planet vaies as the planet obits the Sun. So, we take to be aveage distance between the Sun and the planet. epesents the length of the semi-majo axis of the ellipse and is usually epesented by the symbol a. nd Law: ach planet moves so that an imaginay line dawn fom the Sun to the planet sweeps out equal aeas in equal peiods of time. This law esults fom the Law of Consevation of Angula Momentum L mv constant 3 d Law: T constant T 1 1 T T G M S T scape velocity v esc GM

3 A satellite is an object that obits a much moe massive object. Natual satellites include the planets obiting the Sun, the moons of Jupite, and the Moon about the ath. An atificial satellite is an object put into obit fom the ath s suface using a spacecaft such a ocket o a space shuttle. Satellites ae used fo many applications and include militay and civilian ath obsevation satellites, communications satellites, navigation satellites, weathe satellites, and eseach satellites. Space stations and human spacecaft in obit ae also satellites. 3

4 Satellites ae placed in one of seveal diffeent types of obit depending on the natue of thei mission. Two common obit types ae a Low ath Obit (LO) and a Geostationay Obit (GO). LOs occu at a adius of between 00 and 000 km above the ath s suface with peiods vaying fom 60 to 90 minutes. The space shuttle uses this type of obit (00-50 km). LOs have the smallest field of view and fequent coveage of specific o vaied locations on the ath s suface. Obits less than 400 km ae difficult to maintain due to atmospheic dag and subsequent obital decay. They ae used mainly fo militay applications, ath obsevation, weathe monitoing and shuttle missions. xcept fo the luna flights of the Apollo pogam, all human spaceflights have taken place in LO. The altitude ecod fo a human spaceflight in LO was Gemini 11 with an apogee of 1,374.1 km. All manned space stations and most atificial satellites, have been in LO. Obital decay is the eduction in the height of an object's obit ove time due to the dag of the atmosphee on the object. All satellites in low ath obits ae subject to some degee of atmospheic dag that will eventually decay thei obit and limit 4

5 thei lifetimes. ven at 1000 km, as thin as the atmosphee is, it is still sufficiently dense to slow the satellite down gadually. A GO is a cicula obit in the ath's equatoial plane, any point on which evolves about the ath in the same diection and with the same peiod as the ath's otation. Geostationay obits ae useful because they cause a satellite to appea stationay with espect to a fixed point on the otating ath. As a esult, an antenna can point in a fixed diection and maintain a link with the satellite. The satellite obits in the diection of the ath's otation, at an altitude of appoximately 35,786 km above gound. This altitude is significant because it poduces an obital peiod equal to the ath's peiod of otation, known as the sideeal day. These obits allow fo the tacking of stationay point on ath and have the lagest field of view. Applications include communications, mass-media and weathe monitoing. Web investigation atificial satellite obits Review: Cicula Motion 5

6 ORBITAL MOTION To place an object into a stable ath obit at a paticula adius, the launch must give it both an initial vetical and hoizontal component of velocity, elative to the ath s suface. The ocket will eventually tun so that it is tavelling hoizontal to the ath s suface. At this adius, the foce of gavity povides the acceleation needed to keep the object moving in a cicle, but a paticula obital velocity is also equied to keep the object in a stable obit (figue ). To calculate that velocity, known as the obital velocity v ob, we equate expessions fo centipetal foce F C and gavitational foce F G as follows: F F F C G C mvob centipetal foce G M m Gavitational foce F G Obital velocity of a satellite aound obiting the ath GM (3) vob Note that the velocity of a satellite as it obits aound the ath only depends on: Mass of the ath M Radius of the obit 6

7 It is clea fom this fomula that altitude is the only vaiable that detemines the obital velocity equied fo a specific obit. Futhe, the geate the adius of that obit, the lowe that obital velocity v ob. The obital velocity of a satellite aound othe planets is simply (4) v ob GMplanet obital velocity about any planet 7

8 The obital motion of the Moon about the ath We can calculate the obital velocity v ob of the Moon obiting the ath using the equation 3 fo the obital velocity o knowing the peiod T of otation of the Moon aound the ath is days. 8

9 The Moon s obital velocity of was calculated to be 1.0 km.s -1. The Moon s obit is not quite cicula and the speed is only appoximately constant. The obital speed of the of the Moon vaies fom to 1.0 km.s -1. So, ou simple models gave numeical esults which compae vey favouably with the measued values fo the obital speed of the Moon. 9

10 How do the planets move? Keple s Laws of Motion One of the most impotant questions histoically in Physics was how the planets move. Many histoians conside the field of Physics to date fom the wok of Newton, and the motion of the planets was the main poblem Newton set out to solve. In the pocess of doing this, he not only intoduced his laws of motion and discoveed the law of gavity, he also developed diffeential and integal calculus. Today, the same laws that goven the motion of planets, ae used by scientists to put satellites into obit aound the ath and to send spacecaft though the sola system. How the planets move is detemined by gavitational foces. The foces of gavity ae the only foces applied to the planets. The gavitational foces between the planets ae vey small compaed with the foce due to the Sun since the mass of the planets ae much less than the Sun's mass. ach planet moves almost the way the gavitational foce of the Sun alone dictates, as though the othe planets did not exist. 10

11 The motion of a planet is govened by Newton s Law of Univesal Gavitation G M S m (5) FG whee G is the Univesal Gavitational Constant, M S is the mass of the Sun, m is the mass of the planet and is the distance fom the Sun to the planet. G = N.m.kg M S = kg Histoically, the laws of planetay motion wee discoveed by the outstanding Geman astonome Johannes Keple ( ) based on almost 0 yeas of pocessing astonomical data, befoe Newton and without the aid of the law of gavitation. 11

12 Keple's Laws of Planetay Motion 1. The path of each planet aound the Sun is an ellipse with the Sun at one focus.. ach planet moves so that all imaginay lines dawn fom the Sun to the planet sweeps out equal aeas in equal peiods of time. 3. The atio of the squaes of the peiods of evolution of planets is equal to the atio of the cubes of thei obital adii (mean distance fom the Sun o length of semi-majo axis, a) (6) 3 T o T a T G M 3 S 1

13 Keple s Fist Law A planet descibes an ellipse with the Sun at one focus. But what kind of an ellipse do planets descibe? It tuns out they ae vey close to cicles. The path of the planet neaest the Sun, Mecuy, diffes most fom a cicle, but even in this case, the longest diamete is only % geate than the shotest one. Bodies othe than the planets, fo example, comets move aound the Sun in geatly flattened ellipses. Since the Sun is located at one of the foci and not the cente, the distance fom the planet to the Sun changes moe noticeably. The point neaest the Sun is called the peihelion and the fathest point fom the Sun is the aphelion. Half the distance fom the peihelion to the aphelion is known as the semi-majo adius, a. The othe adius of the ellipse is the semi-mino adius, b. 13

14 The equation of an ellipse is (7) x a y ellipse b 1 Fig. 3. The path of a planet aound the Sun is an ellipse. 14

15 Keple's Second Law ach planet moves so that an imaginay line dawn fom the Sun to the planet sweeps out equal aeas in equal peiods of time. This law esults fom the Law of Consevation of Angula Momentum Angula momentum L mv constant whee m is the mass of the planet, is the distance fom the Sun and v is the obital (tangential) velocity of the planet. Angula momentum is conseved because the foce acting on the obital body is always diected towads the cente of the coodinate system (0,0), i.e., the Sun. Thus, this foce cannot exet a toque (twist) on the obiting body. Since thee is zeo toque acting, the obital angula momentum must emain constant. Since a planet moves in an elliptical obit, the distance is continually changing. As it appoaches neae the Sun the planet must speed up and as it gets futhe away fom the Sun it must slow down such that the poduct v constant 15

16 The aea of each tiangle (fo a small time inteval dt) can be expessed as A v dt v dt A v dt v dt 1 1 Since angula momentum must be conseved L m v1 1 m v Theefoe, in equal time intevals, equal aeas ae swept out A 1 A 1 Fig. 4. A planet moves so that an imaginay line dawn fom the Sun to the planet sweeps out equal aeas in equal peiods of time. 16

17 Keple's Thid Law Fo a planet obiting the Sun with a adius, the centipetal foce esults fom the gavitational attaction between the planet and the Sun Centipetal foce = Gavitational foce mv G M m F F F F GMS v S C G C G Fo otational motion, we know that So, v f v 4 T T 4 4 T T GMS T GM T 1 1 T T S constant Keple s 3 d Law 17

18 Figue 5 shows a compute simulation fo the motion of a planet aound the Sun. The dots epesent the positions of the planet at equal time intevals. Nea the aphelion, the dots ae closely spaced indicating a small speed while at the peihelion the dots ae widely spaced indicating a lage speed fo the planet. Fig. 5. Compute simulation of the motion of a planet aound the Sun. Pedict Obseve xecise Motion of planets aound a sta 18

19 NRGY CONSIDRATIONS Conside a satellite of mass m obiting a massive object of mass M (m << M assume M stationay w..t m) with an aveage obital adius, obital speed v and peiod T. ob The net foce acting on the satellite is the gavitational foce F G G M m The gavitational foce is esponsible fo the obit, thus the gavitational foce coesponds to the centipetal foce mv F F F C C G Hence the aveage obital speed is v ob G M T The gavitational potential of the satellite system is G M m U P P P and its kinetic enegy is K mv 1 ob GM The total enegy of the system is GM K P constant Consevation of enegy 0 P K 19

20 Fo a satellite in a cicula obit, the adius of obit and the obital velocity (tangential) ae both constants. In an elliptical obit, both the adius and obital velocity change duing the obit of the satellite. Howeve, the angula momentum L of the satellite emains constant L mvob constant So, if the adius inceases, the obital velocity deceases o if the adius deceases, then the obital velocity inceases. By caefully examining figue 5, you will obseve that when the satellite is at the aphelion position, the satellite is at the geatest distance fom the massive object and its speed is a minimum. When the satellite is at the peihelion position, the position closest to the massive object and smallest adius, the speed is a maximum. 0

21 xample A satellite of mass 500 kg is in a low obit tajectoy at an altitude of 1000 km above the ath s suface. The satellite must be moved to a highe tajectoy with an altitude of 000 m. Calculate fo both obits: the acceleation due to gavity (gavitational field stength), obital speeds, peiods, kinetic enegies, gavitational potential enegies and total enegies. How can this be achieved? What enegy must be used to shift the satellite into the highe obit? M kg R m 11 G N.m.kg 1

22 Solution Poblem: type / visualize / how to appoach? / scientific annotated diagam / what do you know? Acceleation due to gavity (gavitational field stength) g GM Obit #1 g = 7.33 m.s - Obit # g = 5.69 m.s -

23 Acceleation due to gavity deceases with inceasing altitude. The obital velocities of the satellite v ob Obit #1 Obit # GM v ob = 7.35 m.s -1 v ob = 6.90 m.s -1 Obital velocity deceases with inceasing altitude. The peiod of the satellite obits v ob GM T T v Obit #1 T = 6.30x10 3 s = 1.75 h Obit # T = 7.6x10 3 s =.1 h Peiod inceases with inceasing altitude. ob Kinetic enegies of the satellite K 1 mv ob G M m Obit #1 Obit # K = 6.76x10 10 J K = 5.95x10 10 J K deceases with inceasing altitude. 3

24 Gavitational potential enegies of the satellite P G M m Obit #1 Obit # P = x10 11 J P = x10 11 J GP inceases with inceasing altitude. Total enegies of the satellite G M m K P Obit #1 = x10 10 J Obit # = x10 10 J total enegy inceases with inceasing altitude. The total enegy being negative means that the satellite is bound to the ath. 4

25 The enegy (wok) equied to move the satellite fom obit #1 to obit # is the diffeence in the total enegies between the two obits wok W = 1 = ( x x10 10 ) J W = 0.81x10 10 J This enegy fo the wok equied to shift the obit must come fom the fuel that is bunt by the satellite s ockets. VISUAL PHYSICS ONLIN If you have any feedback, comments, suggestions o coections please Ian Coope ian.coope@sydney.edu.au Ian Coope School of Physics Univesity of Sydney 5

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

Radius of the Moon is 1700 km and the mass is 7.3x 10^22 kg Stone. Moon

Radius of the Moon is 1700 km and the mass is 7.3x 10^22 kg Stone. Moon xample: A 1-kg stone is thown vetically up fom the suface of the Moon by Supeman. The maximum height fom the suface eached by the stone is the same as the adius of the moon. Assuming no ai esistance and

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist Histoy of Astonomy - Pat II Afte the Copenican Revolution, astonomes stived fo moe obsevations to help bette explain the univese aound them Duing this time (600-750) many majo advances in science and astonomy

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11.

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11. NSWRS - P Physics Multiple hoice Pactice Gavitation Solution nswe 1. m mv Obital speed is found fom setting which gives v whee M is the object being obited. Notice that satellite mass does not affect obital

More information

Gravitation. AP/Honors Physics 1 Mr. Velazquez

Gravitation. AP/Honors Physics 1 Mr. Velazquez Gavitation AP/Honos Physics 1 M. Velazquez Newton s Law of Gavitation Newton was the fist to make the connection between objects falling on Eath and the motion of the planets To illustate this connection

More information

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Chapte 12 Gavitation PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified by P. Lam 5_31_2012 Goals fo Chapte 12 To study Newton s Law

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion constant speed Pick a point in the objects motion... What diection is the velocity? HINT Think about what diection the object would tavel if the sting wee cut Unifom Cicula Motion

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

Circular Orbits. and g =

Circular Orbits. and g = using analyse planetay and satellite motion modelled as unifom cicula motion in a univesal gavitation field, a = v = 4π and g = T GM1 GM and F = 1M SATELLITES IN OBIT A satellite is any object that is

More information

Paths of planet Mars in sky

Paths of planet Mars in sky Section 4 Gavity and the Sola System The oldest common-sense view is that the eath is stationay (and flat?) and the stas, sun and planets evolve aound it. This GEOCENTRIC MODEL was poposed explicitly by

More information

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES SATELLITES: Obital motion of object of mass m about a massive object of mass M (m

More information

GRAVITATION. Thus the magnitude of the gravitational force F that two particles of masses m1

GRAVITATION. Thus the magnitude of the gravitational force F that two particles of masses m1 GAVITATION 6.1 Newton s law of Gavitation Newton s law of gavitation states that evey body in this univese attacts evey othe body with a foce, which is diectly popotional to the poduct of thei masses and

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation Physics 201, Lectue 22 Review Today s Topics n Univesal Gavitation (Chapte 13.1-13.3) n Newton s Law of Univesal Gavitation n Popeties of Gavitational Foce n Planet Obits; Keple s Laws by Newton s Law

More information

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature)

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature) a = c v 2 Recap Centipetal acceleation: m/s 2 (towads cente of cuvatue) A centipetal foce F c is equied to keep a body in cicula motion: This foce poduces centipetal acceleation that continuously changes

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Revision Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Wok... 5 Gavitational field... 5 Potential enegy... 7 Kinetic enegy... 8 Pojectile... 9

More information

Practice. Understanding Concepts. Answers J 2. (a) J (b) 2% m/s. Gravitation and Celestial Mechanics 287

Practice. Understanding Concepts. Answers J 2. (a) J (b) 2% m/s. Gravitation and Celestial Mechanics 287 Pactice Undestanding Concepts 1. Detemine the gavitational potential enegy of the Eath Moon system, given that the aveage distance between thei centes is 3.84 10 5 km, and the mass of the Moon is 0.0123

More information

Central Force Motion

Central Force Motion Cental Foce Motion Cental Foce Poblem Find the motion of two bodies inteacting via a cental foce. Examples: Gavitational foce (Keple poblem): m1m F 1, ( ) =! G ˆ Linea estoing foce: F 1, ( ) =! k ˆ Two

More information

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1 PHYSICS 0 Lectue 08 Cicula Motion Textbook Sections 5.3 5.5 Lectue 8 Pudue Univesity, Physics 0 1 Oveview Last Lectue Cicula Motion θ angula position adians ω angula velocity adians/second α angula acceleation

More information

10. Universal Gravitation

10. Universal Gravitation 10. Univesal Gavitation Hee it is folks, the end of the echanics section of the couse! This is an appopiate place to complete the study of mechanics, because with his Law of Univesal Gavitation, Newton

More information

Chap13. Universal Gravitation

Chap13. Universal Gravitation Chap13. Uniesal Gaitation Leel : AP Physics Instucto : Kim 13.1 Newton s Law of Uniesal Gaitation - Fomula fo Newton s Law of Gaitation F g = G m 1m 2 2 F21 m1 F12 12 m2 - m 1, m 2 is the mass of the object,

More information

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G =

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G = ics Announcements day, embe 9, 004 Ch 1: Gavity Univesal Law Potential Enegy Keple s Laws Ch 15: Fluids density hydostatic equilibium Pascal s Pinciple This week s lab will be anothe physics wokshop -

More information

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law AY 7A - Fall 00 Section Woksheet - Solutions Enegy and Keple s Law. Escape Velocity (a) A planet is obiting aound a sta. What is the total obital enegy of the planet? (i.e. Total Enegy = Potential Enegy

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

PS113 Chapter 5 Dynamics of Uniform Circular Motion

PS113 Chapter 5 Dynamics of Uniform Circular Motion PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied

More information

Gaia s Place in Space

Gaia s Place in Space Gaia s Place in Space The impotance of obital positions fo satellites Obits and Lagange Points Satellites can be launched into a numbe of diffeent obits depending on thei objectives and what they ae obseving.

More information

Chapter 13: Gravitation

Chapter 13: Gravitation v m m F G Chapte 13: Gavitation The foce that makes an apple fall is the same foce that holds moon in obit. Newton s law of gavitation: Evey paticle attacts any othe paticle with a gavitation foce given

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G-type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this investigation

More information

Gravitational Potential Energy in General

Gravitational Potential Energy in General Gavitational Potential Enegy in Geneal 6.3 To exploe such concepts as how much enegy a space pobe needs to escape fom Eath s gavity, we must expand on the topic of gavitational potential enegy, which we

More information

PHYSICS NOTES GRAVITATION

PHYSICS NOTES GRAVITATION GRAVITATION Newton s law of gavitation The law states that evey paticle of matte in the univese attacts evey othe paticle with a foce which is diectly popotional to the poduct of thei masses and invesely

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 6- THE LAW OF GRAVITATION Essential Idea: The Newtonian idea of gavitational foce acting between two spheical bodies and the laws of mechanics

More information

Chapter. s r. check whether your calculator is in all other parts of the body. When a rigid body rotates through a given angle, all

Chapter. s r. check whether your calculator is in all other parts of the body. When a rigid body rotates through a given angle, all conveted to adians. Also, be sue to vanced to a new position (Fig. 7.2b). In this inteval, the line OP has moved check whethe you calculato is in all othe pats of the body. When a igid body otates though

More information

constant t [rad.s -1 ] v / r r [m.s -2 ] (direction: towards centre of circle / perpendicular to circle)

constant t [rad.s -1 ] v / r r [m.s -2 ] (direction: towards centre of circle / perpendicular to circle) VISUAL PHYSICS ONLINE MODULE 5 ADVANCED MECHANICS NON-UNIFORM CIRCULAR MOTION Equation of a cicle x y Angula displacement [ad] Angula speed d constant t [ad.s -1 ] dt Tangential velocity v v [m.s -1 ]

More information

Escape Velocity. GMm ] B

Escape Velocity. GMm ] B 1 PHY2048 Mach 31, 2006 Escape Velocity Newton s law of gavity: F G = Gm 1m 2 2, whee G = 667 10 11 N m 2 /kg 2 2 3 10 10 N m 2 /kg 2 is Newton s Gavitational Constant Useful facts: R E = 6 10 6 m M E

More information

Lecture 22. PE = GMm r TE = GMm 2a. T 2 = 4π 2 GM. Main points of today s lecture: Gravitational potential energy: Total energy of orbit:

Lecture 22. PE = GMm r TE = GMm 2a. T 2 = 4π 2 GM. Main points of today s lecture: Gravitational potential energy: Total energy of orbit: Lectue Main points of today s lectue: Gavitational potential enegy: Total enegy of obit: PE = GMm TE = GMm a Keple s laws and the elation between the obital peiod and obital adius. T = 4π GM a3 Midtem

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

TAMPINES JUNIOR COLLEGE 2009 JC1 H2 PHYSICS GRAVITATIONAL FIELD

TAMPINES JUNIOR COLLEGE 2009 JC1 H2 PHYSICS GRAVITATIONAL FIELD TAMPINES JUNIOR COLLEGE 009 JC1 H PHYSICS GRAVITATIONAL FIELD OBJECTIVES Candidates should be able to: (a) show an undestanding of the concept of a gavitational field as an example of field of foce and

More information

Experiment 09: Angular momentum

Experiment 09: Angular momentum Expeiment 09: Angula momentum Goals Investigate consevation of angula momentum and kinetic enegy in otational collisions. Measue and calculate moments of inetia. Measue and calculate non-consevative wok

More information

University Physics Volume I Unit 1: Mechanics Chapter 13: Gravitation Conceptual Questions

University Physics Volume I Unit 1: Mechanics Chapter 13: Gravitation Conceptual Questions OpenStax Univesity Physics Volume I Univesity Physics Volume I Conceptual Questions 1. Action at a distance, such as is the case fo gavity, was once thought to be illogical and theefoe untue. What is the

More information

Chapter 12. Kinetics of Particles: Newton s Second Law

Chapter 12. Kinetics of Particles: Newton s Second Law Chapte 1. Kinetics of Paticles: Newton s Second Law Intoduction Newton s Second Law of Motion Linea Momentum of a Paticle Systems of Units Equations of Motion Dynamic Equilibium Angula Momentum of a Paticle

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

AP * PHYSICS B. Circular Motion, Gravity, & Orbits. Teacher Packet

AP * PHYSICS B. Circular Motion, Gravity, & Orbits. Teacher Packet AP * PHYSICS B Cicula Motion, Gavity, & Obits Teache Packet AP* is a tademak of the College Entance Examination Boad. The College Entance Examination Boad was not involved in the poduction of this mateial.

More information

GRAVITATION. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 PG 1

GRAVITATION. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 PG 1 Einstein Classes, Unit No. 0, 0, Vahman Ring Roa Plaza, Vikas Pui Extn., New Delhi -8 Ph. : 96905, 857, E-mail einsteinclasses00@gmail.com, PG GRAVITATION Einstein Classes, Unit No. 0, 0, Vahman Ring Roa

More information

AMM PBL Members: Chin Guan Wei p Huang Pengfei p Lim Wilson p Yap Jun Da p Class: ME/MS803M/AM05

AMM PBL Members: Chin Guan Wei p Huang Pengfei p Lim Wilson p Yap Jun Da p Class: ME/MS803M/AM05 AMM PBL Membes: Chin Guan Wei p3674 Huang Pengfei p36783 Lim Wilson p36808 Yap Jun Da p36697 Class: MEMS803MAM05 The common values that we use ae: G=6.674 x 0 - m 3 kg - s - Radius of Eath ()= 637km [Fom

More information

Midterm Exam #2, Part A

Midterm Exam #2, Part A Physics 151 Mach 17, 2006 Midtem Exam #2, Pat A Roste No.: Scoe: Exam time limit: 50 minutes. You may use calculatos and both sides of ONE sheet of notes, handwitten only. Closed book; no collaboation.

More information

Welcome to Aerospace Engineering

Welcome to Aerospace Engineering Welcome to Aeospace Engineeing DESIGN-CENTERED INTRODUCTION TO AEROSPACE ENGINEERING Notes 9 Topics 1. Couse Oganization. Today's Deams in Vaious Speed Ranges 3. Designing a Flight Vehicle: Route Map of

More information

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once. Honos Physics Fall, 2016 Cicula Motion & Toque Test Review Name: M. Leonad Instuctions: Complete the following woksheet. SHOW ALL OF YOUR WORK ON A SEPARATE SHEET OF PAPER. 1. Detemine whethe each statement

More information

HW6 Physics 311 Mechanics

HW6 Physics 311 Mechanics HW6 Physics 311 Mechanics Fall 015 Physics depatment Univesity of Wisconsin, Madison Instucto: Pofesso Stefan Westehoff By Nasse M. Abbasi June 1, 016 Contents 0.1 Poblem 1.........................................

More information

kg 2 ) 1.9!10 27 kg = Gm 1

kg 2 ) 1.9!10 27 kg = Gm 1 Section 6.1: Newtonian Gavitation Tutoial 1 Pactice, page 93 1. Given: 1.0 10 0 kg; m 3.0 10 0 kg;. 10 9 N; G 6.67 10 11 N m /kg Requied: Analysis: G m ; G m G m Solution: G m N m 6.67!10 11 kg ) 1.0!100

More information

Universal Gravitation

Universal Gravitation 3 Univesal Gavitation CHAPTER OUTLINE 3. Newton s Law of Univesal Gavitation 3. Fee-Fall Acceleation and the Gavitational Foce 3.3 Analysis Model: Paticle in a Field (Gavitational) 3.4 Keple s Laws and

More information

Physics 312 Introduction to Astrophysics Lecture 7

Physics 312 Introduction to Astrophysics Lecture 7 Physics 312 Intoduction to Astophysics Lectue 7 James Buckley buckley@wuphys.wustl.edu Lectue 7 Eath/Moon System Tidal Foces Tides M= mass of moon o sun F 1 = GMm 2 F 2 = GMm ( + ) 2 Diffeence in gavitational

More information

Chapter 7. Rotational Motion Angles, Angular Velocity and Angular Acceleration Universal Law of Gravitation Kepler s Laws

Chapter 7. Rotational Motion Angles, Angular Velocity and Angular Acceleration Universal Law of Gravitation Kepler s Laws Chapte 7 Rotational Motion Angles, Angula Velocity and Angula Acceleation Univesal Law of Gavitation Keple s Laws Angula Displacement Cicula motion about AXIS Thee diffeent measues of angles: 1. Degees.

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 10-: MOTION IN A GRAVITATIONAL FIELD Questions Fom Reading Activity? Gavity Waves? Essential Idea: Simila appoaches can be taken in analyzing electical

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , instein Classes, Unit No. 10, 10, Vadhman ing oad Plaza, Vikas Pui xtn., Oute ing oad New Delhi 110 018, Ph. : 916905, 85711111 GAVITATION PG 1 8. Keple s Laws Q. Wite down the statement of Keple s Laws

More information

Kepler's 1 st Law by Newton

Kepler's 1 st Law by Newton Astonom 10 Section 1 MWF 1500-1550 134 Astonom Building This Class (Lectue 7): Gavitation Net Class: Theo of Planeta Motion HW # Due Fida! Missed nd planetaium date. (onl 5 left), including tonight Stadial

More information

1) Consider a particle moving with constant speed that experiences no net force. What path must this particle be taking?

1) Consider a particle moving with constant speed that experiences no net force. What path must this particle be taking? Chapte 5 Test Cicula Motion and Gavitation 1) Conside a paticle moving with constant speed that expeiences no net foce. What path must this paticle be taking? A) It is moving in a paabola. B) It is moving

More information

Our Universe: GRAVITATION

Our Universe: GRAVITATION Ou Univese: GRAVITATION Fom Ancient times many scientists had shown geat inteest towads the sky. Most of the scientist studied the motion of celestial bodies. One of the most influential geek astonomes

More information

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart Rotational Motion & Angula Momentum Rotational Motion Evey quantity that we have studied with tanslational motion has a otational countepat TRANSLATIONAL ROTATIONAL Displacement x Angula Position Velocity

More information

Chapter 5. Uniform Circular Motion. a c =v 2 /r

Chapter 5. Uniform Circular Motion. a c =v 2 /r Chapte 5 Unifom Cicula Motion a c =v 2 / Unifom cicula motion: Motion in a cicula path with constant speed s v 1) Speed and peiod Peiod, T: time fo one evolution Speed is elated to peiod: Path fo one evolution:

More information

Chapter 5: Uniform Circular Motion

Chapter 5: Uniform Circular Motion Chapte 5: Unifom Cicula Motion Motion at constant speed in a cicle Centipetal acceleation Banked cuves Obital motion Weightlessness, atificial gavity Vetical cicula motion Centipetal Foce Acceleation towad

More information

Physics 201 Homework 4

Physics 201 Homework 4 Physics 201 Homewok 4 Jan 30, 2013 1. Thee is a cleve kitchen gadget fo dying lettuce leaves afte you wash them. 19 m/s 2 It consists of a cylindical containe mounted so that it can be otated about its

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

1. A stone falls from a platform 18 m high. When will it hit the ground? (a) 1.74 s (b) 1.83 s (c) 1.92 s (d) 2.01 s

1. A stone falls from a platform 18 m high. When will it hit the ground? (a) 1.74 s (b) 1.83 s (c) 1.92 s (d) 2.01 s 1. A stone falls fom a platfom 18 m high. When will it hit the gound? (a) 1.74 s (b) 1.83 s (c) 1.9 s (d).01 s Constant acceleation D = v 0 t + ½ a t. Which, if any, of these foces causes the otation of

More information

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces. 4.8. Cental foces The most inteesting poblems in classical mechanics ae about cental foces. Definition of a cental foce: (i) the diection of the foce F() is paallel o antipaallel to ; in othe wods, fo

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9 SPH4 nit 6.3 Gavitational Potential negy Page of Notes Physics ool box he gavitational potential enegy of a syste of two (spheical) asses is diectly popotional to the poduct of thei asses, and invesely

More information

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer. Kiangsu-Chekiang College (Shatin) F:EasteHolidaysAssignmentAns.doc Easte Holidays Assignment Answe Fom 6B Subject: Physics. (a) State the conditions fo a body to undego simple hamonic motion. ( mak) (a)

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

Mechanics and Special Relativity (MAPH10030) Assignment 3

Mechanics and Special Relativity (MAPH10030) Assignment 3 (MAPH0030) Assignment 3 Issue Date: 03 Mach 00 Due Date: 4 Mach 00 In question 4 a numeical answe is equied with pecision to thee significant figues Maks will be deducted fo moe o less pecision You may

More information

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session. - 5 - TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU

More information

Gravity Notes for PHYS Joe Wolfe, UNSW

Gravity Notes for PHYS Joe Wolfe, UNSW Gavity Notes fo PHYS 111-1131. Joe Wolfe, UNSW 1 Gavity: whee does it fit in? Gavity [geneal elativity] Electic foce* gavitons photons Weak nuclea foce intemediate vecto bosons Stong nuclea foce Colou

More information

Lecture 1a: Satellite Orbits

Lecture 1a: Satellite Orbits Lectue 1a: Satellite Obits Outline 1. Newton s Laws of Motion 2. Newton s Law of Univesal Gavitation 3. Calculating satellite obital paametes (assuming cicula motion) Scala & Vectos Scala: a physical quantity

More information

Lecture 3. Basic Physics of Astrophysics - Force and Energy. Forces

Lecture 3. Basic Physics of Astrophysics - Force and Energy. Forces Foces Lectue 3 Basic Physics of Astophysics - Foce and Enegy http://apod.nasa.gov/apod/ Momentum is the poduct of mass and velocity - a vecto p = mv (geneally m is taken to be constant) An unbalanced foce

More information

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK.

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK. AP Physics C Sping, 2017 Cicula-Rotational Motion Mock Exam Name: Answe Key M. Leonad Instuctions: (92 points) Answe the following questions. SHOW ALL OF YOUR WORK. ( ) 1. A stuntman dives a motocycle

More information

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity Solving Poblems of Advance of Mecuy s Peihelion and Deflection of Photon Aound the Sun with New Newton s Fomula of Gavity Fu Yuhua (CNOOC Reseach Institute, E-mail:fuyh945@sina.com) Abstact: Accoding to

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

Modeling Ballistics and Planetary Motion

Modeling Ballistics and Planetary Motion Discipline Couses-I Semeste-I Pape: Calculus-I Lesson: Lesson Develope: Chaitanya Kuma College/Depatment: Depatment of Mathematics, Delhi College of Ats and Commece, Univesity of Delhi Institute of Lifelong

More information

EXERCISE 01 CHECK YOUR GRASP [OBJECTIVE QUESTIONS ]

EXERCISE 01 CHECK YOUR GRASP [OBJECTIVE QUESTIONS ] J-Physics XCIS 01 CHCK YOU GASP [OBJCTIV QUSTIONS ] 1. Thee identical point masses, each of mass 1 kg lie in the x y plane at points (0, 0) (0, 0.m) and (0.m,0). The gavitational foce on the mass at the

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

Galactic Contraction and the Collinearity Principle

Galactic Contraction and the Collinearity Principle TECHNISCHE MECHANIK, Band 23, Heft 1, (2003), 21-28 Manuskipteingang: 12. August 2002 Galactic Contaction and the Collineaity Pinciple F.P.J. Rimott, FA. Salusti In a spial galaxy thee is not only a Keplefoce

More information

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Chapter 5 Solutions

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Chapter 5 Solutions Peason Physics Level 0 Unit III Cicula Motion, Wok, and Enegy: Chapte 5 Solutions Student Book page 4 Concept Check 1. he axis of otation is though the cente of the Fisbee diected staight up and down..

More information

3.2 Centripetal Acceleration

3.2 Centripetal Acceleration unifom cicula motion the motion of an object with onstant speed along a cicula path of constant adius 3.2 Centipetal Acceleation The hamme thow is a tack-and-field event in which an athlete thows a hamme

More information

6.4 Period and Frequency for Uniform Circular Motion

6.4 Period and Frequency for Uniform Circular Motion 6.4 Peiod and Fequency fo Unifom Cicula Motion If the object is constained to move in a cicle and the total tangential foce acting on the total object is zeo, F θ = 0, then (Newton s Second Law), the tangential

More information

2013 Checkpoints Chapter 7 GRAVITY

2013 Checkpoints Chapter 7 GRAVITY 0 Checkpoints Chapte 7 GAVIY Question 64 o do this question you must et an equation that has both and, whee is the obital adius and is the peiod. You can use Keple s Law, which is; constant. his is a vey

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2.

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2. Cental oce Poblem ind the motion of two bodies inteacting via a cental foce. Cental oce Motion 8.01 W14D1 Examples: Gavitational foce (Keple poblem): 1 1, ( ) G mm Linea estoing foce: ( ) k 1, Two Body

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information