National Quali cations AHSPECIMEN ONLY

Size: px
Start display at page:

Download "National Quali cations AHSPECIMEN ONLY"

Transcription

1 National Qualications AHSPECIMEN ONLY SQ10/AH/01 Engineering Science Date Not applicable Duration hours Total marks 60 Reference may be made to the Advanced Higher Engineering Science Data Booklet. SECTION 1 30 marks Attempt ALL questions SECTION 30 marks Attempt ALL questions Write your answers clearly in the answer booklet provided. In the answer booklet you must clearly identify the question number you are attempting. Show all working and units where appropriate. Numerical answers should include units, and be rounded to an appropriate number of significant figures. Use blue or black ink. Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper. *SQ10AH01*

2 SECTION 1 30 marks MARKS Attempt ALL questions 1. A Wien-Bridge oscillator is intended to operate at a nominal frequency of 15 Hz µf 70 Ω +V cc -V cc 4. 7 µf 70 Ω R 1 R 0 V (a) State the waveform produced by this oscillator. 1 The tolerance of the components used in the circuit is 5%. (b) Calculate the minimum frequency at which the circuit output will oscillate. (c) Describe how the resistor ratio R :R 1 affects the operation of the oscillator. page 0

3 . An engineer, working on a project to automate the movement of a forklift truck, uses critical path analysis to help plan the production of a prototype. MARKS The engineer draws up a table of tasks, precedents and times, shown below. Task Precedents Time (days) A Write program code None 5 B C Test program code on bench with sensors and motors Design and build control hardware to add to forklift A and E None 0 D Assemble all parts B, C 3 E Design and test interface circuit for microcontroller, motors and sensors None 10 F Test fully assembled automated forklift D A node for an activity network is shown below. Earliest start time for task K Latest start time for task K K Duration of task K (a) Complete the activity network for the project, using the above information. (b) State the order of tasks on the critical path. (c) Describe two steps the engineer could take to ensure that, if a critical task is delayed, then the overall project is still completed on time. 3 1 [Turn over page 03

4 3. The microcontroller in an air-conditioning system accurately controls the speed of a motor-driven fan. A 4-bit digital-to-analogue converter (DAC) allows the motor speed to be varied. A block diagram of the DAC is shown below. MARKS 3 Output lines from microcontroller 1 0 DAC Analogue voltage to motor The DAC has the following specification: It is constructed from operational amplifiers and appropriate resistors. The outputs from the microcontroller are each 0 V or 5 V The maximum output from the DAC should be 10 V The least significant bit (lsb) is line 0 The system power supply is ±1 V DC Draw a complete circuit diagram for the DAC specified above, including all significant component values. 4 [Turn over page 04

5 4. A 5 m long mild-steel beam has a rectangular cross-section. It is designed for the maximum loading conditions shown.. 0 m 3. 0 knm knm m. 0 m MARKS R A R B An engineer used the free-body diagram shown below to find the maximum bending moment acting on this beam, which lies within the first. 0 m of the span, when measured from the left-hand end of the beam. 0 x < knm -1 F S M b x R A (a) By reference to the two diagrams above, show that, at a distance x metres from the left-hand end of the beam, the bending moment, M b, measured in knm, is given by: 3 Mb = 5x x The mild-steel beam has a rectangular cross-section, with a width of 5 mm. The beam is designed such that the maximum stress in the beam is 50% of the material s yield stress for a maximum bending moment of 5 knm. 5 mm (b) Calculate the required depth, d, of the beam. 4 d page 05

6 5. A rectangular beam used to support a module on an oil-rig is replaced by an I-beam of the same material, length, depth and stiffness. Details of the beam cross-sections are shown below. MARKS 114 mm t 9 mm 11 mm x x x x 114 mm 11 mm Replacement Beam Original Beam (a) Calculate the thickness, t, of the original rectangular beam. (b) State a design reason for making this replacement. 3 1 [Turn over page 06

7 6. Step-up transformers are a necessary part of the National Grid, which enables electricity transmission. (a) Explain the major benefit of including a step-up transformer at a power station for the transmission of electricity through the National Grid. MARKS A single-phase step-up transformer has an input power rating of 100 kva and increases the 415 V AC input voltage to V AC at its output. The primary and secondary windings of the transformer have resistances of Ω and Ω respectively. The core loss is. 75 kw. (b) Calculate the efficiency of the transformer. 3 page 07

8 SECTION 30 marks MARKS Attempt ALL questions 7. A self-balancing electric scooter has two motors which control the movement and balance of the machine. Any movement causing the scooter to tilt forwards or backwards is sensed using a triple-axis electronic gyroscope. The signal from the gyroscope is processed by a microcontroller which then controls the speed and direction of the two motors, using pulse width modulation. During the development of the scooter s control, a section of a test program was written to meet the following specification: The tilt angle is checked. After the tilt angle is checked, the variable ANGLE holds a value between 0 and 100 If ANGLE < 50, then the variable ERROR = 50 ANGLE and the motors are driven forwards. If ANGLE >= 50, then the variable ERROR = ANGLE 50 and the motors are driven backwards. ERROR should be multiplied by a gain factor so that, when ERROR is a maximum, it holds the value required for the motors to be fully on. ERROR is used as the value of duty cycle for a PWM command detailed below, in order to control the speed of the motors. The sequence should repeat continuously until the stop switch is pressed. Pin connections Input Pin number Output 6 Left motor A (forward) 5 Left motor A (backward) 4 Right motor B (forward) 3 Right motor B (backward) Stop button page 08 [Turn over

9 7. (continued) Notes Assume ANGLE and ERROR have been defined as integer variables, which can take values in the range For a test program written in a C-based language, the tilt angle is checked by calling the function getangle(). For a test program written in a form of BASIC, the tilt angle is checked by calling the sub-procedure get_angle. MARKS The following information is provided for reference. Assume that both commands are available for the output pins identified in the Pin Connections table above. Arduino CBASIC Command analogwrite() Description Writes a PWM signal to a pin until the next call to analoguewrite() or digitalwrite() on the same pin. Syntax analogwrite(pin,value) Parameters pin: a variable/constant which is the pin to write to value: the duty cycle: between 0 (off) and 55 (fully on) Command pwmout Description Writes a continuous PWM signal to a pin until another pwmout command is sent to the pin. Syntax pwmout pin,period,mark Parameters pin: a variable/constant which is the pin to write to period: set to 55 for this application mark: the duty cycle: between 0 (off) and 100 (fully on) (a) Using a high-level language appropriate for programming microcontrollers, write program code which will carry out the control sequence required. 4 page 09

10 7. (continued) The motors are driven by an L93D Push-Pull 4-channel driver integrated circuit. An incomplete wiring diagram is given below, with a pin-out diagram and some accompanying notes on interfacing a microcontroller with the L93D chip. (b) Copy and complete the diagram, showing all necessary connections to the microcontroller, the L93D IC and the motors. MARKS 3 Vs Vs 5 V 5 V M A Microcontroller M B L93D 0 V 0 V Extract from L93D Datasheet Enable VSS Pin Description Input 1 Output Input 4 Output 4 1 & 9 Connect HIGH to enable outputs & 7 Control inputs from microcontroller for Motor A GND 4 13 GND 10, 15 Control inputs from microcontroller for Motor A GND 5 1 GND 3, 6 Output connections for Motor A Output 6 11 Output 3 11, 14 Output connections for Motor B Input 7 10 Input 3 VS 8 9 Enable Pin-out diagram [Turn over page 10

11 7. (continued) MARKS (c) The footplate of the scooter is reinforced by an aluminium alloy beam. The freebody diagram for a test of the beam is shown below. 380 N 40 N 380 N 80 Nm m 0.5 m 0.5 m 0.1 m 705 N 705 N (d) (i) Sketch the shear-force diagram, showing values at all significant points. (ii) Copy and complete the table below. 4 4 Distance from left-hand end (m) Bending Moment (Nm) page 11

12 8. This diagram shows some detail of an intermediate shaft in the gearbox of a wind turbine. Gear 1 Gear MARKS The intermediate shaft of the gearbox is fitted with two spur gears. The forces acting on each gear when the shaft is being driven at constant speed are shown in the diagrams below. F 1 A F 1 F 0º F 0º B B,A m Ø m 0 50 m m Ø 0 00 m Assume that there are no energy losses in the gearbox. When the input power is MW, the intermediate shaft rotates at 450 rev min -1. (a) Calculate forces F 1 and F. 3 Roller bearings are located at the points A and B shown in the previous diagram. (b) Calculate the magnitude and direction of the reaction at bearing B. 4 [Turn over page 1

13 8. (continued) During testing, the speed of the gearbox output shaft is monitored by means of a toothed wheel and magnetic sensor, as shown. An electronic engineer uses a Schmitt trigger to create a digital signal from the analogue signal produced by the magnetic sensor. A graph of the signal from the sensor is shown below. Selected threshold voltages for the Schmitt trigger circuit are also shown. Sensor output voltage (V) Time (ms) Upper threshold Lower threshold The Schmitt trigger circuit is shown below. 5 V R 3 V in R R 1 V out 0 V page 13

14 8. (continued) MARKS The engineer selected a value of 10 kω for resistor R 3 and assumed that the op-amp output saturated to 3. 6 V and 0 V. (c) Calculate the required values of resistors R 1 and R 6 It may seem unnecessary to design efficient drive trains, generators and transformers for wind turbines when they are used to produce energy from a renewable resource. (d) Explain why optimising the efficiency of these components remains a necessary design consideration. [END OF SPECIMEN QUESTION PAPER] Acknowledgement of Copyright Question 7 Image from risteski goce/shutterstock.com page 14

15 AH National Qualifications SPECIMEN ONLY SQ10/AH/01 Engineering Science Marking Instructions These Marking Instructions have been provided to show how SQA would mark this Specimen Question Paper. The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purpose, written permission must be obtained from SQA s Marketing team on permissions@sqa.org.uk. Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user s responsibility to obtain the necessary copyright clearance.

16 General Marking Principles for Advanced Higher Engineering Science This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the Detailed Marking Instructions, which identify the key features required in candidate responses. (a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment. (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions. (c) Where a candidate makes an error at an early stage in a multi-stage calculation, credit should normally be given for correct follow-on working in subsequent stages, unless the error significantly reduces the complexity of the remaining stages. The same principle should be applied in questions which require several stages of non-mathematical reasoning. (d) All units of measurement will be presented in a consistent way, using negative indices where required (eg m s -1 ). Candidates may respond using this format, or solidus format (m/s), or words (metres per second), or any combination of these (eg metres/second). (e) Answers to numerical questions should normally be rounded to an appropriate number of significant figures. However, the mark can be awarded for answers which have up to two figures more or one figure less than the expected answer. (f) (g) Unless a numerical question specifically requires evidence of working to be shown, full marks should be awarded for a correct final answer (including unit) on its own. A mark can be awarded when a candidate writes down the relevant formula and substitutes correct values into the formula. No mark should be awarded for simply writing down a formula, without any values. (h) Credit should be given where a labelled diagram or sketch conveys clearly and correctly the response required by the question. (i) (j) Marks should be awarded, regardless of spelling, as long as the meaning is unambiguous. Candidates may answer programming questions in any appropriate programming language. Marks should be awarded, regardless of minor syntax errors, as long as the intention of the coding is clear. (k) Where a question asks the candidate to explain, marks should only be awarded where the candidate goes beyond a description, for example by giving a reason, or relating cause to effect, or providing a relationship between two aspects. (l) Where separate space is provided for rough working and a final answer, marks should normally only be awarded for the final answer, and all rough working ignored. page two

17 Question Expected response 1 a Sine wave 1 1 b Max mark Additional information 1 mark recognising that minimum frequency requires maximum component values 1 mark calculating lower limit of frequency correctly Eg possible partially correct response: = = 113 Hz (3 ) = = Total of 1 mark, candidate has not checked that the component values actually produce 15 Hz. = = 114 Hz (3) Eg possible partially correct response: = = 139 Hz (3) Total of 1 mark, candidate has applied tolerance to component values incorrectly, working out their minimum possible values. First mark not awarded, but second mark is available as a correct calculation, although based on incorrect values. page three

18 Question Expected response 1 c <: When the oscillator is turned on, the oscillation will continuously decrease in amplitude. =: When the oscillator is turned on, the oscillation will grow and quickly settle at a constant-amplitude. >: When the oscillator is turned on, the oscillation will grow continuously, and the output will begin to saturate after a few cycles. Max mark Additional information Total of marks: correct description for all three conditions with critical resistor ratio clearly indicated. Total of 1 mark: correct descriptions for two of three conditions with the critical resistor ratio mentioned, or correct descriptions for all three conditions but no critical value for the resistor ratio. Total of 0 marks: only one condition mentioned, or two conditions but no critical value for the resistor ratio. If the ratio is too small, then the oscillation will die out and if it is too large the oscillation will grow until it saturates, so the resistor ratio has a critical value 1 mark page four

19 Question Expected response a Max mark h Additional information 3 1 mark precedence of tasks is correct 1 mark earliest start time for each task is correct There may be follow-through error from first mark, if the sequence is not correct but there is branching. 1 mark latest start time for each task is correct There may be follow through from the first and second marks for the final mark if the sequence is not correct but there is branching and if the finish time has been miscalculated. Note that times for tasks shown on arrows are not necessary. b C,D,F 1 There may be follow-through error from question (a), if the sequence is not correct but there is branching, and if the pathway that takes the longest time to complete is selected. 1 mark may be awarded for a correct critical path based on the candidate s answer to (a), applying general marking instruction (c). c Bring in more staff to work on a task to catch up. Where there is slack/float in other tasks, staff can be reassigned to a critical task to help catch up. Hire/buy new equipment to speed up a task. Authorise staff overtime to catch up on the delay. If the delay is due to a shortage of parts, alternative suppliers can be found Any two relevant points page five

20 Question Expected response Max mark Additional information mark circuit diagram: 4-input summing amplifier = = mark inverting amplifier gain is either unity, or is correct for first-stage gain = 10, =5, =, = 4, = = 15 1 mark calculations correct for summing amplifier feedback and input resistors 1 mark inputting resistor ratios on first stage correctly for lsb to msb and in kω range = = 10, h = 15 = 800 h = 400, = 00, = 100 = 107 page six

21 Question Expected response Possible alternative response R-R 0 + = = Max mark Additional information 1 mark circuit diagram (does not have to include inverting amplifier) 1 mark inverting amplifier gain is either unity, or is correct for first-stage gain 1 mark calculations correct for first stage feedback and input resistors 1 mark R-R resistor ratio on first stage correct and in kω range.(* is marked R) page seven

22 Question Expected response 4 a 0 m 0 m 1 0 m 3 0 knm -1 0 knm -1 + RA =0 RB =0 =5 3 0 knm -1 + RA, =0 3 =0 = 3 Max mark Additional information 1 mark finding the value for, the reaction at the left-hand end of the beam 1 mark using first principles to find an expression for the bending moment, in terms of the reaction at the left-hand end of the beam and the 3 knm -1 UDL page eight

23 Question Expected response 4 b = 0 =, = 1, = = 1 = = 5 6 =99 Max mark Additional information 4 1 mark finding the value for from data booklet and establishing the maximum working stress 1 mark finding expressions for and 1 mark rearranging the beam bending equation and substituting to leave as unknown 1 mark calculating the value for depth of beam The final mark will involve checks on units for substituted values of breadth, yield stress and bending moment =5 = 50% = 110 =5 10 = 5 10 page nine

24 Question Expected response 5 a For the I-beam: = 1 1 = = 5.5, = = 9 = = = For the rectangular beam: = = =58.8 Possible alternative response, using parallel-axis theorem: = + h = 1 + h = = 9, h = = Max mark Additional information 3 1 mark knowing how to calculate for I-beam, using either subtraction or parallel axis theorem 1 mark calculating for I-beam 1 mark calculating the necessary value of rectangular beam breadth to equate values of second moment of area h h page ten

25 Question Expected response 5 b The cross-sectional area of the beam is reduced. The amount of material in the beam is reduced. The weight of the beam is reduced. There is an increase in surface area on the top and bottom surfaces of the beam (providing more flexibility for potential component attachments to the beam). 6 a Using a transformer steps up voltage and steps down current without significant loss of power. Transmission of low currents, rather than high currents, reduces power losses along transmission lines. ( = ) Max mark Additional information 1 Any relevant point which is a design consideration. A response might combine all four, eg The cross-sectional area of the beam is reduced, so the amount of material in the beam is reduced, hence reducing its weight and possibly its cost. (1 mark) However, The beam may have corroded because of the wet, salty environment, and/or The beam may have been overloaded during operation are both reasons why the beam might have to be replaced, but neither response answers the question (design reason required), so (0 marks) 1 mark describing what the transformer at the power station would do, either increasing the voltage or reducing the current (or both) 1 mark explanation for stepping up voltage and stepping down current page eleven

26 Question Expected response 6 b = = = = 0 =8.8 Ƞ= = =0.97 Max mark Additional information 3 1 mark explicit or implicit relationship between power input, power output and losses 1 mark calculating the output current using solution of a quadratic* 1 mark calculation of efficiency *see data booklet page twelve

27 Question Expected response 7 a Arduino C solution void loop() { do { value = digitalread(1); getangle(); if (ANGLE < 50) { } ERROR = 50 - ANGLE; DIRSET = true; else if (ANGLE > 50) { } ERROR = ANGLE - 50; DIRSET = false; ERROR = ERROR * 55/50; if (DIRSET == true) { analogwrite(5,error) analogwrite(3,error) } else if (DIRSET == false) { analogwrite(6,error) analogwrite(4,error) } } while (value==low); } PBasic solution main: if VAL=1 then main gosub get_angle if ANGLE<50 then ERROR=50-ANGLE DIRSET=1 else ERROR=ANGLE-50 DIRSET=0 endif ERROR=ERROR*103/ 50 if DIRSET=1 then low B.6 low B.4 pwmout B.5,55,ERROR pwmout B.3,55,ERROR else pwmout B.6,55,ERROR pwmout B.4,55,ERROR low B.5 low B.3 endif Max mark 4 Additional information 1 mark generating an error value correctly from the getangle result ANGLE 1 mark scaling the error (applying the required gain factor) 1 mark using If..Else If structure to control direction of movement Note that if(angle<=50) / if ANGLE<=50 then would work instead of solution shown, but Angle =50 must be accounted for so motor control lines are all off. 1 mark using command structure for motors (two lines on as PWM signal; two lines off) goto main page thirteen

28 Question Expected response Max mark Additional information 7 b 3 1 mark all power connections to Vss and 0 V and enable pin connections to 5 V 1 mark microcontroller connections to L93D 1 mark connections to motors 7 c i 4 1 mark (0 1, 705 ) 1 mark (0.1, 705 ) (0.6, 705 ) (0.1, 35 ) (0.6, 35 ) (0 1, 35 ) 1 mark (0.35, 10 ) (0.35, 10 ) (0 35, 10 ) (0.7, 0 ) 1 mark vertical, horizontal and sloping lines between points and units must be shown in some way, either like the solution given or on sketched axes. (0, 0 ) (0 35, 10 ) (0 6, 35 ) (0 6, 705 ) page fourteen

29 Question Expected response 7 c ii = 705 h = 0, = = 0 h = 0 1, = = = ( 0 1) 80( 0 1) ( 0 1) h = 0 35, = = 16 8 a = No losses: =, = = cos 0 0 = = 418 = cos 0 = cos = 418 = 139 Max mark Additional information 4 1 mark stating the value of bending moment when =0 1 mark calculating the bending moment when =0 1 1 mark calculating the bending moment produced by point loads when = mark calculating the bending moment produced by UDL when = mark expressing torque as a product of the horizontal (tangential) component of the gear contact force and half the PCD 1 mark calculating one of the forces from the power and shaft speed given 1 mark calculating the other force by recognising that input and output torques are equal and opposite page fifteen

30 Question Expected response 8 b For equilibrium in the yz plane sin 0 sin Taking moments about A, for equilibrium: sin sin =0 139 sin sin =0 = 117 For equilibrium in xz plane cos 0 cos Taking moments about A, for equilibrium: cos cos =0 139 cos cos =0 = kn 50 = = 76, =tan =5 1 Max mark 4 page sixteen Additional information sin 0 cos 0 A sin 0 y x cos 0 B z 1 mark using moment equilibrium in two perpendicular planes (evidence of normal and tangential force components) marks establishing equations of moment equilibrium correctly in each plane 1 mark calculating the magnitude and direction of reaction at bearing

31 Question Expected response 8 c 5 h Max mark Additional information 6 1 mark Kirchhoff s Current Law applied at node =0 + = =0 1 mark Ohm s Law applied for each unknown current 1 mark identifying the link between two required threshold voltages and two required states 1 mark substituting the values twice to find two expressions for unknown resistances 0 h =3 6, =3 1 mark solving the first unknown value 1 mark calculating the second unknown value = = = h =0, = = = = & : 9 = =11 7 : = =4 3 page seventeen

32 Question Expected response 8 d The efficiency of an electromechanical system is a measure of how much of the energy supplied to the system is usefully converted. If energy is not being converted to a useful output, then it may be being converted to other forms of unwanted energy, damaging to the components in the system. OR If design is inefficient in electromechanical components, unwanted energy conversion is regularly manifested as heat of components which causes wear or more rapid failure in operation. Max mark Additional information 1 mark stating the meaning of low efficiency in an electromechanical machine, in terms of potential heating and damage/wear as the machine is operating Heat shortens the working life of components. Equipment would have to be serviced more frequently. A greater number of turbines would therefore be required to cover individual outages and this would be more expensive in terms of materials and workforce. OR Components have to be manufactured from raw materials, which generally have to be mined, and replacement can be expensive. Sustainable design must take account of material resources and inefficient electromechanical designs will use these at a greater rate over a fixed working lifespan. 1 mark linking the potential for higher risks of wear/failure to higher running costs and adverse effects on sustainability Other possible responses: If the design of the wind-turbine was inefficient, then more turbines would be required to produce a given energy output, so more materials would be used in their construction and they would have a larger footprint. (Total of 1 mark) Efficient machinery will reduce initial capital investment requirements and reduce the operational time for the investor to run into profit (1 mark), because more energy will be generated by each machine constructed and the machines are likely to require less maintenance (1 mark). [END OF SPECIMEN MARKING INSTRUCTIONS] page eighteen

Engineering Science. Advanced Higher. Finalised Marking Instructions

Engineering Science. Advanced Higher. Finalised Marking Instructions National Qualifications 206 Engineering Science Advanced Higher Finalised ing Instructions Scottish Qualifications Authority 206 The information in this publication may be reproduced to support SQA qualifications

More information

2016 Engineering Science. Higher. Finalised Marking Instructions

2016 Engineering Science. Higher. Finalised Marking Instructions National Qualifications 206 206 Engineering Science Higher Finalised ing Instructions Scottish Qualifications Authority 206 The information in this publication may be reproduced to support SQA qualifications

More information

National Quali cations EXEMPLAR PAPER ONLY

National Quali cations EXEMPLAR PAPER ONLY FOR OFFICIAL USE H National Quali cations Mark EXEMPLAR PAPER ONLY EP13/H/01 Engineering Science Date Not applicable Duration 2 hours *EP13H01* Fill in these boxes and read what is printed below. Full

More information

Forename(s) Surname Number of seat. Date of birth Day Month Year Scottish candidate number

Forename(s) Surname Number of seat. Date of birth Day Month Year Scottish candidate number H National Quali cations SPECIMEN ONLY SQ13/H/01 Mark Engineering Science FOR OFFICIAL USE Date Not applicable Duration 2 hours *SQ13H01* Fill in these boxes and read what is printed below. Full name of

More information

2017 Engineering Science. Higher. Finalised Marking Instructions

2017 Engineering Science. Higher. Finalised Marking Instructions National Qualifications 2017 2017 Engineering Science Higher Finalised Marking Instructions Scottish Qualifications Authority 2017 The information in this publication may be reproduced to support SQA qualifications

More information

2018 Engineering Science. National 5. Finalised Marking Instructions

2018 Engineering Science. National 5. Finalised Marking Instructions National Qualifications 2018 2018 Engineering Science National 5 Finalised Marking Instructions Scottish Qualifications Authority 2018 The information in this publication may be reproduced to support SQA

More information

Engineering Science Data Booklet

Engineering Science Data Booklet Engineering Science Data Booklet Advanced Higher For use in National Qualification Courses leading to the 2015 examinations and beyond. Publication date: 2016 Publication code: BB6957 ISBN: 978 1 910180

More information

2012 Technological Studies. Higher. Finalised Marking Instructions

2012 Technological Studies. Higher. Finalised Marking Instructions 0 Technological Studies Higher Finalised Marking Instructions Scottish Qualifications Authority 0 The information in this publication may be reproduced to support SQA qualifications only on a noncommercial

More information

Technological Studies Data Booklet Higher

Technological Studies Data Booklet Higher Technological Studies Data Booklet Higher For use in National Qualification Courses leading to the 009 examinations and beyond. Published date: July 008 Publication code: BB4470 ISBN: 978 1 8969 608 8

More information

National Quali cations SPECIMEN ONLY. Date of birth Scottish candidate number

National Quali cations SPECIMEN ONLY. Date of birth Scottish candidate number N5FOR OFFICIAL USE S860/75/0 National Quali cations SPECIMEN ONLY Mark Practical Electronics Date Not applicable Duration hour *S860750* Fill in these boxes and read what is printed below. Full name of

More information

Quali cations. Forename(s) Surname Number of seat

Quali cations. Forename(s) Surname Number of seat FOR OFFICIAL USE Quali cations N5National 2015 X757/75/01 TUESDAY, 5 MAY 9:00 AM 11:00 AM Mark Physics Section 1 Answer Grid and Section 2 *X7577501* Fill in these boxes and read what is printed below.

More information

2014 Technological Studies. Higher. Finalised Marking Instructions

2014 Technological Studies. Higher. Finalised Marking Instructions 2014 Technological Studies Higher Finalised Marking Instructions Scottish Qualifications Authority 2014 The information in this publication may be reproduced to support SQA qualifications only on a non-commercial

More information

2018 Engineering Science. Higher. Finalised Marking Instructions

2018 Engineering Science. Higher. Finalised Marking Instructions National Qualifications 2018 2018 Engineering Science Higher Finalised Marking Instructions Scottish Qualifications Authority 2018 The information in this publication may be reproduced to support SQA qualifications

More information

Design Engineering MEng EXAMINATIONS 2016

Design Engineering MEng EXAMINATIONS 2016 IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

Level 3 Cambridge Technical in Engineering

Level 3 Cambridge Technical in Engineering Oxford Cambridge and RSA Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825 Unit 3: Principles of mechanical engineering Sample Assessment Material Date - Morning/Afternoon Time allowed:

More information

2017 Physics. Advanced Higher. Finalised Marking Instructions

2017 Physics. Advanced Higher. Finalised Marking Instructions National Qualifications 07 07 Physics Advanced Higher Finalised Marking Instructions Scottish Qualifications Authority 07 The information in this publication may be reproduced to support SQA qualifications

More information

2016 Physics. Higher. Finalised Marking Instructions

2016 Physics. Higher. Finalised Marking Instructions National Qualifications 016 016 Physics Higher Finalised ing Instructions Scottish Qualifications Authority 016 The information in this publication may be reproduced to support SQA qualifications only

More information

National Quali cations

National Quali cations H SPECIMEN S87/76/ National Quali cations ONLY Mathematics Paper Date Not applicable Duration hour 5 minutes Total marks 80 Attempt ALL questions. You may use a calculator. To earn full marks you must

More information

National Quali cations 2018

National Quali cations 2018 H FOR X723/76/01 OFFICIAL USE National Quali cations 2018 Mark Engineering Science THURSDAY, 24 MAY 1:00 PM 3:00 PM *X7237601* Fill in these boxes and read what is printed below. Full name of centre Town

More information

2018 Mathematics. National 5 - Paper 1. Finalised Marking Instructions

2018 Mathematics. National 5 - Paper 1. Finalised Marking Instructions National Qualifications 018 018 Mathematics National 5 - Paper 1 Finalised Marking Instructions Scottish Qualifications Authority 018 The information in this publication may be reproduced to support SQA

More information

2013 Technological Studies. Advanced Higher. Finalised Marking Instructions

2013 Technological Studies. Advanced Higher. Finalised Marking Instructions 03 Technological Studies Advanced Higher Finalised Marking Instructions Scottish Qualifications Authority 03 The information in this publication may be reproduced to support SQA qualifications only on

More information

2016 VCE Systems Engineering examination report

2016 VCE Systems Engineering examination report 2016 VCE Systems Engineering examination report General comments Most students made a good attempt at the questions on the 2016 VCE Systems Engineering examination, but there were many errors when calculations

More information

2017 Physics. National 5. Finalised Marking Instructions

2017 Physics. National 5. Finalised Marking Instructions National Qualifications 2017 2017 Physics National 5 Finalised Marking Instructions Scottish Qualifications Authority 2017 The information in this publication may be reproduced to support SQA qualifications

More information

2013 Physics. Intermediate 1. Finalised Marking Instructions

2013 Physics. Intermediate 1. Finalised Marking Instructions 203 Physics Intermediate Finalised Marking Instructions Scottish Qualifications Authority 203 The information in this publication may be reproduced to support SQA qualifications only on a non-commercial

More information

Subject : Engineering Mechanics Subject Code : 1704 Page No: 1 / 6 ----------------------------- Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word

More information

National Quali cations SPECIMEN ONLY

National Quali cations SPECIMEN ONLY AH National Quali cations SPECIMEN ONLY SQ5/AH/0 Mathematics of Mechanics Date Not applicable Duration hours Total marks 00 Attempt ALL questions. You may use a calculator. Full credit will be given only

More information

2018 Mathematics. Advanced Higher. Finalised Marking Instructions

2018 Mathematics. Advanced Higher. Finalised Marking Instructions National Qualifications 08 08 Mathematics Advanced Higher Finalised Marking Instructions Scottish Qualifications Authority 08 The information in this publication may be reproduced to support SQA qualifications

More information

National Quali cations SPECIMEN ONLY. Date of birth Scottish candidate number

National Quali cations SPECIMEN ONLY. Date of birth Scottish candidate number N5FOR OFFICIAL USE S847/75/0 Date Not applicable Duration hour 5 minutes National Quali cations SPECIMEN ONLY Mark Mathematics Paper (Non-Calculator) *S847750* Fill in these boxes and read what is printed

More information

2014 Physics. Higher (Revised) Finalised Marking Instructions

2014 Physics. Higher (Revised) Finalised Marking Instructions 014 Physics Higher (Revised) Finalised Marking Instructions Scottish Qualifications Authority 014 The information in this publication may be reproduced to support SQA qualifications only on a non-commercial

More information

2009 Assessment Report Physics GA 1: Written examination 1

2009 Assessment Report Physics GA 1: Written examination 1 2009 Physics GA 1: Written examination 1 GENERAL COMMENTS The number of students who sat for the 2009 Physics examination 1 was 6868. With a mean score of 68 per cent, students generally found the paper

More information

Electric Vehicle Performance Power and Efficiency

Electric Vehicle Performance Power and Efficiency Electric Vehicle Performance Power and Efficiency 1 Assignment a) Examine measurement guide and electric vehicle (EV) arrangement. b) Drive the route according to teacher s instruction and download measured

More information

2007 Physics. Higher. Finalised Marking Instructions

2007 Physics. Higher. Finalised Marking Instructions 007 Physics Higher Finalised Marking Instructions Scottish Qualifications Authority 007 The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis.

More information

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1 Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and

More information

NATIONAL CERTIFICATE (VOCATIONAL) APPLIED ENGINEERING TECHNOLOGY NQF LEVEL 4 NOVEMBER 2009

NATIONAL CERTIFICATE (VOCATIONAL) APPLIED ENGINEERING TECHNOLOGY NQF LEVEL 4 NOVEMBER 2009 NATIONAL CERTIFICATE (VOCATIONAL) APPLIED ENGINEERING TECHNOLOGY NQF LEVEL 4 NOVEMBER 2009 (6021024) 30 October (Y-Paper) 13:00 16:00 A non-programmable scientific calculator may be used. This question

More information

2011 Technological Studies. Advanced Higher. Finalised Marking Instructions

2011 Technological Studies. Advanced Higher. Finalised Marking Instructions 0 Technological Studies Advanced Higher Finalised Marking Instructions Scottish ualifications Authority 0 The information in this publication may be reproduced to support SA qualifications only on a noncommercial

More information

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING 1 YEDITEPE UNIVERSITY ENGINEERING FACULTY MECHANICAL ENGINEERING LABORATORY 1. Objective: Strain Gauges Know how the change in resistance

More information

2015 Mathematics. Intermediate 2 Units 1, 2 and 3 Paper 1 (Non-Calculator) Finalised Marking Instructions

2015 Mathematics. Intermediate 2 Units 1, 2 and 3 Paper 1 (Non-Calculator) Finalised Marking Instructions 015 Mathematics Intermediate Units 1, and Paper 1 (Non-Calculator) Finalised ing Instructions Scottish Qualifications Authority 015 The information in this publication may be reproduced to support SQA

More information

SC125MS. Data Sheet and Instruction Manual. ! Warning! Salem Controls Inc. Stepper Motor Driver. Last Updated 12/14/2004

SC125MS. Data Sheet and Instruction Manual. ! Warning! Salem Controls Inc. Stepper Motor Driver.   Last Updated 12/14/2004 SC125MS Stepper Motor Driver Salem Controls Inc. Last Updated 12/14/2004! Warning! Stepper motors and drivers use high current and voltages capable of causing severe injury. Do not operate this product

More information

2010 Physics. Higher. Marking Instructions

2010 Physics. Higher. Marking Instructions 2010 Physics Higher Marking Instructions Scottish Qualifications Authority 2010 The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it

More information

2014 Technological Studies. Advanced Higher. Finalised Marking Instructions

2014 Technological Studies. Advanced Higher. Finalised Marking Instructions 204 Technological Studies Advanced Higher Finalised Marking Instructions Scottish Qualifications Authority 204 The information in this publication may be reproduced to support SQA qualifications only on

More information

2011 Physics. Higher. Finalised Marking Instructions

2011 Physics. Higher. Finalised Marking Instructions 2011 Physics Higher Finalised Marking Instructions Scottish Qualifications Authority 2011 The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis.

More information

2017 Physics. Higher. Finalised Marking Instructions

2017 Physics. Higher. Finalised Marking Instructions National Qualifications 07 07 Physics Higher Finalised Marking Instructions Scottish Qualifications Authority 07 The information in this publication may be reproduced to support SQA qualifications only

More information

An Ultra Low Resistance Continuity Checker

An Ultra Low Resistance Continuity Checker An Ultra Low Resistance Continuity Checker By R. G. Sparber Copyleft protects this document. 1 Some understanding of electronics is assumed. Although the title claims this is a continuity checker, its

More information

EE1-01 IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2013 ANALYSIS OF CIRCUITS. Tuesday, 28 May 10:00 am

EE1-01 IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2013 ANALYSIS OF CIRCUITS. Tuesday, 28 May 10:00 am EE1-01 IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2013 ExamHeader: EEE/EIE PART I: MEng, Beng and ACGI ANALYSIS OF CIRCUITS Tuesday, 28 May 10:00 am Time allowed:

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *8414511595* PHYSICS 0625/31 Paper 3 Theory (Core) October/November 2017 1 hour 15 minutes Candidates

More information

Engineering Unit 1: Engineering Principles

Engineering Unit 1: Engineering Principles Write your name here Surname Other names Pearson BTEC Level 3 Extended Certificate, Foundation Diploma, Diploma, Extended Diploma Centre Number Learner Registration Number Engineering Unit 1: Engineering

More information

2014 Physics. Higher. Finalised Marking Instructions

2014 Physics. Higher. Finalised Marking Instructions 2014 Physics Higher Finalised Marking Instructions Scottish Qualifications Authority 2014 The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis.

More information

(d) describe the action of a 555 monostable timer and then use the equation T = 1.1 RC, where T is the pulse duration

(d) describe the action of a 555 monostable timer and then use the equation T = 1.1 RC, where T is the pulse duration Chapter 1 - Timing Circuits GCSE Electronics Component 2: Application of Electronics Timing Circuits Learners should be able to: (a) describe how a RC network can produce a time delay (b) describe how

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

9.00 AM AM. Scottish candidate number

9.00 AM AM. Scottish candidate number FOR OFFICIAL USE G 3220/40 NATIONAL QUALIFICATIONS 200 FRIDAY, 28 MAY PHYSICS 9.00 AM 0.30 AM STANDARD GRADE General Level Fill in these boxes and read what is printed below. Full name of centre Town Forename(s)

More information

GCE Physics B. Mark Scheme for June Unit H557A/03: Practical skills in physics. Advanced GCE. Oxford Cambridge and RSA Examinations

GCE Physics B. Mark Scheme for June Unit H557A/03: Practical skills in physics. Advanced GCE. Oxford Cambridge and RSA Examinations GCE Physics B Unit H557A/03: Practical skills in physics Advanced GCE Mark Scheme for June 207 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing

More information

Physics Assessment Unit A2 3B

Physics Assessment Unit A2 3B Centre Number 71 Candidate Number ADVANCED General Certificate of Education January 2010 Physics Assessment Unit A2 3B assessing Module 6: Experimental and Investigative Skills A2Y32 [A2Y32] FRIDAY 8 JANUARY,

More information

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani ENGN3227 Analogue Electronics Problem Sets V1.0 Dr. Salman Durrani November 2006 Copyright c 2006 by Salman Durrani. Problem Set List 1. Op-amp Circuits 2. Differential Amplifiers 3. Comparator Circuits

More information

National Quali cations SPECIMEN ONLY. Forename(s) Surname Number of seat. Date of birth Day Month Year Scottish candidate number

National Quali cations SPECIMEN ONLY. Forename(s) Surname Number of seat. Date of birth Day Month Year Scottish candidate number N5 SQ6/N5/01 Date Not applicable Duration 50 minutes FOR OFFICIAL USE National Quali cations SPECIMEN ONLY Mark Lifeskills Mathematics Paper 1 (Non-Calculator) *SQ6N501* Fill in these boxes and read what

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *8452185057* PHYSICS 9702/42 Paper 4 A Level Structured Questions October/November 2017 2 hours Candidates

More information

analyse and design a range of sine-wave oscillators understand the design of multivibrators.

analyse and design a range of sine-wave oscillators understand the design of multivibrators. INTODUTION In this lesson, we investigate some forms of wave-form generation using op amps. Of course, we could use basic transistor circuits, but it makes sense to simplify the analysis by considering

More information

Higher National Unit specification: general information

Higher National Unit specification: general information Higher National Unit specification: general information Unit code: FY9E 34 Superclass: XJ Publication date: November 2011 Source: Scottish Qualifications Authority Version: 01 Unit purpose This Unit is

More information

2016 Physics. Advanced Higher. Finalised Marking Instructions

2016 Physics. Advanced Higher. Finalised Marking Instructions National Qualifications 06 06 Physics Advanced Higher Finalised ing Instructions Scottish Qualifications Authority 06 The information in this publication may be reproduced to support SQA qualifications

More information

Prelim Revision. Questions and Answers. Electricity

Prelim Revision. Questions and Answers. Electricity Prelim Revision Questions and Answers Electricity SECTION A Answer questions on the answer sheet 8. Specimen Paper The diagram shows an 8V supply connected to two lamps. The supply has negligible internal

More information

2007 Assessment Report Physics GA 1: Written examination 1

2007 Assessment Report Physics GA 1: Written examination 1 2007 Physics GA 1: Written examination 1 GENERAL COMMENTS The number of students who sat for the 2007 Physics examination 1 was 6544. With a mean score of 55 per cent, students generally found the paper

More information

G491. PHYSICS B (ADVANCING PHYSICS) Physics in Action ADVANCED SUBSIDIARY GCE. Wednesday 12 January 2011 Morning. Duration: 1 hour

G491. PHYSICS B (ADVANCING PHYSICS) Physics in Action ADVANCED SUBSIDIARY GCE. Wednesday 12 January 2011 Morning. Duration: 1 hour ADVANCED SUBSIDIARY GCE PHYSICS B (ADVANCING PHYSICS) Physics in Action G491 *OCE/17763* Candidates answer on the Question Paper OCR Supplied Materials: Data, Formulae and Relationships Booklet Other Materials

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *1691942825* PHYSICS 0625/33 Paper 3 Theory (Core) October/November 2016 1 hour 15 minutes Candidates

More information

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS 1 Introduction... 3 2 Objective... 3 3 Supplies... 3 4 Theory...

More information

PHYSICS. Unit 3 Written examination Trial Examination SOLUTIONS

PHYSICS. Unit 3 Written examination Trial Examination SOLUTIONS PHYSICS Unit 3 Written examination 1 2012 Trial Examination SECTION A Core Motion in one and two dimensions Question 1 SOLUTIONS Answer: 120 N Figure 1 shows that at t = 5 sec, the cart is travelling with

More information

Where, m = slope of line = constant c = Intercept on y axis = effort required to start the machine

Where, m = slope of line = constant c = Intercept on y axis = effort required to start the machine (ISO/IEC - 700-005 Certified) Model Answer: Summer 07 Code: 70 Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level *2809002895* PHYSICS 9702/04 Paper 4 A2 Structured Questions October/November 2007 1 hour 45 minutes Candidates

More information

A Level Physics B (Advancing Physics) H557/03 Practical skills in physics. Thursday 29 June 2017 Morning Time allowed: 1 hour 30 minutes

A Level Physics B (Advancing Physics) H557/03 Practical skills in physics. Thursday 29 June 2017 Morning Time allowed: 1 hour 30 minutes Oxford Cambridge and RSA A Level Physics B (Advancing Physics) H557/03 Practical skills in physics Thursday 29 June 2017 Morning Time allowed: 1 hour 30 minutes *6830996327* You must have: the Data, Formula

More information

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1 E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

More information

Lecture 6: Time-Dependent Behaviour of Digital Circuits

Lecture 6: Time-Dependent Behaviour of Digital Circuits Lecture 6: Time-Dependent Behaviour of Digital Circuits Two rather different quasi-physical models of an inverter gate were discussed in the previous lecture. The first one was a simple delay model. This

More information

Student Name: SE13-17 U1/2

Student Name: SE13-17 U1/2 SE13-17 U1/2 Student Name: Unit 1 Mechanical Engineering Fundamentals Page 1. Student Learning Guide & Record Unit 1 TASK Page TASK TITLE Task 1 7 Energy Task 2 9 Draw a block diagram Task 3 16 Exercise

More information

Time: 2 hours. On the answer-booklet write your Registration Number, Test Code, Number of this Booklet, etc. in the appropriate places.

Time: 2 hours. On the answer-booklet write your Registration Number, Test Code, Number of this Booklet, etc. in the appropriate places. BOOKLET No. 2016 Time: 2 hours TEST CODE: PQB Afternoon Group Total Part I (for Statistics/Mathematics Stream) S1 (Statistics) 5 S2 (Probability) 5 Part II (for Engineering Stream) E1 (Mathematics) 4 E2

More information

SPECIMEN. All items required by teachers and candidates for this task are included in this pack.

SPECIMEN. All items required by teachers and candidates for this task are included in this pack. Advanced GCE PHYSICS A Unit G486: Practical Skills in Physics 2: Quantitative Task Specimen Task For use from September 2008 to June 2009. G486 All items required by teachers and candidates for this task

More information

UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC

UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC 16-BIT CONSTANT CURRENT LED SINK DRIVER DESCRIPTION The UTC L16B45 is designed for LED displays. UTC L16B45 contains a serial buffer and data latches

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level *6644304748* PHYSICS 5054/21 Paper 2 Theory May/June 2013 1 hour 45 minutes Candidates answer on the Question

More information

COPPER FOR BUSBARS CHAPTER 4: SHORT-CIRCUIT EFFECTS

COPPER FOR BUSBARS CHAPTER 4: SHORT-CIRCUIT EFFECTS European Copper Institute COPPER FOR BUSBARS CHAPTER 4: SHORT-CIRCUIT EFFECTS David Chapman August 2011 ECI Available from www.leonardo-energy.org Document Issue Control Sheet Document Title: Publication

More information

National Quali cations Date of birth Scottish candidate number

National Quali cations Date of birth Scottish candidate number N5FOR OFFICIAL USE X73/75/01 National Quali cations 016 Mark Engineering Science WEDNESDAY, 11 MAY 9:00 AM 10:30 AM *X737501* Fill in these boxes and read what is printed below. Full name of centre Town

More information

ENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5

ENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5 ENGG 225 David Ng Winter 2017 Contents 1 January 9, 2017 5 1.1 Circuits, Currents, and Voltages.................... 5 2 January 11, 2017 6 2.1 Ideal Basic Circuit Elements....................... 6 3 January

More information

Glossary Innovative Measurement Solutions

Glossary Innovative Measurement Solutions Glossary GLOSSARY OF TERMS FOR TRANSDUCERS, LOAD CELLS AND WEIGH MODULES This purpose of this document is to provide a comprehensive, alphabetical list of terms and definitions commonly employed in the

More information

2006 Mathematics. Standard Grade Credit. Finalised Marking Instructions

2006 Mathematics. Standard Grade Credit. Finalised Marking Instructions 006 Mathematics Standard Grade Credit Finalised Marking Instructions The Scottish Qualifications Authority 006 The information in this publication may be reproduced to support SQA qualifications only on

More information

Application Note #3413

Application Note #3413 Application Note #3413 Manual Tuning Methods Tuning the controller seems to be a difficult task to some users; however, after getting familiar with the theories and tricks behind it, one might find the

More information

AP Physics B 2010 Scoring Guidelines

AP Physics B 2010 Scoring Guidelines AP Physics B 010 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900,

More information

Thursday 29 June 2017 Morning Time allowed: 1 hour 30 minutes

Thursday 29 June 2017 Morning Time allowed: 1 hour 30 minutes Oxford Cambridge and RSA A Level Physics A H556/03 Unified physics Thursday 29 June 2017 Morning Time allowed: 1 hour 30 minutes *6830056239* You must have: The Data, Formulae and Relationship Booklet

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

2006 Physics. Advanced Higher. Finalised Marking Instructions

2006 Physics. Advanced Higher. Finalised Marking Instructions 006 Physics Advanced Higher Finalised Marking Instructions The Scottish Qualifications Authority 006 The information in this publication may be reproduced to support SQA qualifications only on a non-commercial

More information

PMT. Cambridge International Examinations Cambridge International Advanced Level

PMT. Cambridge International Examinations Cambridge International Advanced Level Cambridge International Examinations Cambridge International Advanced Level *6595352311* PHYSICS 9702/42 Paper 4 A2 Structured Questions October/November 2015 2 hours Candidates answer on the Question

More information

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS Unit 2: Unit code: QCF Level: 4 Credit value: 15 Engineering Science L/601/1404 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS 1. Be able to determine the behavioural characteristics of elements of static engineering

More information

PhysicsAndMathsTutor.com. Question number 1 (a) Answer Notes Marks 3. all 4 lines;;; any 2 lines;; any one line; (dotted line is given)

PhysicsAndMathsTutor.com. Question number 1 (a) Answer Notes Marks 3. all 4 lines;;; any 2 lines;; any one line; (dotted line is given) (a) 3 all 4 lines;;; any 2 lines;; any one line; (dotted line is given) (b) (i) light dependent resistor / LDR; allow photo sensitive resistor light sensitive resistor allow recognisable spellings (ii)

More information

Tuesday 23 May 2017 Morning

Tuesday 23 May 2017 Morning Oxford Cambridge and RSA Tuesday 23 May 2017 Morning AS GCE PHYSICS B (ADVANCING PHYSICS) G491/01 Physics in Action *6687779587* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae

More information

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling.

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. Find: Determine the value of the critical speed of rotation for the shaft. Schematic and

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *1264537134* PHYSICS 0625/21 Paper 2 Core October/November 2011 1 hour 15 minutes Candidates

More information

2010 Maths. Advanced Higher. Finalised Marking Instructions

2010 Maths. Advanced Higher. Finalised Marking Instructions 00 Maths Advanced Higher Finalised Marking Instructions Scottish Qualifications Authority 00 The information in this publication may be reproduced to support SQA qualifications only on a noncommercial

More information

2016 Mathematics. Advanced Higher. Finalised Marking Instructions

2016 Mathematics. Advanced Higher. Finalised Marking Instructions National Qualifications 06 06 Mathematics Advanced Higher Finalised ing Instructions Scottish Qualifications Authority 06 The information in this publication may be reproduced to support SQA qualifications

More information

2008 Mathematics. Standard Grade Credit. Finalised Marking Instructions

2008 Mathematics. Standard Grade Credit. Finalised Marking Instructions 008 Mathematics Standard Grade Credit Finalised Marking Instructions Scottish Qualifications Authority 008 The information in this publication may be reproduced to support SQA qualifications only on a

More information

MARK SCHEME for the October/November 2013 series 0625 PHYSICS

MARK SCHEME for the October/November 2013 series 0625 PHYSICS CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education MARK SCHEME for the October/November 2013 series 0625 PHYSICS 0625/31 Paper 3 (Extended Theory), maximum raw

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *6032081406* PHYSICS 5054/22 Paper 2 Theory May/June 2018 1 hour 45 minutes Candidates answer on the Question Paper. No Additional Materials

More information

ENGINEERING. Cambridge TECHNICALS LEVEL 3. Combined feedback on the June 2016 Exam Paper. ocr.org.uk/engineering. Unit 2 - Science for engineering

ENGINEERING. Cambridge TECHNICALS LEVEL 3. Combined feedback on the June 2016 Exam Paper. ocr.org.uk/engineering. Unit 2 - Science for engineering Cambridge TECHNICALS LEVEL 3 ENGINEERING Combined feedback on the June 2016 Exam Paper Unit 2 - Science for engineering Version 1 ocr.org.uk/engineering OCR LEVEL 3 CAMBRIDGE TECHINCALS IN ENGINEERING

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2012/2013 XE121. ENGINEERING CONCEPTS (Test)

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2012/2013 XE121. ENGINEERING CONCEPTS (Test) s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER EXAMINATIONS 202/203 XE2 ENGINEERING CONCEPTS (Test) Time allowed: TWO hours Answer: Attempt FOUR questions only, a maximum of TWO questions

More information