MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018

Size: px
Start display at page:

Download "MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018"

Transcription

1 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2018 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced Format: 3 credit lecture Prerequisites: EMEC 425 Advanced Thermal Systems; or as listed in the current MSU Catalog. Current regulations require that a grade of "C-" or better must be earned in all prerequisite courses. Catalog Description: EMEC 426. Thermodynamics of Propulsion Systems. 3 Credits. (3 Lec) S PREREQUISITE: EMEC 425. An introduction to computer-aided thermodynamics calculations with applications to the mechanics and thermodynamics of aerospace propulsion systems. Includes computer-based chemical equilibrium applications and compressible fluid flow applications. Lecture Periods and Room(s): M W F 08:00-08:50, Roberts Hall 319. Textbook: Philip, H., and Peterson, C., Mechanics and Thermodynamics of Propulsion, second edition, Prentice Hall (formerly by Addison-Wesley Publishing), Grading Basis: Graded Homework 75% Two Projects (equal value) 20% Prerequisite Knowledge Examination 5% Total 100% Grade intervals are expected to be near the traditional values of 60% minimum for D-, 70% minimum for C-, 80% minimum for B-, and 90% minimum for A. Students who consistently arrive late at class meetings or disrupt normal course activities will have their grades reduced. Chronic complaining about the course content, instructional methods, or course personnel will also be cause for grade reduction. Course Objectives and General Information: The course was created to provide an introduction to computer-aided thermodynamics calculations with applications to the mechanics and thermodynamics of propulsion systems. The objective of the course is to extend previous training in thermodynamics and fluid mechanics. The course depends significantly on the material covered in the EMEC 425 Advanced Thermal Systems course and review of that material is a student responsibility. Specifically, the student should be able to apply the following formulations from the EMEC 425 course: interpretation of thermochemical data such as NIST- JANAF thermochemical tables or similar data sources, chemical equilibrium composition of an ideal gas mixture, thermodynamic properties of the ideal gas mixture, and compressible flow of the calorically perfect gas including adiabatic flow, isentropic flow, normal shock waves, quasi-one-dimensional flow, and oblique shock waves.

2 Subjects of this course are expected to include additional topics in the mechanics and thermodynamics of compressible fluid flow, accurate calculation of the products of combustion using chemical equilibrium theory and suitable computer codes, with application to turbojet engines, turbofan engines, ramjet engines, and rocket engines. Since air-breathing engines of the types mentioned contain inlets that slow and compress the air, analysis of inlets will also be considered. Several numerical formulations which require a computerized solution will be developed. Therefore, proficiency with Mathcad, Matlab, Fortran, or some alternative code, is expected and required. An introduction to commercial computer codes, e.g., on-line calculators for compressible flow calculations, GASEQ for computing the equilibrium composition and properties of mixtures, Chemical Equilibrium with Applications (CEA) by NASA for computing the equilibrium composition and properties of mixtures, and Rocket Propulsion Analysis (RPA) will be provided. Supplemental instruction is also available from the MSU Office of Student Success SmartyCats Tutoring [contact (406) , smartycats@montana.edu, or go to SUB 177]. This supplemental instruction can be particularly helpful to review topics in the prerequisite courses. Students with learning disabilities or other special academic needs should contact the instructor if they require any special provisions for examinations or assignments. In addition, regulations regarding academic integrity and other student conduct may be found on the MSU Webpage, e.g., Due to current University policies, the following student learning outcomes are provided: 1. Use and interpret results from common thermochemical data bases such as NIST-JANAF Thermochemical Tables and NASA Thermo-Build. 2. Use and interpret results from commercial chemical equilibrium applications codes, e.g., GASEQ and NASA-CEA. 3. Use and interpret results from commercial code(s) for rocket engine analysis, e.g., Rocket Propulsion Analysis (RPA). 4. Use and interpret results from compressible flow calculators. 5. Analyze both internal and external compressible flows using combinations of manual calculations, student written computer codes, and compressible flow calculators. 6. Analyze chemical rocket engine performance using the above-mentioned computer codes and student written Mathcad or Matlab code (or, other programming language). 7. Analyze all stages of common air-breathing propulsion systems such as ramjets and turbojets using combinations of manual calculations, the above-mentioned commercial computer codes, and student written Mathcad or Matlab code (or, other programming language).

3 EMEC 426 Spring 2018 Dr. George Since the course is being offered for the third time, updates to the list of assignments will be made as needed in class material and on the course D2L page. The course does not use D2L-based or the D2L-based grade book for any purpose. Tentative Topics, Reading, and Homework Assignments. See the course in-class material and D2L page for current information. Week of 08 Jan Brief review of compressible flow solutions for the calorically perfect gas. Additional compressible flow solutions. Notes. Review text Chapter 3 sections 3.1, 3.2, 3.3, and 3.7. Except for differences in notation, this is the same compressible flow material as covered in EMEC 425. Friday, 12 January, Prerequisite Knowledge Examination. In-class, open all hardcopy (paper) reference materials. Recommended reference materials: notes from EMEC 425 Advanced Thermal Systems, a thermodynamics textbook such as Borgnakke and Sonntag, 8 th or 9 th ed., and/or thermodynamic property tables from the textbook mentioned. Calculator required. Homework 1. Isentropic flow and normal shock wave results for the calorically perfect gas. Due date as specified on handout. 15 Jan Additional compressible flow solutions. Prandtl-Meyer expansion flow, sonic flow area in quasi-one-dimensional flow after a normal shock wave, and supersonic conical flow. Notes. Homework 2. Prandtl-Meyer flow and oblique shock waves. Due date as specified on handout.

4 22 Jan Computer codes: on-line compressible flow calculators (limited to calorically perfect gas flow, including isentropic flow, quasi-one-dimensional flow, normal shock waves, oblique shock waves, Prandtl-Meyer expansion flow, and supersonic conical flow). The two-dimensional supersonic airfoil; calculation of lift and drag for various angles of attack by shock-expansion theory. Lift and drag coefficients. Notes. Homework 3. Two-dimensional Supersonic Airfoil Calculating Lift and Drag Coefficients for Various Angles of Attack. Pressure Coefficient for Axisymmetric Conical Flow. Due date as specified on handout. 29 Jan Chemical equilibrium composition of the ideal gas mixture. Review of the formulation. Solution by direct numerical minimization of the Gibbs free energy subject to constraints based on conservation of atomic chemical species. Review text Chapter 2. Except for differences in notation, this is the same material concerning basic equations of fluid motion, ideal gas properties, thermodynamic analysis of chemical reactions (combustion), and the chemical equilibrium formulation for ideal gas mixtures as covered in EMEC 425 Advanced Thermal Systems. Computer codes: on-line compressible flow calculators (limited to calorically perfect gas flow, including isentropic flow, normal shock waves, oblique shock waves, supersonic conical flow, and Prandtl-Meyer expansion flow), chemical equilibrium with applications (GASEQ, NASA-CEA), Thermo-Build (computeraided thermochemical tables), NIST-JANAF Thermochemical Tables (hardcopy and on-line versions), and Computer-Aided Thermodynamic Tables 3. Various examples. How to operate the codes. Homework 4. GASEQ, individual basis, each student gets a problem with a different set of parameters, an exercise in computer-aided thermodynamics, compressible flow, and chemical equilibrium applications. Probably a study of adiabatic flame temperature both in steady flow and closed volume. Steady flow heat transfer or work rate. Reversible adiabatic expansion and compression. Due date as specified on handout.

5 05 Feb Computer codes: compressible flow calculators (limited to calorically perfect gas flow, including isentropic flow, normal shock waves, oblique shock waves, supersonic conical flow, and Prandtl-Meyer expansion flow), chemical equilibrium with applications (GASEQ, NASA-CEA), Thermo-Build (computer-aided thermochemical tables), NIST-JANAF Thermochemical Tables (hardcopy and online versions), and Computer-Aided Thermodynamic Tables 3. Various examples. How to operate the codes. Continued. Equilibrium with liquid and solid condensed phases. Temperature change due to adiabatic throttling and the Joule-Thomson coefficient. Homework 5. Torpedo propulsion WWII-type wet-heater system. Compressed air compared to air/fuel compared to air/fuel/water compared to oxygen/fuel/water. Use of seawater (Japan Type 93) compared to on-board water (USA Mark 14). Use NASA-CEA. Compare propulsion systems based on flow availability per unit onboard propellants. Students assigned different fuels to evaluate. Due date as specified on handout. 12 Feb Computer codes: compressible flow calculators (limited to calorically perfect gas flow, including isentropic flow, normal shock waves, oblique shock waves, supersonic conical flow, and Prandtl-Meyer expansion flow), chemical equilibrium with applications (GASEQ, NASA-CEA), Thermo-Build (computer-aided thermochemical tables), NIST-JANAF Thermochemical Tables (hardcopy and online versions), and Computer-Aided Thermodynamic Tables 3. Various examples. How to operate the codes. Continued. Homework 6. NASA-CEA Probably a study of adiabatic flame temperature for steady flow, closed volume combustion, normal shock waves with chemical reaction, one-dimensional detonation, isentropic adiabatic expansion and compression. Due date as specified on handout. 19 Feb Rocket engine thrust, specific impulse, thrust coefficient, characteristic velocity, and other performance characteristics. Mixture ratio. Characteristic length of combustion chamber L*. Optimal propellants; adiabatic flame temperature, molecular mass of products, specific impulse, density, etc. Analysis using the NASA-CEA code. Portions of text Chapters 10, 11, and 12.

6 26 Feb Rocket engine, analysis based on calorically perfect gas properties in the combustion chamber. Mixture ratio. Characteristic length of combustion chamber L*. Optimal propellants; adiabatic flame temperature, molecular mass of products, specific impulse, density, etc. Analysis using the GASEQ and/or NASA-CEA codes. Portions of text Chapters 10, 11, and Mar Rocket engine, analysis based on equilibrium flow properties and frozen chemical composition flow properties. [Coverage limited to chemical rockets with gaseous or liquid fuels and oxidizers only; no solid propellants.]. The influence of finite combustion chamber flow area. Analysis using the NASA-CEA code. 12 Mar Spring Break Portions of text Chapters 10, 11, and 12., computer-aided parametric analysis of rocket engine performance; each student gets a problem with a different combination of fuel, oxidizer, and specified range of operating conditions. 19 Mar Rocket engine, analysis based on equilibrium flow properties and frozen chemical composition flow properties. [Coverage limited to chemical rockets with gaseous or liquid fuels and oxidizers only; no solid propellants.]. Nozzle design by method of characteristics. The influence of finite combustion chamber flow area. Analysis using the Rocket Propulsion Analysis (RPA) code. Portions of text Chapters 10, 11, and 12., computer-aided parametric analysis of rocket engine performance including specification of the nozzle geometry. Each student gets a problem with a different combination of fuel, oxidizer, and specified range of operating conditions. Project 1. Non-air-breathing propulsion, computer-based compressible flow, and chemical equilibrium applications. Due date as specified on handout.

7 26 Mar Performance of rocket vehicles. The Rocket Equation and delta-v. Relationships between vehicle mass, propellant mass, engine thrust, burn time, vehicle acceleration, vehicle velocity, and range or altitude achieved. Portions of text Chapter 10. The mechanics of propulsion, thrust, drag, the steady flow momentum equation, and measures of propulsion efficiency. The Breguet Range Equation for level flight. Analysis of common propulsion system elements: inlets, combustion systems (limited coverage), turbines, compressors, and nozzles Portions of text Chapters 5 and Apr Analysis of common propulsion system elements: inlets, combustion systems (limited coverage), turbines, compressors, and nozzles. Continued. Air-Breathing Engines. Ramjet engine. Portions of text Chapters 5 and Apr Air-Breathing Engines. Turbojet engine with and without afterburner. (Last day to withdraw from the course: Friday, 13 April) Portions of text Chapter Apr Air-Breathing Engines. Turbofan engine. Portions of text Chapter 5. Project 2. Air-breathing propulsion, computer-based compressible flow, and chemical equilibrium applications. Due date as specified on handout.

8 23 Apr Introduction to the design and operation of subsonic inlets and supersonic inlets. Mention of other applications of thermodynamics, compressible flow, and chemical equilibrium, as related to propulsion systems. 30 Apr Finals Week

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2017 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced

More information

CONTENTS Real chemistry e ects Scramjet operating envelope Problems

CONTENTS Real chemistry e ects Scramjet operating envelope Problems Contents 1 Propulsion Thermodynamics 1-1 1.1 Introduction.................................... 1-1 1.2 Thermodynamic cycles.............................. 1-8 1.2.1 The Carnot cycle.............................

More information

Contents. Preface... xvii

Contents. Preface... xvii Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2

More information

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II Section 4.1: Introduction to Jet Propulsion Jet Propulsion Basics Squeeze Bang Blow Suck Credit: USAF Test Pilot School 2 Basic Types of Jet Engines Ramjet High Speed, Supersonic Propulsion, Passive Compression/Expansion

More information

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald Introduction to Fluid Mechanics Chapter 13 Compressible Flow Main Topics Basic Equations for One-Dimensional Compressible Flow Isentropic Flow of an Ideal Gas Area Variation Flow in a Constant Area Duct

More information

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

More information

FUNDAMENTALS OF GAS DYNAMICS

FUNDAMENTALS OF GAS DYNAMICS FUNDAMENTALS OF GAS DYNAMICS Second Edition ROBERT D. ZUCKER OSCAR BIBLARZ Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, California JOHN WILEY & SONS, INC. Contents PREFACE

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. #01 Lecture No. # 07 Jet Engine Cycles For Aircraft propulsion

More information

SARDAR RAJA COLLEGES

SARDAR RAJA COLLEGES SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING, ALANGULAM. DEPARTMENT OF MECHANICAL ENGINEERING MICRO LESSON PLAN SUBJECT : ME2351 - GAS DYNAMICS AND JET ROPULSION CLASS : III Year / VI SEM STAFF:

More information

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering TITLE Propulsion Systems and Aerodynamics MODULE CODE 55-6894 LEVEL 6 CREDITS 20 DEPARTMENT Engineering and Mathematics SUBJECT GROUP Industrial Collaborative Engineering MODULE LEADER Dr. Xinjun Cui DATE

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, IIT Bombay Module No. # 01 Lecture No. # 08 Cycle Components and Component

More information

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 Date Day Subject Read HW Sept. 21 F Introduction 1, 2 24 M Finite control volume analysis

More information

ME264 Thermodynamics

ME264 Thermodynamics ME264 Thermodynamics Spring 2016 Syllabus Instructor: Dr. Özgür Uğraş Baran 1 Course Information Basic Information Required or elective Course Credit (Hours/ECTS credits) Required (3-0-0/6) Class Hours

More information

Page 1 of 5 Printed: 2/4/09

Page 1 of 5 Printed: 2/4/09 Course Goal: CHEN 205 - Chemical Engineering Thermodynamics I, Credit 3 (3-0) Spring 2009, TuTh 9:35 10:50, Brown 102 (a) To introduce students to the fundamental concepts and laws of thermodynamics; and

More information

ME 6139: High Speed Aerodynamics

ME 6139: High Speed Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering, BUET Lecture-01 04 November 2017 teacher.buet.ac.bd/toufiquehasan/ toufiquehasan@me.buet.ac.bd 1 Aerodynamics is the study of dynamics

More information

AOE 3114 Compressible Aerodynamics

AOE 3114 Compressible Aerodynamics AOE 114 Compressible Aerodynamics Primary Learning Objectives The student will be able to: 1. Identify common situations in which compressibility becomes important in internal and external aerodynamics

More information

THERMODYNAMICS (Date of document: 8 th March 2016)

THERMODYNAMICS (Date of document: 8 th March 2016) THERMODYNAMICS (Date of document: 8 th March 2016) Course Code : MEHD214 Course Status : Core Level : Diploma Semester Taught : 3 Credit : 4 Pre-requisites : None Assessments : Computerized homework 20

More information

General Chemistry 201 Section ABC Harry S. Truman College Spring Semester 2014

General Chemistry 201 Section ABC Harry S. Truman College Spring Semester 2014 Instructor: Michael Davis Office: 3226 Phone: 773 907 4718 Office Hours: Tues 9:00 12:00 Wed 1:00 3:00 Thurs 9:00 12:00 Email: mdavis@ccc.edu Website: http://faradaysclub.com http://ccc.blackboard.com

More information

Summer AS5150# MTech Project (summer) **

Summer AS5150# MTech Project (summer) ** AE1 - M.Tech Aerospace Engineering Sem. Course No Course Name Lecture Tutorial Extended Tutorial Afternoon Lab Session Time to be spent outside of class 1 AS5010 Aerodynamics and Aircraft 3 0 0 0 6 9 performance

More information

DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS

DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS Kathleen Tran and Walter F. O'Brien, Jr Center for Turbomachinery and Propulsion Research Virginia Polytechnic Institute

More information

ME 022: Thermodynamics

ME 022: Thermodynamics ME 022: Thermodynamics General Information: Term: 2019 Summer Session Instructor: Staff Language of Instruction: English Classroom: TBA Office Hours: TBA Class Sessions Per Week: 5 Total Weeks: 5 Total

More information

COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR. GENERAL PHYSICS I PHS Credit Hours

COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR. GENERAL PHYSICS I PHS Credit Hours COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR Student Level: This course is open to students on the college level in the freshman year. Catalog Description: PHS4550 - GENERAL PHYSICS

More information

Physics 141 Course Information

Physics 141 Course Information Physics 141 Course Information General Physics I - Mechanics Spring 2008 Instructors: Office Hours: Textbook: Online Homework: Disclaimer: Nikos Varelas 2134 SES (312) 996-3415 varelas@uic.edu Charles

More information

Physics 141 Course Information

Physics 141 Course Information Physics 141 Course Information General Physics I - Mechanics Spring 2009 Instructors: Office Hours: Textbook: Online Homework: Disclaimer: Nikos Varelas 2134 SES (312) 996-3415 varelas@uic.edu Adrian Barkan

More information

Review of Fundamentals - Fluid Mechanics

Review of Fundamentals - Fluid Mechanics Review of Fundamentals - Fluid Mechanics Introduction Properties of Compressible Fluid Flow Basics of One-Dimensional Gas Dynamics Nozzle Operating Characteristics Characteristics of Shock Wave A gas turbine

More information

Physics 105 Spring 2017

Physics 105 Spring 2017 Physics 105 Spring 2017 Lectures: Sec: 6: TR 5:30 6:45 pm in Moulton 208 Lab/discussion: Sec. 7: Mon 8:00-10:50 am in MLT 203 (Cory Russ) Sec. 8: Mon 11:00-1:50 pm in MLT 203 (Noah Osman) Sec. 9: Mon 3:00-5:50

More information

Michelle Liu, Neelay Phadke, Dogan Gidon W 5-6 in Hildebrand 100-D

Michelle Liu, Neelay Phadke, Dogan Gidon W 5-6 in Hildebrand 100-D Course Syllabus CHEMICAL ENGINEERING 141 Syllabus Thermodynamics, Spring 2015 Instructors: Prof. Danielle Tullman-Ercek, 116 Gilman Hall, 642-7160, dtercek@berkeley.edu Graduate Student Instructors: Dogan

More information

GAS DYNAMICS AND JET PROPULSION

GAS DYNAMICS AND JET PROPULSION GAS DYNAMICS AND JE PROPULSION 1. What is the basic difference between compressible and incompressible fluid flow? Compressible Incompressible 1. Fluid velocities are appreciable 1. Fluid velocities are

More information

Chapter 1 Introduction and Basic Concepts

Chapter 1 Introduction and Basic Concepts Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity

More information

Chemistry 313 Course Syllabus / Fall 2006

Chemistry 313 Course Syllabus / Fall 2006 Chemistry 313 Course Syllabus / Fall 2006 Instructor: Dr. Caleb A. Arrington Course Number and Title: Chem 313 Physical Chemistry I (Thermodynamics) Meeting Place: RMSC-308 Meeting Time: M,W,&F 10:30 11:50

More information

ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS

ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS Kathleen Tran and Walter F. O'Brien, Jr Center for Turbomachinery and Propulsion Research Virginia Polytechnic Institute and State University

More information

Richard Nakka's Experimental Rocketry Web Site

Richard Nakka's Experimental Rocketry Web Site Página 1 de 7 Richard Nakka's Experimental Rocketry Web Site Solid Rocket Motor Theory -- Nozzle Theory Nozzle Theory The rocket nozzle can surely be described as the epitome of elegant simplicity. The

More information

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS Physics 4/56301 SPRING 2016 INSTRUCTOR:

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS Physics 4/56301 SPRING 2016 INSTRUCTOR: INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS Physics 4/56301 SPRING 2016 INSTRUCTOR: Dr. Mark Manley manley@kent.edu 510-H Library http://www.kent.edu/physics/profile/d-mark-manley 330-672-2407 CLASS HOURS:

More information

The Turbofan cycle. Chapter Turbofan thrust

The Turbofan cycle. Chapter Turbofan thrust Chapter 5 The Turbofan cycle 5. Turbofan thrust Figure 5. illustrates two generic turbofan engine designs. The upper figure shows a modern high bypass ratio engine designed for long distance cruise at

More information

Syllabus, General Chemistry I, CHM 1142 Section TCAA, Fall, 2008 McCall Hall, Room 318 MWF 9:00-9:50 AM

Syllabus, General Chemistry I, CHM 1142 Section TCAA, Fall, 2008 McCall Hall, Room 318 MWF 9:00-9:50 AM Syllabus, General Chemistry I, CHM 1142 Section TCAA, Fall, 2008 McCall Hall, Room 318 MWF 9:00-9:50 AM Instructor: Dr. Christopher King, cking@troy.edu Office: McCall 315, (334)670 3576. My office hours

More information

University of Engineering & Technology Lahore. (KSK Campus)

University of Engineering & Technology Lahore. (KSK Campus) Course File Session-2015 Semester: Fall 2016 MT-24: Thermodynamics for Technologists Department of Mechanical Engineering University of Engineering & Technology Lahore. (KSK Campus) Course File Contents

More information

Multistage Rocket Performance Project Two

Multistage Rocket Performance Project Two 41 Multistage Rocket Performance Project Two Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 Project Two in MAE 3293 Compressible Flow December

More information

DESIGN AND NUMERICAL ANALYSIS OF ASYMMETRIC NOZZLE OF SHCRAMJET ENGINE

DESIGN AND NUMERICAL ANALYSIS OF ASYMMETRIC NOZZLE OF SHCRAMJET ENGINE ISSN (O): 393-869 DESIGN AND NUMERICAL ANALYSIS OF ASYMMETRIC NOZZLE OF SHCRAMJET ENGINE Lokesh Silwal lokusilwal@gmail.com Sajan Sharma thesajansharma@gm ail.com Nitish Acharya nitishacharya1818@g mail.com

More information

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey GAS DYNAMICS M. Halük Aksel and O. Cahit Eralp Middle East Technical University Ankara, Turkey PRENTICE HALL f r \ New York London Toronto Sydney Tokyo Singapore; \ Contents Preface xi Nomenclature xiii

More information

Stellar Astronomy 1401 Spring 2009

Stellar Astronomy 1401 Spring 2009 Stellar Astronomy 1401 Spring 2009 Instructor: Ron Wilhelm Office: Science Building Room 9 Contact information: Office Hours: 742-4707 or ron.wilhelm@ttu.edu MWF 10:00-11:00 PM T & Th 11:30-12:30 AM Or

More information

WEST LOS ANGELES COLLEGE. CHEMISTRY 60 SYLLABUS Spring 2014

WEST LOS ANGELES COLLEGE. CHEMISTRY 60 SYLLABUS Spring 2014 Instructor: Elisa Atti WEST LOS ANGELES COLLEGE CHEMISTRY 60 SYLLABUS Spring 2014 Lecture: T, Th 1:00-2:25 pm MSA 005 Conference: T 2:35-4:40 pm MSA 005 LAB: Th 2:35 4:40 pm MSA 402 Office hour: T, Th:

More information

CHEM 231. Physical Chemistry I NJIT Fall Semester, Prerequisites: Chem 126 or 123, Phys 111 Co requisite: Math 211

CHEM 231. Physical Chemistry I NJIT Fall Semester, Prerequisites: Chem 126 or 123, Phys 111 Co requisite: Math 211 CHEM 231 Physical Chemistry I NJIT Fall Semester, 2017 Prerequisites: Chem 126 or 123, Phys 111 Co requisite: Math 211 Textbook: Chapters to be covered: Instructor: Goals: Prerequisites: Course Outline:

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information

UNIFIED ENGINEERING Fall 2003 Ian A. Waitz

UNIFIED ENGINEERING Fall 2003 Ian A. Waitz Ian A. Waitz Problem T6. (Thermodynamics) Consider the following thermodynamic cycle. Assume all processes are quasi-static and involve an ideal gas. 3 p Const. volume heat addition 2 adiabatic expansion

More information

Compressible Flow. Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist

Compressible Flow. Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist Compressible Flow Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist What is Compressible Flow? Compressible Flow is a type of flow in which the density can not be treated as constant.

More information

Athena A C A D E M I C. V. Babu

Athena A C A D E M I C. V. Babu Athena A C A D E M I C V. Babu Fundamentals of Gas Dynamics (2nd Edition) Cover illustration: Schlieren picture of an under-expanded flow issuing from a convergent divergent nozzle. Prandtl-Meyer expansion

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, yderabad - 500 043 AERONAUTICAL ENGINEERING COURE DECRIPTION FORM Course Title Course Code Regulation Course tructure Course Coordinator Team

More information

AME 436. Energy and Propulsion. Lecture 15 Propulsion 5: Hypersonic propulsion

AME 436. Energy and Propulsion. Lecture 15 Propulsion 5: Hypersonic propulsion AME 436 Energy and Propulsion Lecture 5 Propulsion 5: Hypersonic propulsion Outline!!!!!! Why hypersonic propulsion? What's different about it? Conventional ramjet heat addition at M

More information

MODELING & SIMULATION OF ROCKET NOZZLE

MODELING & SIMULATION OF ROCKET NOZZLE MODELING & SIMULATION OF ROCKET NOZZLE Nirmith Kumar Mishra, Dr S Srinivas Prasad, Mr Ayub Padania Department of Aerospace Engineering MLR Institute of Technology Hyderabad, T.S Abstract This project develops

More information

EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE

EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE Equatorial Journal of Engineering (2018) 9-13 Journal Homepage: www.erjournals.com ISSN: 0184-7937 EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE Kingsley Ejikeme

More information

ME6604-GAS DYNAMICS AND JET PROPULSION. Prepared by C.Thirugnanam AP/MECH TWO MARK QUESTIONS AND ANSWERS UNIT I ISENTROPIC FLOW

ME6604-GAS DYNAMICS AND JET PROPULSION. Prepared by C.Thirugnanam AP/MECH TWO MARK QUESTIONS AND ANSWERS UNIT I ISENTROPIC FLOW SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2008 Certified Institution Dr. E.M.Abdullah

More information

General Chemistry B - CHEM Syllabus Dr. Pine spring 2016

General Chemistry B - CHEM Syllabus Dr. Pine spring 2016 General Chemistry B - CHEM 102-005 Syllabus Dr. Pine spring 2016 Instructor: Dr. Polina Pine Phone 83134 Email: ppine@luc.edu Office Location: FH-403 Office Hours: TBA Lectures: MWF 11:30-12:20am Cuneo

More information

CHEM 4725/8725 Organometallic Chemistry. Spring 2016

CHEM 4725/8725 Organometallic Chemistry. Spring 2016 Lecture Time and Location: CHEM 4725/8725 Organometallic Chemistry Spring 2016 11:15 am - 12:30 pm Tuesdays and Thursdays 111 Smith Hall Instructor: Prof. Ian A. Tonks 568A Kolthoff Hall Phone: 612.624.4705

More information

Design and Optimization of De Lavel Nozzle to Prevent Shock Induced Flow Separation

Design and Optimization of De Lavel Nozzle to Prevent Shock Induced Flow Separation Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (2013), pp. 119-124 Research India Publications http://www.ripublication.com/aasa.htm Design and Optimization of De Lavel

More information

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS 1) State the difference between compressible fluid and incompressible fluid? 2) Define stagnation pressure? 3) Express the stagnation enthalpy in terms of static enthalpy

More information

Chemistry Physical Chemistry I Fall 2017

Chemistry Physical Chemistry I Fall 2017 Chemistry 309 - Physical Chemistry I Fall 2017 Instructor: Office Hours: Dr. Samuel A. Abrash C208 Gottwald Science Center Work: 289-8248 Home: 323-7363 Cell: 363-2597 sabrash@richmond.edu www.richmond.edu/~sabrash

More information

Angelina College Science and Mathematics Chemistry 1305 Introductory Chemistry General Syllabus

Angelina College Science and Mathematics Chemistry 1305 Introductory Chemistry General Syllabus I. BASIC COURSE INFORMATION: Angelina College Science and Mathematics Chemistry 1305 Introductory Chemistry General Syllabus A. Course Description: Three hours credit. A basic presentation of chemistry.

More information

STATISTICAL AND THERMAL PHYSICS

STATISTICAL AND THERMAL PHYSICS Phys 362 Spring 2015 STATISTICAL AND THERMAL PHYSICS Phys 362 Spring 2015 Instructor: Office: Professor David Collins WS 228B Phone: 248-1787 email: Office Hours: dacollin@coloradomesa.edu M 9 10 am, 11

More information

Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4. Wim Kloet

Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4. Wim Kloet Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4 Wim Kloet 1 Lecture 1 TOPICS Administration - course web page - contact details Course materials - text book - iclicker - syllabus Course Components

More information

Applied Thermodynamics - II

Applied Thermodynamics - II Gas Turbines Sudheer Siddapureddy sudheer@iitp.ac.in Department of Mechanical Engineering Jet Propulsion - Classification 1. A heated and compressed atmospheric air, mixed with products of combustion,

More information

Lake-Sumter State College Course Syllabus. South Lake Building 2 Room 339

Lake-Sumter State College Course Syllabus. South Lake Building 2 Room 339 Lake-Sumter State College Course Syllabus Course / Prefix Number MAC 2313 Course Title: Calculus with Analytic Geometry III CRN: 20110 20110 Credit: 4 Term: Spring 2015 Course Catalog Description: Instructor:

More information

AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL Required text: Evans, Partial Differential Equations second edition

AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL Required text: Evans, Partial Differential Equations second edition AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL 2018. MWF 2:00pm - 2:50pm MTH 0407 Instructor: M. Machedon Office: MTH 3311 e-mail: mxm@math.umd.edu Required text: Evans, Partial Differential Equations second

More information

CHEM 235 Physical Chemistry II NJIT Spring Semester, 2016

CHEM 235 Physical Chemistry II NJIT Spring Semester, 2016 CHEM 235 Physical Chemistry II NJIT Spring Semester, 2016 Prerequisites: Textbook: Chem 231 or equivalent, Math 211 or 213, Phys 111 P. W. Atkins and J. de Paula Physical Chemistry 10th Edition, Freeman

More information

Theoretical & Derivation based Questions and Answer. Unit Derive the condition for exact differentials. Solution:

Theoretical & Derivation based Questions and Answer. Unit Derive the condition for exact differentials. Solution: Theoretical & Derivation based Questions and Answer Unit 01 1. Derive the condition for exact differentials. Solution: 2*. Derive the Maxwell relations and explain their importance in thermodynamics. Solution:

More information

SPRING 2014 Department of Physics & Astronomy, UGA PHYS 4202/6202 Electricity and Magnetism II (as of Jan. 07/2014)

SPRING 2014 Department of Physics & Astronomy, UGA PHYS 4202/6202 Electricity and Magnetism II (as of Jan. 07/2014) SPRING 2014 Department of Physics & Astronomy, UGA PHYS 4202/6202 Electricity and Magnetism II (as of Jan. 07/2014) The course syllabus is a general plan for the course; deviations announced to the class

More information

Introduction to Flight

Introduction to Flight l_ Introduction to Flight Fifth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Me Graw Higher Education

More information

CLASSICAL ELECTRODYNAMICS I Physics 6/75203 SPRING 2013

CLASSICAL ELECTRODYNAMICS I Physics 6/75203 SPRING 2013 INSTRUCTOR: CLASSICAL ELECTRODYNAMICS I Physics 6/75203 SPRING 2013 Dr. Mark Manley manley@kent.edu 220 Smith Hall http://www.kent.edu/cas/physics/people/manley.cfm 330-672-2407 CLASS HOURS: 1:10-2:00

More information

General Chemistry I (CHE 1401)

General Chemistry I (CHE 1401) General Chemistry I (CHE 1401) Spring 2011 Instructor: Dr. Samir El Hajjaji (s.elhajjaji@aui.ma) Office Location: Room 104, Building 5 Phone ext.: 28 Office Hours: M, T, R: 14:000-16:00 W: 09:00-12:00

More information

Thermal Energy Final Exam Fall 2002

Thermal Energy Final Exam Fall 2002 16.050 Thermal Energy Final Exam Fall 2002 Do all eight problems. All problems count the same. 1. A system undergoes a reversible cycle while exchanging heat with three thermal reservoirs, as shown below.

More information

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath Compressible Potential Flow: The Full Potential Equation 1 Introduction Recall that for incompressible flow conditions, velocity is not large enough to cause density changes, so density is known. Thus

More information

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering BME 302 THERMODYNAMICS

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering BME 302 THERMODYNAMICS BME 302 - THERMODYNAMICS Academic Course Description BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering BME 302 THERMODYNAMICS Third Semester, 2015-16 (ODd Semester)

More information

Concept: Propulsion. Narayanan Komerath. Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust,

Concept: Propulsion. Narayanan Komerath. Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust, 1 Concept: Propulsion 2 Narayanan Komerath 3 4 Keywords: compressor, turbine Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust, 5 6 7 8 9 1. Definition Propulsion is the

More information

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS NONCALCULUS BASED PHYSICS I PHYS 2010

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS NONCALCULUS BASED PHYSICS I PHYS 2010 PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS NONCALCULUS BASED PHYSICS I PHYS 2010 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Revised: Spring 2011 Catalog Course Description: This

More information

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range AME 436 Energy and Propulsion Lecture 11 Propulsion 1: Thrust and aircraft range Outline!!!!! Why gas turbines? Computation of thrust Propulsive, thermal and overall efficiency Specific thrust, thrust

More information

2018 SPRING PHYS 8011 Classical mechanics I (as of Apr. 19/2018) The course syllabus is a general plan for the course; deviations announced to the class by the instructor may be necessary. A FRIENDLY REMINDER:

More information

Carbon Science and Technology

Carbon Science and Technology ASI RESEARCH ARTICLE Carbon Science and Technology Received:10/03/2016, Accepted:15/04/2016 ------------------------------------------------------------------------------------------------------------------------------

More information

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK NATURAL SCIENCES DEPARTMENT. SCC105: Introduction to Chemistry Fall I 2014

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK NATURAL SCIENCES DEPARTMENT. SCC105: Introduction to Chemistry Fall I 2014 LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK NATURAL SCIENCES DEPARTMENT SCC105: Introduction to Chemistry Fall I 2014 Your Instructor's name Your Instructor's contact information Course Description:

More information

Flow Characteristic Through Convergent-Divergent Nozzle

Flow Characteristic Through Convergent-Divergent Nozzle 2018 IJSRST Volume 4 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Flow Characteristic Through Convergent-Divergent Nozzle S. Sathyapriya 1, R. Swathi 2, P.

More information

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW. ρ = P IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

More information

Applied Gas Dynamics Flow With Friction and Heat Transfer

Applied Gas Dynamics Flow With Friction and Heat Transfer Applied Gas Dynamics Flow With Friction and Heat Transfer Ethirajan Rathakrishnan Applied Gas Dynamics, John Wiley & Sons (Asia) Pte Ltd c 2010 Ethirajan Rathakrishnan 1 / 121 Introduction So far, we have

More information

Differential Equations MTH 205

Differential Equations MTH 205 A Course Title & Number MTH 205 B Pre/Co requisite(s) MTH 104 C Number of credits 3 0 3 D Faculty Name Ayman Badawi E Term/ Year Fall 2014 F Sections CRN Days Time Location UTR 11:00 11:50 Office Hours:

More information

ANALYSIS OF THE FLOW IN A PROPULSION NOZZLE SUBJECTED TO A FLUID INJECTION

ANALYSIS OF THE FLOW IN A PROPULSION NOZZLE SUBJECTED TO A FLUID INJECTION ANALYSIS OF THE FLOW IN A PROPULSION NOZZLE SUBJECTED TO A FLUID INJECTION Nassir CHELLOU Department of Meanical Engineering, Faculty of Tenology, University Hassiba Benbouali, Chlef, Algeria Student City

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 Special 10(6): pages 79-88 Open Access Journal Effect of Variable

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. # 01 Lecture No. # 06 Ideal and Real Brayton Cycles Hello

More information

Introductory Physics PHYS 120 Challenge Program Course - Southwest Minnesota State University

Introductory Physics PHYS 120 Challenge Program Course - Southwest Minnesota State University Introductory Physics PHYS 120 Challenge Program Course - Southwest Minnesota State University Instructor of Record: Facilitator: Dr. Ken Murphy - Physics Jayme Fast Southwest Minnesota State University

More information

CHEMISTRY 210 SYLLABUS Spring 2007 General Chemistry II

CHEMISTRY 210 SYLLABUS Spring 2007 General Chemistry II CHEMISTRY 210 SYLLABUS Spring 2007 General Chemistry II Dr. Craig P. Jasperse Office: Hagen 407J email: jasperse@mnstate.edu Office Hours: Mon 10:3011:30, 3:305:30 Telephone: 4772230 Tues 9:3010:30, 2:305:30

More information

SE-5101: Foundations of Physical Systems Modeling

SE-5101: Foundations of Physical Systems Modeling SE-5101/5201 Foundations of Physical Systems Modeling Spring 2017 University of Connecticut Institute for Advanced Systems Engineering SE-5101: Foundations of Physical Systems Modeling Course Instructor:

More information

3. Write a detailed note on the following thrust vector control methods:

3. Write a detailed note on the following thrust vector control methods: Code No: R05322103 Set No. 1 1. Starting from the first principles and with the help of neatly drawn velocity triangles obtain the following relationship: Ψ = 2 Φ (tan β 2 + tan β 3 ) where Ψ is the blade

More information

Polymer Physics MSE 458 / CHEM 482 Spring 2018

Polymer Physics MSE 458 / CHEM 482 Spring 2018 Polymer Physics MSE 458 / CHEM 482 Spring 2018 Instructor: Prof. A.L. Ferguson 204 MSEB (217) 300-2354 alf@illinois.edu Grader: Class: Location: 4101 MSEB Time: 2:00 3:20 pm Days: T, Th Sections: A3 (CRN-38260)

More information

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow 1. Consider subsonic Rayleigh flow of air with a Mach number of 0.92. Heat is now transferred to the fluid and the Mach number increases to 0.95.

More information

Rocket Thermodynamics

Rocket Thermodynamics Rocket Thermodynamics PROFESSOR CHRIS CHATWIN LECTURE FOR SATELLITE AND SPACE SYSTEMS MSC UNIVERSITY OF SUSSEX SCHOOL OF ENGINEERING & INFORMATICS 25 TH APRIL 2017 Thermodynamics of Chemical Rockets ΣForce

More information

Continuous Differentiation of Complex Systems Applied to a Hypersonic Vehicle

Continuous Differentiation of Complex Systems Applied to a Hypersonic Vehicle Continuous of Complex Systems Applied to a Vehicle AIAA Aircraft Flight Mechanics Conference Derek J. Dalle, Sean M. Torrez, James F. Driscoll University of Michigan, Ann Arbor, MI 4819 August 15, 212,

More information

EOS-310 Severe & Unusual Weather Spring, 2009 Associate Prof. Zafer Boybeyi 1/20/09

EOS-310 Severe & Unusual Weather Spring, 2009 Associate Prof. Zafer Boybeyi 1/20/09 EOS-310 Spring, 2009 Associate Prof. Zafer Boybeyi 1/20/09 1 Instructor and Contact information Associate Prof. Zafer Boybeyi Research I, Room 217 Mail Stop 6A2 Email: zboybeyi@gmu.edu Phone: (703) 993-1560

More information

Chemistry Physical Chemistry I Fall 2018

Chemistry Physical Chemistry I Fall 2018 Chemistry 309 - Physical Chemistry I Fall 2018 Instructor: Office Hours: Dr. Samuel A. Abrash C-208 Gottwald Science Center Work: 289-8248 Home: 323-7363 Cell: 363-2597 sabrash@richmond.edu www.richmond.edu/~sabrash

More information

Syllabus. Physics 0847, How Things Work Section II Fall 2014

Syllabus. Physics 0847, How Things Work Section II Fall 2014 Syllabus Physics 0847, How Things Work Section II Fall 2014 Class Schedule: Tuesday, Thursday 11:00 a.m.-12:20 p.m. Location: Barton Hall BA130. Instructor: Dr. Zameer Hasan (215) 638 7219 Phone: Office:

More information

Chemistry 8 Principles of Organic Chemistry Spring Semester, 2013

Chemistry 8 Principles of Organic Chemistry Spring Semester, 2013 Chemistry 8 Principles of Organic Chemistry Spring Semester, 2013 Instructor: Office Hours: At the Lantern Prof. Jason Hein Mon 2:30 3:30 Email: jhein2@ucmerced.edu Tue 1:30 2:30 Phone: 683-4650 Office:

More information

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS 2nd AIAA Aerospace Sciences Paper 2-33 Meeting and Exhibit January -8, 2, Reno, NV THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS E. Wintenberger and J. E. Shepherd Graduate Aeronautical

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR PHS 4570 STATICS 3 Credit Hours Student Level: This course is open to students on the college level in either the freshman or sophomore

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR Student Level: This course is open to students on the college level in the sophomore year. Prerequisite: Minimum grade of C in MATH

More information

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 121 2. NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR NAME OF COURSE ENGINEERING PHYSICS 1 WITH LAB 3. CURRENT DATE: SUMMER

More information