TAPER: A Contextual Tensor- Based Approach for Personalized Expert Recommendation

Size: px
Start display at page:

Download "TAPER: A Contextual Tensor- Based Approach for Personalized Expert Recommendation"

Transcription

1 TAPER: A Contextual Tensor- Based Approach for Personalized Expert Recommendation Hancheng Ge, James Caverlee and Haokai Lu Department of Computer Science and Engineering Texas A&M University, USA ACM RecSys 16:: September 18th, 2016

2 Recommender Systems Items (Movies, Songs, News, etc.) High-quality Content Producers

3 OUR GOAL: Recommend these experts to the right people High-Quality Content Producers (Experts) Personalized Expert Recommendation

4 Politics Technology Entertainment 1? 1? 1? 1 1? 1?? 1 1??? ??? 1 1 Users?????? 1 1 1????????? 1?? 1?????????? 1???????????????? 1?????????????? 1???????? 1 1? 1??????????? ??????? 1 1?????????????????????????????????? Topics Experts User-Expert-Topic preferences can be represented as a Tensor

5 Basic Tensor-based Personalized Expert Recommendation Matrix factorization CANNOT simultaneously consider all dimensions. Input: observed tensor, indicator tensor. Output: complete tensor X, latent matrices U (1),U (2),U (3). Minimize U (n),x Experts T 1 3X 2 kx [U (1),U (2),U (3) ]k 2 F + 2 subject to X = T,U (n) 0,n=1, 2, 3 n=1 ku (n) k 2 F, U 1 (3) U 2 (3) U R (3) U 1 (2) U 2 (2) U R (2) Users U 1 (1) U 2 (1) U R (1)

6 Challenges 1. Personal Experts 2. Sparsity 3. Complex Relationships David Jane Amy Ryan

7 Idea: Use Contextual Information Social Activities Temporal Q1: How to model? Q2: How to integrate? Location Topics Q3: Which is more important?

8 But First: Geo-tagged Twitter Lists A curated group of Twitter accounts. Allowing a user to label another user with an annotation (e.g., tech). List creators as users and members in the lists as experts Tech Food

9 Geo-Spatial Context Ryan CDF Atlanta Chicago Dallas Denver Houston Seattle San Francisco Washington DC Distance CDF of the average distance bet. users and experts by locations Jane David The geo-spatial context does affect the preference for experts with varying degrees based on topics and locations.

10 Topic Context 0.8 Entertainment Food Ryan Cosine Similarity Number of Shared Topics # Shared Topics VS. Similarity between Users Technology Technology Entertainment Entertainment Politics Jane David Politics The topic context does affect the preference for experts.

11 Social Context Ryan CDF Social Ties 0.2 users who follow the other users who do not follow Cosine Similarity between Users Jane David The social context does affect the preference for experts.

12 Modeling Contextual Preferences Bet. Homogeneous Entities Similarity Matrix S Bet. Heterogeneous Entities Users Adjacency Matrix A Adjacency Matrix AB Experts Topics Adjacency Matrix AC Similarity Matrix S Similarity Matrix S

13 Contextual Tensor-based Approach for Personalized Expert Recommendation (TAPER) Bet. Homo. Users Bet. Hetero. Bet. Hetero. Experts Bet. Hetero. Bet. Homo. minimize U (n),xx Topics Bet. Homo. Basic Tensor-based Recommendation n=1 Contextual Information bet. Homogeneous Entities 1 2 [[U (1),U (2),U (3) ]]k 2 X 3X F + ku (n) 2 X3X kx k k k 2 F + tr(z (n)t L n Z (n) ) 2 n=1 + 2 (ka U (1) U (2)T k 2 F + kb U (1) U (3)T k 2 F + kc U (2) U (3)T k 2 F ), Contextual Information bet. Heterogeneous Entities subject to X = T,U (n) = Z (n) 0,n=1, 2, 3 : control the weight of contextual information bet. homogeneous entities. : control the weight of contextual information bet. heterogeneous entities. Alternating Direction Method of Multipliers (ADMM) is applied. Recommendation are conducted based on the estimated tensor X.

14 State-of-the-art Methods Most Popular (MP) User-based Collaborative Filtering (UCF) Matrix Factorization (MF) Tensor Factorization (TF) Variants of Proposed TAPER Geo-based TAPER (G-TAPER) Topical-based TAPER (T-TAPER) Social-based TAPER (S-TAPER) Contextual Personalized Expert Recommendation (TAPER)

15 Experiments: Recommendation Effectiveness TF > MF TF > MF TF > MF TAPER TF MF G TAPER T TAPER S TAPER UCF MP Top 5 Top 10 Top 15 Tensor Factorization (TF) has a better performance than Matrix Factorization (MF)

16 Experiments: Recommendation Effectiveness TAPER TF MF G TAPER T TAPER S TAPER UCF MP Top 5 Top 10 Top 15 TAPER has the best performance comparing with other state-of-the-art methods

17 Experiments: Recommendation Effectiveness TAPER TF MF G TAPER T TAPER S TAPER UCF MP Top 5 Top 10 Top 15 Social ties of users and experts provide more significant contributions to the personalized expert recommendation

18 Experiments: Impact of Contextual Preferences Bet. Heterogeneous Entities Bet. Homogeneous Entities G TAPER T TAPER S TAPER TAPER Contextual preferences between homogeneous entities play a more important role than ones between heterogeneous entities

19 Experiments: Consistency TAPER TF MF Fraction of Training Data TAPER consistently outperforms both Matrix Factorization (MF) and Tensor Factorization (TF) in

20 Conclusions and Future Work The user of contextual information can lead to improve the accuracy of personalized expert recommendation based on a tensor-based approach. Social ties of users and experts provide more significant contributions to the personal expert recommendation than the geospatial and topical. Contextual preferences between homogeneous entities play a more important role than ones between heterogeneous entities. Future Work: Integrate additional contextual signals (e.g., temporal factors). Distributed TAPER for large-scale data.

21 Thank you! Q & A

22 Modeling Geo-Spatial Preferences Bet. Homogeneous Entities Bet. Heterogeneous Entities u i e j l(u i ) l(u j ) e i user i expert j location of user i num. of users selecting expert i in the location of user j across topics H G (u i,u j )=exp( Users Dist(u i,u j ) ) A G B G ti adjacency matrix of the spatial popularity of an expert in the location of a user. adjacency matrix of the spatial popularity of a topic in the location of a user. distribution of distances bet. users and experts in a topic i. F AG = ka G U (1) U (2)T k 2 F F BG = kb G U (1) U (3)T k 2 F Experts Topics V G (e i,e j )=exp( Dist(l(e i ),l(e j )) X u i 2U ( l(u i) e i l(u i ) e j ) 2 ) W G (t i,t j )=1 D KL ( ti k tj )

23 Modeling Topical Preferences Bet. Homogeneous Entities Bet. Heterogeneous Entities H T (u i,u j )= T T u i Tuj S T ui Tuj exp(x (o t u i o t u j )P t ) t2t T ui o t u i P t set of topics of a user is interested in num. of experts a user labeled in a topic t probability of being interested in a topic t Users T ei t e i set of topics of an expert has expertise num. of times an expert labeled by users in a topic t F BT = kb T U (1) U (3)T k 2 F Experts F CT = kc T U (2) U (3)T k 2 F Topics V T (e i,e j )= T T e i Tej S T ei Tej exp(x ( t t e i ej )P t ) t2t B T C T affinity matrix where an element indicates if a user is interested in certain topic affinity matrix where an element indicates the num. of times that an expert has been recognized by users in a topic

24 Modeling Social Preferences Bet. Homogeneous Entities Bet. Heterogeneous Entities H S (u i,u j )= F u i T Fuj F ui S Fuj Users F ei F ui set of users an expert follows set of users a user follows F AS = ka S U (1) U (2)T k 2 F A S adjacency matrix where the element indicates if a user follows an expert Experts Topics V S (e i,e j )= F e i T Fej F ei S Fej

Circle-based Recommendation in Online Social Networks

Circle-based Recommendation in Online Social Networks Circle-based Recommendation in Online Social Networks Xiwang Yang, Harald Steck*, and Yong Liu Polytechnic Institute of NYU * Bell Labs/Netflix 1 Outline q Background & Motivation q Circle-based RS Trust

More information

Clustering based tensor decomposition

Clustering based tensor decomposition Clustering based tensor decomposition Huan He huan.he@emory.edu Shihua Wang shihua.wang@emory.edu Emory University November 29, 2017 (Huan)(Shihua) (Emory University) Clustering based tensor decomposition

More information

Factorization Models for Context-/Time-Aware Movie Recommendations

Factorization Models for Context-/Time-Aware Movie Recommendations Factorization Models for Context-/Time-Aware Movie Recommendations Zeno Gantner Machine Learning Group University of Hildesheim Hildesheim, Germany gantner@ismll.de Steffen Rendle Machine Learning Group

More information

Mixed Membership Matrix Factorization

Mixed Membership Matrix Factorization Mixed Membership Matrix Factorization Lester Mackey 1 David Weiss 2 Michael I. Jordan 1 1 University of California, Berkeley 2 University of Pennsylvania International Conference on Machine Learning, 2010

More information

Collaborative Filtering

Collaborative Filtering Collaborative Filtering Nicholas Ruozzi University of Texas at Dallas based on the slides of Alex Smola & Narges Razavian Collaborative Filtering Combining information among collaborating entities to make

More information

Mixed Membership Matrix Factorization

Mixed Membership Matrix Factorization Mixed Membership Matrix Factorization Lester Mackey University of California, Berkeley Collaborators: David Weiss, University of Pennsylvania Michael I. Jordan, University of California, Berkeley 2011

More information

Extracting and Analyzing Semantic Relatedness between Cities Using News Articles

Extracting and Analyzing Semantic Relatedness between Cities Using News Articles Extracting and Analyzing Semantic Relatedness between Cities Using News Articles Yingjie Hu 1, Xinyue Ye 2, and Shih-Lung Shaw 1 1 Department of Geography, University of Tennessee, Knoxville 2 Department

More information

A Modified PMF Model Incorporating Implicit Item Associations

A Modified PMF Model Incorporating Implicit Item Associations A Modified PMF Model Incorporating Implicit Item Associations Qiang Liu Institute of Artificial Intelligence College of Computer Science Zhejiang University Hangzhou 31007, China Email: 01dtd@gmail.com

More information

Decoupled Collaborative Ranking

Decoupled Collaborative Ranking Decoupled Collaborative Ranking Jun Hu, Ping Li April 24, 2017 Jun Hu, Ping Li WWW2017 April 24, 2017 1 / 36 Recommender Systems Recommendation system is an information filtering technique, which provides

More information

Matrix Factorization with Content Relationships for Media Personalization

Matrix Factorization with Content Relationships for Media Personalization Association for Information Systems AIS Electronic Library (AISeL) Wirtschaftsinformatik Proceedings 013 Wirtschaftsinformatik 013 Matrix Factorization with Content Relationships for Media Personalization

More information

Collaborative topic models: motivations cont

Collaborative topic models: motivations cont Collaborative topic models: motivations cont Two topics: machine learning social network analysis Two people: " boy Two articles: article A! girl article B Preferences: The boy likes A and B --- no problem.

More information

Recommendation Systems

Recommendation Systems Recommendation Systems Pawan Goyal CSE, IITKGP October 21, 2014 Pawan Goyal (IIT Kharagpur) Recommendation Systems October 21, 2014 1 / 52 Recommendation System? Pawan Goyal (IIT Kharagpur) Recommendation

More information

XV - Vector Spaces and Subspaces

XV - Vector Spaces and Subspaces MATHEMATICS -NYC- Vectors and Matrices Martin Huard Fall 7 XV - Vector Spaces and Subspaces Describe the zero vector (the additive identity) for the following vector spaces 4 a) c) d) e) C, b) x, y x,

More information

Item Recommendation for Emerging Online Businesses

Item Recommendation for Emerging Online Businesses Item Recommendation for Emerging Online Businesses Chun-Ta Lu Sihong Xie Weixiang Shao Lifang He Philip S. Yu University of Illinois at Chicago Presenter: Chun-Ta Lu New Online Businesses Emerge Rapidly

More information

APPLICATIONS OF MINING HETEROGENEOUS INFORMATION NETWORKS

APPLICATIONS OF MINING HETEROGENEOUS INFORMATION NETWORKS APPLICATIONS OF MINING HETEROGENEOUS INFORMATION NETWORKS Yizhou Sun College of Computer and Information Science Northeastern University yzsun@ccs.neu.edu July 25, 2015 Heterogeneous Information Networks

More information

Analysis of the recommendation systems based on the tensor factorization techniques, experiments and the proposals

Analysis of the recommendation systems based on the tensor factorization techniques, experiments and the proposals Aalborg University Project Report Analysis of the recommendation systems based on the tensor factorization techniques, experiments and the proposals Group: d519a Authors: Martin Leginus Valdas Žemaitis

More information

* Matrix Factorization and Recommendation Systems

* Matrix Factorization and Recommendation Systems Matrix Factorization and Recommendation Systems Originally presented at HLF Workshop on Matrix Factorization with Loren Anderson (University of Minnesota Twin Cities) on 25 th September, 2017 15 th March,

More information

6.034 Introduction to Artificial Intelligence

6.034 Introduction to Artificial Intelligence 6.34 Introduction to Artificial Intelligence Tommi Jaakkola MIT CSAIL The world is drowning in data... The world is drowning in data...... access to information is based on recommendations Recommending

More information

Recommendation Systems

Recommendation Systems Recommendation Systems Pawan Goyal CSE, IITKGP October 29-30, 2015 Pawan Goyal (IIT Kharagpur) Recommendation Systems October 29-30, 2015 1 / 61 Recommendation System? Pawan Goyal (IIT Kharagpur) Recommendation

More information

Recommender Systems EE448, Big Data Mining, Lecture 10. Weinan Zhang Shanghai Jiao Tong University

Recommender Systems EE448, Big Data Mining, Lecture 10. Weinan Zhang Shanghai Jiao Tong University 2018 EE448, Big Data Mining, Lecture 10 Recommender Systems Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html Content of This Course Overview of

More information

Matrix Factorization Techniques For Recommender Systems. Collaborative Filtering

Matrix Factorization Techniques For Recommender Systems. Collaborative Filtering Matrix Factorization Techniques For Recommender Systems Collaborative Filtering Markus Freitag, Jan-Felix Schwarz 28 April 2011 Agenda 2 1. Paper Backgrounds 2. Latent Factor Models 3. Overfitting & Regularization

More information

Learning to Recommend Point-of-Interest with the Weighted Bayesian Personalized Ranking Method in LBSNs

Learning to Recommend Point-of-Interest with the Weighted Bayesian Personalized Ranking Method in LBSNs information Article Learning to Recommend Point-of-Interest with the Weighted Bayesian Personalized Ranking Method in LBSNs Lei Guo 1, *, Haoran Jiang 2, Xinhua Wang 3 and Fangai Liu 3 1 School of Management

More information

A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation

A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation Yue Ning 1 Yue Shi 2 Liangjie Hong 2 Huzefa Rangwala 3 Naren Ramakrishnan 1 1 Virginia Tech 2 Yahoo Research. Yue Shi

More information

Matrix Factorization Techniques for Recommender Systems

Matrix Factorization Techniques for Recommender Systems Matrix Factorization Techniques for Recommender Systems Patrick Seemann, December 16 th, 2014 16.12.2014 Fachbereich Informatik Recommender Systems Seminar Patrick Seemann Topics Intro New-User / New-Item

More information

Large-scale Collaborative Ranking in Near-Linear Time

Large-scale Collaborative Ranking in Near-Linear Time Large-scale Collaborative Ranking in Near-Linear Time Liwei Wu Depts of Statistics and Computer Science UC Davis KDD 17, Halifax, Canada August 13-17, 2017 Joint work with Cho-Jui Hsieh and James Sharpnack

More information

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties Prof. James She james.she@ust.hk 1 Last lecture 2 Selected works from Tutorial

More information

Predicting the Performance of Collaborative Filtering Algorithms

Predicting the Performance of Collaborative Filtering Algorithms Predicting the Performance of Collaborative Filtering Algorithms Pawel Matuszyk and Myra Spiliopoulou Knowledge Management and Discovery Otto-von-Guericke University Magdeburg, Germany 04. June 2014 Pawel

More information

The Social Life of Location. David Sonnen September 2008

The Social Life of Location. David Sonnen September 2008 The Social Life of Location David Sonnen September 2008 Three Transformations Traditional Cartography -- 2300 B.C. - ~ 1980 Maps represent location and attributes Portable, persistent communication/ reference

More information

Learning Geo-Social User Topical Profiles with Bayesian Hierarchical User Factorization

Learning Geo-Social User Topical Profiles with Bayesian Hierarchical User Factorization Learning Geo-Social User Topical Profiles with Bayesian Hierarchical User Factorization Haokai Lu, Wei Niu, and James Caverlee Department of Computer Science and Engineering, Texas A&M University hlu,wei,caverlee@tamu.edu

More information

COT: Contextual Operating Tensor for Context-Aware Recommender Systems

COT: Contextual Operating Tensor for Context-Aware Recommender Systems Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence COT: Contextual Operating Tensor for Context-Aware Recommender Systems Qiang Liu, Shu Wu, Liang Wang Center for Research on Intelligent

More information

Collaborative Recommendation with Multiclass Preference Context

Collaborative Recommendation with Multiclass Preference Context Collaborative Recommendation with Multiclass Preference Context Weike Pan and Zhong Ming {panweike,mingz}@szu.edu.cn College of Computer Science and Software Engineering Shenzhen University Pan and Ming

More information

A R A W MIXEDCOMPANYPODCAST.COM

A R A W MIXEDCOMPANYPODCAST.COM 2 0 1 8 S E A S O N 3 M E D I A K I T A R A W P O D C A S T A B O U T D I V E R S I T Y I N C L U S I O N & S O C I A L E Q U I T Y I N C R E A T I V E I N D U S T R I E S O U R G O A L I S T O T A K E

More information

Collaborative Location Recommendation by Integrating Multi-dimensional Contextual Information

Collaborative Location Recommendation by Integrating Multi-dimensional Contextual Information 1 Collaborative Location Recommendation by Integrating Multi-dimensional Contextual Information LINA YAO, University of New South Wales QUAN Z. SHENG, Macquarie University XIANZHI WANG, Singapore Management

More information

Multiverse Recommendation: N-dimensional Tensor Factorization for Context-aware Collaborative Filtering

Multiverse Recommendation: N-dimensional Tensor Factorization for Context-aware Collaborative Filtering Multiverse Recommendation: N-dimensional Tensor Factorization for Context-aware Collaborative Filtering Alexandros Karatzoglou Telefonica Research Barcelona, Spain alexk@tid.es Xavier Amatriain Telefonica

More information

Scaling Neighbourhood Methods

Scaling Neighbourhood Methods Quick Recap Scaling Neighbourhood Methods Collaborative Filtering m = #items n = #users Complexity : m * m * n Comparative Scale of Signals ~50 M users ~25 M items Explicit Ratings ~ O(1M) (1 per billion)

More information

SQL-Rank: A Listwise Approach to Collaborative Ranking

SQL-Rank: A Listwise Approach to Collaborative Ranking SQL-Rank: A Listwise Approach to Collaborative Ranking Liwei Wu Depts of Statistics and Computer Science UC Davis ICML 18, Stockholm, Sweden July 10-15, 2017 Joint work with Cho-Jui Hsieh and James Sharpnack

More information

Learning Optimal Ranking with Tensor Factorization for Tag Recommendation

Learning Optimal Ranking with Tensor Factorization for Tag Recommendation Learning Optimal Ranking with Tensor Factorization for Tag Recommendation Steffen Rendle, Leandro Balby Marinho, Alexandros Nanopoulos, Lars Schmidt-Thieme Information Systems and Machine Learning Lab

More information

Crowd-Learning: Improving the Quality of Crowdsourcing Using Sequential Learning

Crowd-Learning: Improving the Quality of Crowdsourcing Using Sequential Learning Crowd-Learning: Improving the Quality of Crowdsourcing Using Sequential Learning Mingyan Liu (Joint work with Yang Liu) Department of Electrical Engineering and Computer Science University of Michigan,

More information

NOWADAYS, Collaborative Filtering (CF) [14] plays an

NOWADAYS, Collaborative Filtering (CF) [14] plays an JOURNAL OF L A T E X CLASS FILES, VOL. 4, NO. 8, AUGUST 205 Multi-behavioral Sequential Prediction with Recurrent Log-bilinear Model Qiang Liu, Shu Wu, Member, IEEE, and Liang Wang, Senior Member, IEEE

More information

Asymmetric Correlation Regularized Matrix Factorization for Web Service Recommendation

Asymmetric Correlation Regularized Matrix Factorization for Web Service Recommendation Asymmetric Correlation Regularized Matrix Factorization for Web Service Recommendation Qi Xie, Shenglin Zhao, Zibin Zheng, Jieming Zhu and Michael R. Lyu School of Computer Science and Technology, Southwest

More information

Discovering Geographical Topics in Twitter

Discovering Geographical Topics in Twitter Discovering Geographical Topics in Twitter Liangjie Hong, Lehigh University Amr Ahmed, Yahoo! Research Alexander J. Smola, Yahoo! Research Siva Gurumurthy, Twitter Kostas Tsioutsiouliklis, Twitter Overview

More information

Department of Computer Science, Guiyang University, Guiyang , GuiZhou, China

Department of Computer Science, Guiyang University, Guiyang , GuiZhou, China doi:10.21311/002.31.12.01 A Hybrid Recommendation Algorithm with LDA and SVD++ Considering the News Timeliness Junsong Luo 1*, Can Jiang 2, Peng Tian 2 and Wei Huang 2, 3 1 College of Information Science

More information

Content-based Recommendation

Content-based Recommendation Content-based Recommendation Suthee Chaidaroon June 13, 2016 Contents 1 Introduction 1 1.1 Matrix Factorization......................... 2 2 slda 2 2.1 Model................................. 3 3 flda 3

More information

Collaborative Filtering with Entity Similarity Regularization in Heterogeneous Information Networks

Collaborative Filtering with Entity Similarity Regularization in Heterogeneous Information Networks Collaborative Filtering with Entity Similarity Regularization in Heterogeneous Information Networks Xiao Yu Xiang Ren Quanquan Gu Yizhou Sun Jiawei Han University of Illinois at Urbana-Champaign, Urbana,

More information

Density and Walkable Communities

Density and Walkable Communities Density and Walkable Communities Reid Ewing Professor & Chair City and Metropolitan Planning University of Utah ewing@arch.utah.edu Department of City & Metropolitan Planning, University of Utah MRC Research

More information

Beating Social Pulse: Understanding Information Propagation via Online Social Tagging Systems 1

Beating Social Pulse: Understanding Information Propagation via Online Social Tagging Systems 1 Journal of Universal Computer Science, vol. 18, no. 8 (2012, 1022-1031 submitted: 16/9/11, accepted: 14/12/11, appeared: 28/4/12 J.UCS Beating Social Pulse: Understanding Information Propagation via Online

More information

Collaborative Topic Modeling for Recommending Scientific Articles

Collaborative Topic Modeling for Recommending Scientific Articles Collaborative Topic Modeling for Recommending Scientific Articles Chong Wang and David M. Blei Best student paper award at KDD 2011 Computer Science Department, Princeton University Presented by Tian Cao

More information

Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced Collaborative Filtering

Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced Collaborative Filtering Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced Collaborative Filtering YAN HU, University of Chinese Academy of Sciences and Wayne State University WEISONG SHI, Wayne State University

More information

Solving Quadratic Equations by Graphing 6.1. ft /sec. The height of the arrow h(t) in terms

Solving Quadratic Equations by Graphing 6.1. ft /sec. The height of the arrow h(t) in terms Quadratic Function f ( x) ax bx c Solving Quadratic Equations by Graphing 6.1 Write each in quadratic form. Example 1 f ( x) 3( x + ) Example Graph f ( x) x + 6 x + 8 Example 3 An arrow is shot upward

More information

What Are You Known For? Learning User Topical Profiles with Implicit and Explicit Footprints

What Are You Known For? Learning User Topical Profiles with Implicit and Explicit Footprints What Are You Known For? Learning Topical Profiles with Implicit and Explicit Footprints Cheng Cao, Hancheng Ge, Haokai Lu, Xia Hu, and James Caverlee Department of Computer Science and Engineering Texas

More information

What is Happening Right Now... That Interests Me?

What is Happening Right Now... That Interests Me? What is Happening Right Now... That Interests Me? Online Topic Discovery and Recommendation in Twitter Ernesto Diaz-Aviles 1, Lucas Drumond 2, Zeno Gantner 2, Lars Schmidt-Thieme 2, and Wolfgang Nejdl

More information

Yahoo! Labs Nov. 1 st, Liangjie Hong, Ph.D. Candidate Dept. of Computer Science and Engineering Lehigh University

Yahoo! Labs Nov. 1 st, Liangjie Hong, Ph.D. Candidate Dept. of Computer Science and Engineering Lehigh University Yahoo! Labs Nov. 1 st, 2012 Liangjie Hong, Ph.D. Candidate Dept. of Computer Science and Engineering Lehigh University Motivation Modeling Social Streams Future work Motivation Modeling Social Streams

More information

Point-of-Interest Recommendations: Learning Potential Check-ins from Friends

Point-of-Interest Recommendations: Learning Potential Check-ins from Friends Point-of-Interest Recommendations: Learning Potential Check-ins from Friends Huayu Li, Yong Ge +, Richang Hong, Hengshu Zhu University of North Carolina at Charlotte + University of Arizona Hefei University

More information

Preliminaries. Data Mining. The art of extracting knowledge from large bodies of structured data. Let s put it to use!

Preliminaries. Data Mining. The art of extracting knowledge from large bodies of structured data. Let s put it to use! Data Mining The art of extracting knowledge from large bodies of structured data. Let s put it to use! 1 Recommendations 2 Basic Recommendations with Collaborative Filtering Making Recommendations 4 The

More information

Matrix Factorization In Recommender Systems. Yong Zheng, PhDc Center for Web Intelligence, DePaul University, USA March 4, 2015

Matrix Factorization In Recommender Systems. Yong Zheng, PhDc Center for Web Intelligence, DePaul University, USA March 4, 2015 Matrix Factorization In Recommender Systems Yong Zheng, PhDc Center for Web Intelligence, DePaul University, USA March 4, 2015 Table of Contents Background: Recommender Systems (RS) Evolution of Matrix

More information

General Case of Multi Products of Axis Vectors and Vectors in an n dimensional Space

General Case of Multi Products of Axis Vectors and Vectors in an n dimensional Space Mechanics and Mechanical Engineering Vol. 12, No. 3 (2008) 201 209 c Technical University of Lodz General Case of Multi Products of Axis Vectors and Vectors in an n dimensional Space Andrze Polka Technical

More information

Collaborative Filtering. Radek Pelánek

Collaborative Filtering. Radek Pelánek Collaborative Filtering Radek Pelánek 2017 Notes on Lecture the most technical lecture of the course includes some scary looking math, but typically with intuitive interpretation use of standard machine

More information

A Convolutional Neural Network-based

A Convolutional Neural Network-based A Convolutional Neural Network-based Model for Knowledge Base Completion Dat Quoc Nguyen Joint work with: Dai Quoc Nguyen, Tu Dinh Nguyen and Dinh Phung April 16, 2018 Introduction Word vectors learned

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Recommender Systems Instructor: Yizhou Sun yzsun@cs.ucla.edu May 17, 2017 Methods Learnt: Last Lecture Classification Clustering Vector Data Text Data Recommender System Decision

More information

Uncovering News-Twitter Reciprocity via Interaction Patterns

Uncovering News-Twitter Reciprocity via Interaction Patterns Uncovering News-Twitter Reciprocity via Interaction Patterns Yue Ning 1 Sathappan Muthiah 1 Ravi Tandon 2 Naren Ramakrishnan 1 1 Discovery Analytics Center, Department of Computer Science, Virginia Tech

More information

Exploiting Local and Global Social Context for Recommendation

Exploiting Local and Global Social Context for Recommendation Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Exploiting Local and Global Social Context for Recommendation Jiliang Tang, Xia Hu, Huiji Gao, Huan Liu Computer

More information

Urban Computing Using Big Data to Solve Urban Challenges

Urban Computing Using Big Data to Solve Urban Challenges Urban Computing Using Big Data to Solve Urban Challenges Dr. Yu Zheng Lead Researcher, Microsoft Research Asia Chair Professor at Shanghai Jiaotong University http://research.microsoft.com/en-us/projects/urbancomputing/default.aspx

More information

Matrix Factorization Techniques for Recommender Systems

Matrix Factorization Techniques for Recommender Systems Matrix Factorization Techniques for Recommender Systems By Yehuda Koren Robert Bell Chris Volinsky Presented by Peng Xu Supervised by Prof. Michel Desmarais 1 Contents 1. Introduction 4. A Basic Matrix

More information

Collaborative Filtering with Aspect-based Opinion Mining: A Tensor Factorization Approach

Collaborative Filtering with Aspect-based Opinion Mining: A Tensor Factorization Approach 2012 IEEE 12th International Conference on Data Mining Collaborative Filtering with Aspect-based Opinion Mining: A Tensor Factorization Approach Yuanhong Wang,Yang Liu, Xiaohui Yu School of Computer Science

More information

Liangjie Hong, Ph.D. Candidate Dept. of Computer Science and Engineering Lehigh University Bethlehem, PA

Liangjie Hong, Ph.D. Candidate Dept. of Computer Science and Engineering Lehigh University Bethlehem, PA Rutgers, The State University of New Jersey Nov. 12, 2012 Liangjie Hong, Ph.D. Candidate Dept. of Computer Science and Engineering Lehigh University Bethlehem, PA Motivation Modeling Social Streams Future

More information

Aggregated Temporal Tensor Factorization Model for Point-of-interest Recommendation

Aggregated Temporal Tensor Factorization Model for Point-of-interest Recommendation Aggregated Temporal Tensor Factorization Model for Point-of-interest Recommendation Shenglin Zhao 1,2B, Michael R. Lyu 1,2, and Irwin King 1,2 1 Shenzhen Key Laboratory of Rich Media Big Data Analytics

More information

Time-aware Point-of-interest Recommendation

Time-aware Point-of-interest Recommendation Time-aware Point-of-interest Recommendation Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat-Thalmann School of Computer Engineering Nanyang Technological University Presented by ShenglinZHAO

More information

Ranking and Filtering

Ranking and Filtering 2018 CS420, Machine Learning, Lecture 7 Ranking and Filtering Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/cs420/index.html Content of This Course Another ML

More information

A Comparative Study of Matrix Factorization and Random Walk with Restart in Recommender Systems

A Comparative Study of Matrix Factorization and Random Walk with Restart in Recommender Systems A Comparative Study of Matrix Factorization and Random Walk with Restart in Recommender Systems Haekyu Park Computer Science and Engineering Seoul National University Seoul, Republic of Korea Email: hkpark627@snu.ac.kr

More information

Location Regularization-Based POI Recommendation in Location-Based Social Networks

Location Regularization-Based POI Recommendation in Location-Based Social Networks information Article Location Regularization-Based POI Recommendation in Location-Based Social Networks Lei Guo 1,2, * ID, Haoran Jiang 3 and Xinhua Wang 4 1 Postdoctoral Research Station of Management

More information

Little Is Much: Bridging Cross-Platform Behaviors through Overlapped Crowds

Little Is Much: Bridging Cross-Platform Behaviors through Overlapped Crowds Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Little Is Much: Bridging Cross-Platform Behaviors through Overlapped Crowds Meng Jiang, Peng Cui Tsinghua University Nicholas

More information

Probabilistic Neighborhood Selection in Collaborative Filtering Systems

Probabilistic Neighborhood Selection in Collaborative Filtering Systems Probabilistic Neighborhood Selection in Collaborative Filtering Systems Panagiotis Adamopoulos and Alexander Tuzhilin Department of Information, Operations and Management Sciences Leonard N. Stern School

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 21: Review Jan-Willem van de Meent Schedule Topics for Exam Pre-Midterm Probability Information Theory Linear Regression Classification Clustering

More information

Factorization models for context-aware recommendations

Factorization models for context-aware recommendations INFOCOMMUNICATIONS JOURNAL Factorization Models for Context-aware Recommendations Factorization models for context-aware recommendations Balázs Hidasi Abstract The field of implicit feedback based recommender

More information

TERNARY SEMANTIC ANALYSIS OF SOCIAL TAGS FOR PERSONALIZED MUSIC RECOMMENDATION

TERNARY SEMANTIC ANALYSIS OF SOCIAL TAGS FOR PERSONALIZED MUSIC RECOMMENDATION TERNARY SEMANTIC ANALYSIS OF SOCIAL TAGS FOR PERSONALIZED MUSIC RECOMMENDATION Panagiotis Symeonidis 1 Maria Ruxanda 2 Alexandros Nanopoulos 1 Yannis Manolopoulos 1 1. Department of Informatics 2. Department

More information

Introduction to ArcGIS Maps for Office. Greg Ponto Scott Ball

Introduction to ArcGIS Maps for Office. Greg Ponto Scott Ball Introduction to ArcGIS Maps for Office Greg Ponto Scott Ball Agenda What is Maps for Office? Platform overview What are Apps for the Office? ArcGIS Maps for Office features - Visualization - Geoenrichment

More information

Sound Recognition in Mixtures

Sound Recognition in Mixtures Sound Recognition in Mixtures Juhan Nam, Gautham J. Mysore 2, and Paris Smaragdis 2,3 Center for Computer Research in Music and Acoustics, Stanford University, 2 Advanced Technology Labs, Adobe Systems

More information

Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts

Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence AAAI-16 Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts Qiang Liu, Shu Wu, Liang Wang, Tieniu

More information

HI SUMMER WORK

HI SUMMER WORK HI-201 2018-2019 SUMMER WORK This packet belongs to: Dear Dual Enrollment Student, May 7 th, 2018 Dual Enrollment United States History is a challenging adventure. Though the year holds countless hours

More information

Recommender Systems. Dipanjan Das Language Technologies Institute Carnegie Mellon University. 20 November, 2007

Recommender Systems. Dipanjan Das Language Technologies Institute Carnegie Mellon University. 20 November, 2007 Recommender Systems Dipanjan Das Language Technologies Institute Carnegie Mellon University 20 November, 2007 Today s Outline What are Recommender Systems? Two approaches Content Based Methods Collaborative

More information

Incorporating Heterogeneous Information for Personalized Tag Recommendation in Social Tagging Systems

Incorporating Heterogeneous Information for Personalized Tag Recommendation in Social Tagging Systems Incorporating Heterogeneous Information for Personalized Tag Recommendation in Social Tagging Systems Wei Feng Tsinghua niversity Beijing, China feng-w0@mails.tsinghua.edu.cn Jianyong Wang Tsinghua niversity

More information

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6 Strauss PDEs 2e: Section 5.3 - Exercise 4 Page of 6 Exercise 4 Consider the problem u t = ku xx for < x < l, with the boundary conditions u(, t) = U, u x (l, t) =, and the initial condition u(x, ) =, where

More information

An Application of Link Prediction in Bipartite Graphs: Personalized Blog Feedback Prediction

An Application of Link Prediction in Bipartite Graphs: Personalized Blog Feedback Prediction An Application of Link Prediction in Bipartite Graphs: Personalized Blog Feedback Prediction Krisztian Buza Dpt. of Computer Science and Inf. Theory Budapest University of Techn. and Economics 1117 Budapest,

More information

Personalized Ranking for Non-Uniformly Sampled Items

Personalized Ranking for Non-Uniformly Sampled Items JMLR: Workshop and Conference Proceedings 18:231 247, 2012 Proceedings of KDD-Cup 2011 competition Personalized Ranking for Non-Uniformly Sampled Items Zeno Gantner Lucas Drumond Christoph Freudenthaler

More information

Math Camp. Justin Grimmer. Associate Professor Department of Political Science Stanford University. September 9th, 2016

Math Camp. Justin Grimmer. Associate Professor Department of Political Science Stanford University. September 9th, 2016 Math Camp Justin Grimmer Associate Professor Department of Political Science Stanford University September 9th, 2016 Justin Grimmer (Stanford University) Methodology I September 9th, 2016 1 / 61 Where

More information

Predicting Links in Plant-Pollinator Interaction Networks using Latent Factor Models with Implicit Feedback

Predicting Links in Plant-Pollinator Interaction Networks using Latent Factor Models with Implicit Feedback Predicting Links in Plant-Pollinator Interaction Networks using Latent Factor Models with Implicit Feedback Eugene Seo 1 and Rebecca A. Hutchinson 1,2 1 School of Electrical Engineering and Computer Science;

More information

Rating Prediction with Topic Gradient Descent Method for Matrix Factorization in Recommendation

Rating Prediction with Topic Gradient Descent Method for Matrix Factorization in Recommendation Rating Prediction with Topic Gradient Descent Method for Matrix Factorization in Recommendation Guan-Shen Fang, Sayaka Kamei, Satoshi Fujita Department of Information Engineering Hiroshima University Hiroshima,

More information

Sequential Recommender Systems

Sequential Recommender Systems Recommender Stammtisch, Zalando, 26/6/14 Sequential Recommender Systems! Knowledge Mining & Assessment brefeld@kma.informatik.tu-darmstadt.de Collaborative Filtering Prof. Dr. 2 Collaborative Filtering

More information

Regularity and Conformity: Location Prediction Using Heterogeneous Mobility Data

Regularity and Conformity: Location Prediction Using Heterogeneous Mobility Data Regularity and Conformity: Location Prediction Using Heterogeneous Mobility Data Yingzi Wang 12, Nicholas Jing Yuan 2, Defu Lian 3, Linli Xu 1 Xing Xie 2, Enhong Chen 1, Yong Rui 2 1 University of Science

More information

Social and Technological Network Analysis. Lecture 11: Spa;al and Social Network Analysis. Dr. Cecilia Mascolo

Social and Technological Network Analysis. Lecture 11: Spa;al and Social Network Analysis. Dr. Cecilia Mascolo Social and Technological Network Analysis Lecture 11: Spa;al and Social Network Analysis Dr. Cecilia Mascolo In This Lecture In this lecture we will study spa;al networks and geo- social networks through

More information

Fairness-Aware Tensor-Based Recommendation

Fairness-Aware Tensor-Based Recommendation Fairness-Aware Tensor-Based Recommendation Ziwei Zhu, Xia Hu, and James Caverlee Department of Computer Science and Engineering, Texas A&M University {zhuziwei,hu,caverlee}@tamu.edu ABSTRACT Tensor-based

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

RaRE: Social Rank Regulated Large-scale Network Embedding

RaRE: Social Rank Regulated Large-scale Network Embedding RaRE: Social Rank Regulated Large-scale Network Embedding Authors: Yupeng Gu 1, Yizhou Sun 1, Yanen Li 2, Yang Yang 3 04/26/2018 The Web Conference, 2018 1 University of California, Los Angeles 2 Snapchat

More information

Mixture-Rank Matrix Approximation for Collaborative Filtering

Mixture-Rank Matrix Approximation for Collaborative Filtering Mixture-Rank Matrix Approximation for Collaborative Filtering Dongsheng Li 1 Chao Chen 1 Wei Liu 2 Tun Lu 3,4 Ning Gu 3,4 Stephen M. Chu 1 1 IBM Research - China 2 Tencent AI Lab, China 3 School of Computer

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Recommendation. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Recommendation. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Recommendation Tobias Scheffer Recommendation Engines Recommendation of products, music, contacts,.. Based on user features, item

More information

SoCo: A Social Network Aided Context-Aware Recommender System

SoCo: A Social Network Aided Context-Aware Recommender System SoCo: A Social Network Aided Context-Aware Recommender System ABSTRACT Xin Liu École Polytechnique Fédérale de Lausanne Batiment BC, Station 14 1015 Lausanne, Switzerland x.liu@epfl.ch Contexts and social

More information

arxiv: v1 [cs.ir] 16 Oct 2013

arxiv: v1 [cs.ir] 16 Oct 2013 An FCA-based Boolean Matrix Factorisation for Collaborative Filtering Elena Nenova 2,1, Dmitry I. Ignatov 1, and Andrey V. Konstantinov 1 1 National Research University Higher School of Economics, Moscow

More information

Collaborative Nowcasting for Contextual Recommendation

Collaborative Nowcasting for Contextual Recommendation Collaborative for Contextual Recommendation Yu Sun 1, Nicholas Jing Yuan 2, Xing Xie 3, Kieran McDonald 4, Rui Zhang 5 University of Melbourne { 1 sun.y, 5 rui.zhang}@unimelb.edu.au Microsoft Research

More information

Recommendation Systems

Recommendation Systems Recommendation Systems Popularity Recommendation Systems Predicting user responses to options Offering news articles based on users interests Offering suggestions on what the user might like to buy/consume

More information

Exploiting Geographical Neighborhood Characteristics for Location Recommendation

Exploiting Geographical Neighborhood Characteristics for Location Recommendation Exploiting Geographical Neighborhood Characteristics for Location Recommendation Yong Liu Wei Wei Aixin Sun Chunyan Miao School of Computer Engineering, Nanyang Technological University, Singapore, {liuy0054@e.,

More information