Doubly Magic Nucleus 208 Pb. Indian Institute of Technology Ropar

Size: px
Start display at page:

Download "Doubly Magic Nucleus 208 Pb. Indian Institute of Technology Ropar"

Transcription

1 Doubly Magic Nucleus 208 Pb Maria Goeppert-Mayer J. Hans D. Jensen

2 Experimental single-particle energies γ-spectrum single-hole energies 208 Pb 207 Pb E lab = 5 MeV/u 3 p 3/2 898 kev 2 f 5/2 570 kev 3 p 1/2 0 kev 207 Pb

3 Experimental single-particle energies single-particle energies 1 i 13/ kev γ-spectrum 208 Pb 209 Bi E lab = 5 MeV/u 2 f 7/2 896 kev 1 h 9/2 209 Bi kev

4 Experimental single-particle energies particle states 209 Bi 1 i 13/ kev 2 f 7/2 896 kev 1 h 9/2 0 kev 209 Pb 207 Tl 208 Pb energy of shell closure: BE Pb) BE( Pb) = E(2 g ( 9/ BE( Pb) BE( Pb) = E(3 p1/ 2) E ( 2 g ) 9/ 2 E(3 p 1/ 2 ) = BE( = Pb 209 ) Pb) + BE( 207 Pb) 2 BE( 208 Pb) protons hole states neutrons BE Bi) BE( Pb) = E(1 h ( 9/ BE( Tl) BE( Pb) = E(3s1/ 2) E ( 1h ) 9/ 2 E(3s 1/ 2 ) = BE( 209 ) Bi) + BE( = 4.211MeV 207 Tl) 2 BE( 208 Pb)

5 Octupole Vibrational States in the Lead Region ħωω 3 206,207,209 Pb

6 Octupole Vibrational States in the Lead Region ħωω 3

7 The Darmstadt-Heidelberg Crystal Ball extended by EUROBALL-3 Ge-detectors

8 The Darmstadt-Heidelberg Crystal Ball extended by EUROBALL-3 Ge-detectors θθ γγ = RR = 36 cccc Crystal Ball: Ω CB = 83% P photopeak 53% Cluster ring: Ω EB = 7% P photopeak 2.2% March 27 September 6, 1996

9 Octupole Vibrational States in the Lead Region 206 Pb 24% 207 Pb 22% 208 Pb 52% excitation probability for the 1-excited state E2 excitation E3 excitation

10 Coulomb Excitation for 208 Pb on 206 Pb B(E3) 34 spu 20 spu Nucl Data: 36 spu

11 Coulomb Excitation for 238 U on 206 Pb B(E3) 36 spu 20 spu J. Baumann for EPOS

12 Superposition of Vibrational and Particle Motion 3 h 9 2 septuplet 209 Bi h 9 2 weak coupling: Σ:

13 Superposition of Vibrational and Particle Motion νν pp 1 2, 2 νν pp 1 2, 1 particle-hole states 2 - phonon ππ h 9 2, phonon octupole vibration

14 Coulomb Excitation for 208 Pb on 208 Pb 206,207,209 Pb 209 Pb!

15 Coulomb Excitation for 208 Pb on 208 Pb at 5.0 MeV/u BB EEE; BB EEE; = vibrational

16 Octupole Vibrational States in 206 Pb, 207 Pb, 208 Pb and 209 Bi vibrational excitation ħωω 3 is very similar B(E3) values are well described in weak coupling model collective strength depends on particle configuration 2 phonon octupole vibrational states not observed at 5 MeV/u (insufficient Compton suppression of EUROBALL detectors) 6 + particle-hole state contains 18% of the collective vibrational strength transfer reactions ( 209 Pb) observed at 5 MeV/u H.J. Wollersheim, E. Lubkiewicz, A. Gadea, J. Gerl, M. Kaspar, I. Kojouharov, Th. Kröll, R. Kulessa, I. Peter, M. Rejmund, J.A. Ros, H. Schaffner, Ch. Schlegel, K. Vetter GSI-Darmstadt, Jagellonian University Cracow, I.F.I.C.-Valencia

17 Octupole Vibrational States in the Lead Region 208 Pb Pb; E/A 1 = 5 MeV/u σσ 6 + = mmmm σσ 4 + = mmmm σσ 2 + = mmmm σσ 0 + = mmmm 1-phonon 2-phonon

18 Experimental Setup for 208 Pb on 208 Pb at 6.2 MeV/u

19 Coulomb Excitation for 208 Pb on 208 Pb at 6.2 MeV/u 207,209 Pb

20 Coulomb Excitation for 208 Pb on 208 Pb at 6.2 MeV/u

21 Coulomb Excitation for 208 Pb on 208 Pb at 6.2 MeV/u

22 Coulomb and Nuclear Excitation for 208 Pb on 206 Pb at 6.2 MeV/u particle-γ angular correlation electromagnetic excitation nuclear excitation g(2 + ) = 0 unperturbed p-γ angular correlation σσ nnnnnnnn σσ tttttttttt = 63% analysis with Ptolemy code

23 Coulomb and Nuclear Excitation for 208 Pb on 208 Pb at 6.2 MeV/u analysis with Ptolemy code

24 Coulomb and Nuclear Excitation for 208 Pb on 208 Pb at 6.2 MeV/u analysis with Ptolemy code

25 Energy Splitting of the 2-Phonon States

Physics with Exotic Nuclei. Hans-Jürgen Wollersheim

Physics with Exotic Nuclei. Hans-Jürgen Wollersheim Physics with Exotic Nuclei Hans-Jürgen Wollersheim Outline Scattering Experiments with RIBs Nuclear Structure Results Experimental evidence for closed-shell nuclei Scattering experiments at relativistic

More information

Low-spin structure of 210 Bi

Low-spin structure of 210 Bi Low-spin structure of 21 Bi investigated in cold-neutron capture reaction on 29 Bi Natalia Cieplicka, S. Leoni, B. Fornal INFN, Sezione di Milano 5th orkshop on Nuclear Level Density and Gamma Strength,

More information

Sunday Monday Thursday. Friday

Sunday Monday Thursday. Friday Nuclear Structure III experiment Sunday Monday Thursday Low-lying excited states Collectivity and the single-particle degrees of freedom Collectivity studied in Coulomb excitation Direct reactions to study

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar PHL424: Nuclear Shell Model Themes and challenges in modern science Complexity out of simplicity Microscopic How the world, with all its apparent complexity and diversity can be constructed out of a few

More information

Photons in the universe. Indian Institute of Technology Ropar

Photons in the universe. Indian Institute of Technology Ropar Photons in the universe Photons in the universe Element production on the sun Spectral lines of hydrogen absorption spectrum absorption hydrogen gas Hydrogen emission spectrum Element production on the

More information

First results from the AGATA Demonstrator. Francesco Recchia Università di Padova

First results from the AGATA Demonstrator. Francesco Recchia Università di Padova First results from the AGATA Demonstrator Francesco Recchia Università di Padova XCVII Congresso Nazionale SIF L'Aquila, 26-30 Settembre, 2011 Challenges in Nuclear Structure Shell structure in nuclei

More information

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer Production of superheavy elements Seminar: Key experiments in particle physics 26.06.09 Supervisor: Kai Schweda Thorsten Heußer Outline 1. Introduction 2. Nuclear shell model 3. (SHE's) 4. Experiments

More information

PHL424: Nuclear surface vibration. Indian Institute of Technology Ropar

PHL424: Nuclear surface vibration. Indian Institute of Technology Ropar PL44: Nuclear surface vibration Systeatics xcitation energy (kev) Ground state Configuration. Spin/parity π ; x kev 4 / nergy ratio: irrors systeatics xcitation energy (kev) 4 Ground state Configuration.

More information

Gamma-ray spectroscopy I

Gamma-ray spectroscopy I Gamma-ray spectroscopy I Andreas Görgen DAPNIA/SPhN, CEA Saclay F-91191 Gif-sur-Yvette France agoergen@cea.fr Lectures presented at the IoP Nuclear Physics Summer School September 4 17, 2005 Chester, UK

More information

Lise Meitner, Otto Hahn. Nuclear Fission Hans-Jürgen Wollersheim

Lise Meitner, Otto Hahn. Nuclear Fission Hans-Jürgen Wollersheim Lise Meitner, Otto Hahn Nuclear Fission Hans-Jürgen Wollersheim Details of the 252 Cf decay α s: 96.9% SF: 3.1% T 1/2 = 2.647 a Q α = 6.217 MeV E α = 6.118 MeV α α α α α-decay of 252 Cf Mass data: nucleardata.nuclear.lu.se/database/masses/

More information

PHL424: Nuclear fusion

PHL424: Nuclear fusion PHL424: Nuclear fusion Hot Fusion 5 10 15 5 10 8 projectiles on target compound nuclei 1 atom Hot fusion (1961 1974) successful up to element 106 (Seaborgium) Coulomb barrier V C between projectile and

More information

Measurement of the g-factors of 2 + states in stable A=112,114,116 Sn isotopes using the transient field technique

Measurement of the g-factors of 2 + states in stable A=112,114,116 Sn isotopes using the transient field technique Measurement of the g-factors of 2 + states in stable A=112,114,116 Sn isotopes using the transient field technique A. Jungclaus 1, J. Leske 2, K.-H. Speidel 3, V. Modamio 1, J. Walker 1, P. Doornenbal

More information

PHY492: Nuclear & Particle Physics. Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell

PHY492: Nuclear & Particle Physics. Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell PHY492: Nuclear & Particle Physics Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell Liquid drop model Five terms (+ means weaker binding) in a prediction of the B.E. r ~A 1/3, Binding is short

More information

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering stochastic cooling Exotic nuclei from Super-FRS Degrader for fast slowing down The Ring Branch TOF Detector MCPs E anode ion B CR Electron cooler NESR secondary electrons Experiments: Mass- and Lifetime

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

Lecture 10: Fission Conceptual process Fissionability Decay rate Decay branching Mass distribution Kinetic energy Neutrons

Lecture 10: Fission Conceptual process Fissionability Decay rate Decay branching Mass distribution Kinetic energy Neutrons Lecture 10: Fission Conceptual process Fissionability Decay rate Decay branching Mass distribution Kinetic energy Neutrons Lecture 10: Ohio University PHYS7501, Fall 2017, Z. Meisel (meisel@ohio.edu) Steps

More information

Photon Interactions in Matter

Photon Interactions in Matter Radiation Dosimetry Attix 7 Photon Interactions in Matter Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University References F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry,

More information

Particle excitations and rotational modes in nuclei with A 70-90

Particle excitations and rotational modes in nuclei with A 70-90 . 4 5 7 / 5-6 4 7 4 5 5 -, 4. 1 I J E J K J B H A H K @ = @ H A F D O I E Particle excitations and rotational modes in nuclei with A 7-9 In nuclei of the mass region with A 7-9 both protons and neutrons

More information

Nuclear structure southeast of 208 Pb: Isomeric states in 208 Hg and 209 Tl

Nuclear structure southeast of 208 Pb: Isomeric states in 208 Hg and 209 Tl PHYSICAL REVIEW C 8, 632(R) (29) Nuclear structure southeast of 28 Pb: Isomeric states in 28 Hg and 29 Tl N. Al-Dahan,,2 Zs. Podolyák,,* P. H. Regan, M. Górska, 3 H. Grawe, 3 K. H. Maier, 4 J. Gerl, 3

More information

Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments

Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments V. Derya 1*, J. Endres 1, M. N. Harakeh 2,3, D. Savran 4,5, M. Spieker 1*, H. J. Wörtche 2, and A. Zilges 1 1 Institute

More information

Physics with Exotic Nuclei

Physics with Exotic Nuclei Physics with Exotic Nuclei Hans-Jürgen Wollersheim NUclear STructure, Astrophysics and Reaction Outline Projectile Fragmentation A Route to Exotic Nuclei Fragmentation Cross Sections Nuclear Reaction Rates

More information

Doppler Correction after Inelastic Heavy Ion Scattering 238 U Ta system at the Coulomb barrier

Doppler Correction after Inelastic Heavy Ion Scattering 238 U Ta system at the Coulomb barrier Doppler-Corrected e - and γ-ray Spectroscopy Physical Motivation In-beam conversion electron spectroscopy complements the results obtained from γ-spectroscopy A method for determining the multipolarity

More information

New data on β decay of exotic nuclei close to 100 Sn:

New data on β decay of exotic nuclei close to 100 Sn: New data on β decay of exotic nuclei close to 1 Sn: 94 Ag and 1 In C. Plettner 1, I. Mukha 1, J. Döring 1, L. Batist 2, H. Grawe 1, A. Blazhev 1,3, C. R. Hoffman 4, Z. Janas 5, R. Kirchner 1, M. La Commara

More information

Institute of Physics Publishing Journal of Physics: Conference Series 41 (2006) 72 80

Institute of Physics Publishing Journal of Physics: Conference Series 41 (2006) 72 80 Institute of Physics Publishing Journal of Physics: Conference Series 41 (2006) 72 80 doi:10.1088/1742-6596/41/1/006 EPS Euroconference XIX Nuclear Physics Divisional Conference The AGATA project John

More information

Physics opportunities with the AT-TPC. D. Bazin NSCL/MSU at ReA

Physics opportunities with the AT-TPC. D. Bazin NSCL/MSU at ReA Physics opportunities with the AT-TPC D. Bazin NSCL/MSU at ReA Reaction studies at ReA Radioactive beams are used in inverse kinematics Target is now the (usually light) probe nucleus Scattered particles

More information

Andreas Zilges. Newest results on pygmy resonances in atomic nuclei. Institut für Kernphysik Universität zu Köln. (ZI 510/4-1 and INST 216/544-1)

Andreas Zilges. Newest results on pygmy resonances in atomic nuclei. Institut für Kernphysik Universität zu Köln. (ZI 510/4-1 and INST 216/544-1) Newest results on pygmy resonances in atomic nuclei Andreas Zilges Institut für Kernphysik Universität zu Köln supported by (ZI 510/4-1 and INST 216/544-1) Giant Dipole Resonance (GDR) 1937: Z. Phys. 106

More information

Realistic Shell-Model Calculations for 208 Pb Neighbors

Realistic Shell-Model Calculations for 208 Pb Neighbors Realistic Shell-Model Calculations for 208 Pb Neighbors Luigi Coraggio, Aldo Covello, and Angela Gargano Dipartimento di Scienze Fisiche, Università di Napoli Federico II, and Istituto Nazionale di Fisica

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

RFSS: Lecture 6 Gamma Decay

RFSS: Lecture 6 Gamma Decay RFSS: Lecture 6 Gamma Decay Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition Probabilities Internal Conversion Angular Correlations Moessbauer

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

What did you learn in the last lecture?

What did you learn in the last lecture? What did you learn in the last lecture? Charge density distribution of a nucleus from electron scattering SLAC: 21 GeV e s ; λ ~ 0.1 fm (to first order assume that this is also the matter distribution

More information

Proton-hole excitation in the closed shell nucleus 205 Au

Proton-hole excitation in the closed shell nucleus 205 Au Proton-hole excitation in the closed shell nucleus 25 Au Zs. Podolyák, 1, G.F. Farrelly, 1 P.H. Regan, 1 A.B. Garnsworthy, 1 S.J. Steer, 1 M. Górska, 2 J. Benlliure, 3 E. Casarejos, 3 S. Pietri, 1 J. Gerl,

More information

Isomeric States In 208Hg And 209Tl Populated In Fragmentation Of 238U

Isomeric States In 208Hg And 209Tl Populated In Fragmentation Of 238U Isomeric States In 28Hg And 29Tl Populated In Fragmentation Of 238U Al-Dahan, N.; Podolyak, Zs.; Regan, P. H.; Steer, S. J.; Bacelar, A. M. Denis; Alkhomashi, N.; Gorska, M.; Gerl, J.; Wollersheim, H.

More information

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron. 1 Lecture 3 Nuclear Decay modes, Nuclear Sizes, shapes, and the Liquid drop model Introduction to Decay modes (continued) Gamma Decay Electromagnetic radiation corresponding to transition of nucleus from

More information

Gamma Spectroscopy of 207 Tl 126 Populated in Deep-Inelastic Collisions

Gamma Spectroscopy of 207 Tl 126 Populated in Deep-Inelastic Collisions Gamma Spectroscopy of 207 Tl 126 Populated in Deep-Inelastic Collisions Emma Wilson Submitted for the degree of Doctor of Philosophy Department of Physics Faculty of Engineering and Physical Sciences University

More information

On the Road to FAIR: 1st Operation of AGATA in PreSPEC at GSI

On the Road to FAIR: 1st Operation of AGATA in PreSPEC at GSI On the Road to FAIR: 1st Operation of AGATA in PreSPEC at GSI Pietralla, N.; Reese, M.; Cortes, M.L.; Ameil, F.; Bazzacco, D.; Bentley, M.A.; Boutachkov, P.; Domingo-Pardo, C.; Gadea, A.; Gerl, J.; Goel,

More information

Compound and heavy-ion reactions

Compound and heavy-ion reactions Compound and heavy-ion reactions Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 23, 2011 NUCS 342 (Lecture 24) March 23, 2011 1 / 32 Outline 1 Density of states in a

More information

Isospin symmetry and proton decay: Identification of the 10 + isomer in 54 Ni

Isospin symmetry and proton decay: Identification of the 10 + isomer in 54 Ni PHYSICAL REVIEW C 78, 2131(R) (28) Isospin symmetry and proton decay: Identification of the + isomer in 54 Ni D. Rudolph, 1 R. Hoischen, 1,2 M. Hellström, 1 S. Pietri, 3 Zs. Podolyák, 3 P. H. Regan, 3

More information

Decay Studies of Exotic Nuclei using RISING and the GSI Fragment Separator

Decay Studies of Exotic Nuclei using RISING and the GSI Fragment Separator Decay Studies of Exotic Nuclei using RISING and the GSI Fragment Separator Spokesperson for the g-rising collaboration: P.H.Regan GSI contacts: J. Gerl & H.J. Wollersheim This proposal forms part of the

More information

Analysis of γ spectrum

Analysis of γ spectrum IFM The Department of Physics, Chemistry and Biology LAB 26 Analysis of γ spectrum NAME PERSONAL NUMBER DATE APPROVED I. OBJECTIVES - To understand features of gamma spectrum and recall basic knowledge

More information

Update on the study of the 14 C+n 15 C system. M. McCleskey, A.M. Mukhamedzhanov, V. Goldberg, and R.E. Tribble

Update on the study of the 14 C+n 15 C system. M. McCleskey, A.M. Mukhamedzhanov, V. Goldberg, and R.E. Tribble Update on the study of the 14 C+n 15 C system M. McCleskey, A.M. Mukhamedzhanov, V. Goldberg, and R.E. Tribble The 14 C+n 15 C system has been used to evaluate a new method [1] to obtain spectroscopic

More information

Core excitations across the neutron shell gap in 207 Tl

Core excitations across the neutron shell gap in 207 Tl Core excitations across the neutron shell gap in 27 Tl E. Wilson,, Zs. Podolyák, H. Grawe, 2 B.A. Brown, 3 C.J. Chiara, 4, 5, S. Zhu, 5 B. Fornal, 6 R.V.F. Janssens, 5 C.M. Shand, M. Bowry,, M. Bunce,

More information

Isospin Character of Low-Lying Pygmy Dipole States via Inelastic Scattering of 17 O ions

Isospin Character of Low-Lying Pygmy Dipole States via Inelastic Scattering of 17 O ions 14 th International Conference on Nuclear Reaction Mechanisms Varenna, June 15-19, 2015 Isospin Character of Low-Lying Pygmy Dipole States via Inelastic Scattering of 17 O ions Fabio Crespi Università

More information

The semi-empirical mass formula, based on the liquid drop model, compared to the data

The semi-empirical mass formula, based on the liquid drop model, compared to the data Nucleonic Shells The semi-empirical mass formula, based on the liquid drop model, compared to the data E shell = E total E LD (Z=82, N=126) (Z=28, N=50) Nature 449, 411 (2007) Magic numbers at Z or N=

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

Interaction with matter

Interaction with matter Interaction with matter accelerated motion: ss = bb 2 tt2 tt = 2 ss bb vv = vv 0 bb tt = vv 0 2 ss bb EE = 1 2 mmvv2 dddd dddd = mm vv 0 2 ss bb 1 bb eeeeeeeeeeee llllllll bbbbbbbbbbbbbb dddddddddddddddd

More information

Collective Excitations in Exotic Nuclei

Collective Excitations in Exotic Nuclei Collective Excitations in Exotic Nuclei David Radford (ORNL) RIA Summer School, August 2002 I Nuclear Excitations: Single particle motion vs. Collective motion Collective Modes: Rotations and Vibrations

More information

Influence of Shell on Pre-scission Particle Emission of a Doubly Magic Nucleus 208 Pb

Influence of Shell on Pre-scission Particle Emission of a Doubly Magic Nucleus 208 Pb Commun. Theor. Phys. (Beijing, China) 41 (2004) pp. 283 290 c International Academic Publishers Vol. 41, No. 2, February 15, 2004 Influence of Shell on Pre-scission Particle Emission of a Doubly Magic

More information

Advantages / Disadvantages of semiconductor detectors

Advantages / Disadvantages of semiconductor detectors Advantages / Disadvantages of semiconductor detectors Semiconductor detectors have a high density (compared to gas detector) large energy loss in a short distance diffusion effect is smaller than in gas

More information

The PreSPEC Project. AGATA at GSI: MC-Simulations. C. Domingo-Pardo, J. Gerl, H.J. Wollersheim. GSI Helmholtzzentrum für Schwerionenforschung

The PreSPEC Project. AGATA at GSI: MC-Simulations. C. Domingo-Pardo, J. Gerl, H.J. Wollersheim. GSI Helmholtzzentrum für Schwerionenforschung The PreSPEC Project AGATA at GSI: MC-Simulations C. Domingo-Pardo, J. Gerl, H.J. Wollersheim GSI Helmholtzzentrum für Schwerionenforschung November 20 AGATA at GSI-FRS MC-Simulations C. Domingo-Pardo,

More information

Fission fragment mass distributions via prompt γ -ray spectroscopy

Fission fragment mass distributions via prompt γ -ray spectroscopy PRAMANA c Indian Academy of Sciences Vol. 85, No. 3 journal of September 2015 physics pp. 379 384 Fission fragment mass distributions via prompt γ -ray spectroscopy L S DANU, D C BISWAS, B K NAYAK and

More information

Lesson 5 The Shell Model

Lesson 5 The Shell Model Lesson 5 The Shell Model Why models? Nuclear force not known! What do we know about the nuclear force? (chapter 5) It is an exchange force, mediated by the virtual exchange of gluons or mesons. Electromagnetic

More information

Study of the spin orbit force using a bubble nucleus O. Sorlin (GANIL)

Study of the spin orbit force using a bubble nucleus O. Sorlin (GANIL) Study of the spin orbit force using a bubble nucleus O. Sorlin (GANIL) I. General introduction to the atomic nucleus Charge density, nuclear orbits Shell gaps-> magic nuclei II. The spin orbit force History

More information

AGATA: Gamma-ray tracking in segmented HPGe detectors

AGATA: Gamma-ray tracking in segmented HPGe detectors AGATA: Gamma-ray tracking in segmented HPGe detectors, A. Al-Adili, J. Nyberg Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala, Sweden E-mail: P-A.Soderstrom@physics.uu.se F. Recchia

More information

Coulomb excitation experiments at JAEA (Japan Atomic Energy Institute)

Coulomb excitation experiments at JAEA (Japan Atomic Energy Institute) Japan Atomic Energy Agency GOSIA work shop 2008/4/8-10 Warsaw, Poland Coulomb excitation experiments at JAEA (Japan Atomic Energy Institute) JAEA, Chiba Inst.Tech. a, Kyusyu Univ. b, Hiroshima Univ. c,

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS Page 1 1. Within the nucleus, the charge distribution A) Is constant, but falls to zero sharply at the nuclear radius B) Increases linearly from the centre, but falls off exponentially at the surface C)

More information

Properties of Nuclei

Properties of Nuclei Properties of Nuclei Z protons and N neutrons held together with a short-ranged force gives binding energy m 938. 3 MeV / c m 939. 6 MeV / c p 2 2 n M Zm Nm E Am nucleus p n bind N with A Z N m u 9315.

More information

Test of the Brink-Axel Hypothesis with Gamma Strength Functions from Forward Angle Inelastic Proton Scattering

Test of the Brink-Axel Hypothesis with Gamma Strength Functions from Forward Angle Inelastic Proton Scattering Test of the Brink-Axel Hypothesis with Gamma Strength Functions from Forward Angle Inelastic Proton Scattering Peter von Neumann-Cosel Institut für Kernphysik, Technische Universität Darmstadt Gamma strength

More information

Coulomb Breakup as a novel spectroscopic tool to probe directly the quantum numbers of valence nucleon of the exotic nuclei

Coulomb Breakup as a novel spectroscopic tool to probe directly the quantum numbers of valence nucleon of the exotic nuclei Coulomb Breakup as a novel spectroscopic tool to probe directly the quantum numbers of valence nucleon of the exotic nuclei Saha Institute of Nuclear Physics, Kolkata 700064, India E-mail: ushasi.dattapramanik@saha.ac.in

More information

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies Bertram Blank CEN Bordeaux-Gradignan EPS European Nuclear Physics Conference 2009 Spring meeting

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nuclear and Particle Physics (5110) March 13, 009 Nuclear Shell Model continued 3/13/009 1 Atomic Physics Nuclear Physics V = V r f r L r S r Tot Spin-Orbit Interaction ( ) ( ) Spin of e magnetic

More information

Nuclear Resonance Fluorescence with. NRF with monoenergetic photons and fundamental experiments at ELI-NP. Julius Wilhelmy

Nuclear Resonance Fluorescence with. NRF with monoenergetic photons and fundamental experiments at ELI-NP. Julius Wilhelmy Nuclear Resonance Fluorescence with monoenergetic photons and fundamental experiments at ELI-NP Julius Wilhelmy Institute for Nuclear Physics, University of Cologne g BMBF Verbund 05P2015 Darmstadt Köln

More information

The Super-FRS Project at GSI

The Super-FRS Project at GSI 2 m A G A T A The Super-FRS Project at GSI FRS facility The concept of the new facility The Super-FRS and its branches Summary Martin Winkler for the Super-FRS working group CERN, 3.1.22 Energy Buncher

More information

Introductory Nuclear Physics. Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4

Introductory Nuclear Physics. Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4 Introductory Nuclear Physics Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4 Each nucleus is a bound collection of N neutrons and Z protons. The mass number is A = N + Z, the atomic number

More information

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Andreas Görgen Service de Physique Nucléaire CEA Saclay Sunniva Siem Department of Physics University of Oslo 1 Context

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 IPM? Atoms? Nuclei: more now Other questions about last class? Assignment for next week Wednesday ---> Comments? Nuclear shell structure Ground-state

More information

Evidence for the Gamow-Teller resonance near 100 Sn

Evidence for the Gamow-Teller resonance near 100 Sn PHYSICAL REVIEW C, VOLUME 60, 024315 decay of 97 Ag: Evidence for the Gamow-Teller resonance near 100 Sn Z. Hu, 1 L. Batist, 2 J. Agramunt, 3 A. Algora, 3 B. A. Brown, 4 D. Cano-Ott, 3 R. Collatz, 1 A.

More information

Giant Dipole Resonance - New Experimental Perspectives

Giant Dipole Resonance - New Experimental Perspectives Proceedings of the DAE Symp. on Nucl. Phys. 7 (0) 4 Giant Dipole Resonance - New Experimental Perspectives Sudhee R. Banerjee Variable Energy Cyclotron Centre, /AF, Bidhan Nagar, Kolkata - 700 064, INDIA

More information

RITU and the GREAT Spectrometer

RITU and the GREAT Spectrometer RITU and the GREAT Spectrometer Cath Scholey Department of Physics University of Jyväskylä 19 th March 2006 3rd TASCA Detector Group Meeting, GSI Darmstadt C. Scholey (JYFL, Finland) RITU and the GREAT

More information

Neutron-Rich Ti Isotopes And Possible N = 32 And N = 34 Shell Gaps

Neutron-Rich Ti Isotopes And Possible N = 32 And N = 34 Shell Gaps Neutron-Rich Isotopes And Possible N = 32 And N = 34 Shell Gaps D.-C. Dinca Λ, R. V. F. Janssens ΛΛ, A. Gade, B. Fornal,S.Zhu ΛΛ, D. Bazin, R. Broda, C. M. Campbell Λ, M. P. Carpenter ΛΛ, P. Chowdhury

More information

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

More information

Elastic light scattering

Elastic light scattering Elastic light scattering 1. Introduction Elastic light scattering in quantum mechanics Elastic scattering is described in quantum mechanics by the Kramers Heisenberg formula for the differential cross

More information

The nucleus and its structure

The nucleus and its structure The nucleus and its structure Presently no complete theory to fully describe structure and behavior of nuclei based solely on knowledge of force between nucleons (although tremendous progress for A < 12

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

Testing the shell closure at N=82 via multinucleon transfer reactions at energies around the Coulomb barrier

Testing the shell closure at N=82 via multinucleon transfer reactions at energies around the Coulomb barrier Testing the shell closure at N=82 via multinucleon transfer reactions at energies around the Coulomb barrier E. Vardaci 1, E. M. Kozulin 2, D. Quero 1, A. Di Nitto 3, A. Karpov 2, L. Calabretta 4, M. Ashaduzzaman

More information

A Comparison between Channel Selections in Heavy Ion Reactions

A Comparison between Channel Selections in Heavy Ion Reactions Brazilian Journal of Physics, vol. 39, no. 1, March, 2009 55 A Comparison between Channel Selections in Heavy Ion Reactions S. Mohammadi Physics Department, Payame Noor University, Mashad 91735, IRAN (Received

More information

Coexisting normal and triaxial superdeformed structures in 165 Lu

Coexisting normal and triaxial superdeformed structures in 165 Lu Nuclear Physics A 735 (2004) 393 424 www.elsevier.com/locate/npe Coexisting normal and triaxial superdeformed structures in 165 Lu G. Schönwaßer a,n.nenoff a,h.hübel a,, G.B. Hagemann b, P. Bednarczyk

More information

Pairing and ( 9 2 )n configuration in nuclei in the 208 Pb region

Pairing and ( 9 2 )n configuration in nuclei in the 208 Pb region Pairing and ( 9 2 )n configuration in nuclei in the 208 Pb region M. Stepanov 1, L. Imasheva 1, B. Ishkhanov 1,2, and T. Tretyakova 2, 1 Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991

More information

Spectral shape of two-photon decay from 2S state in He-like tin

Spectral shape of two-photon decay from 2S state in He-like tin Spectral shape of two-photon decay from 2S state in He-like tin Team Ajay Kumar GSI, Darmstadt a.kumar@gsi.de S. Trotsenko,2, D. Banas 3, H. Beyer, H. Bräuning,A. Gumberidze, S. Hagmann,2, S. Hess,2, P.

More information

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B investigated at relativistic energies at R 3 B for the R 3 B collaboration Technische Universität Darmstadt E-mail: fa.schindler@gsi.de Reactions of neutron-rich Sn isotopes have been measured in inverse

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

Physics 100 PIXE F06

Physics 100 PIXE F06 Introduction: Ion Target Interaction Elastic Atomic Collisions Very low energies, typically below a few kev Surface composition and structure Ion Scattering spectrometry (ISS) Inelastic Atomic Collisions

More information

Nuclear Shape Dynamics at Different Energy Scales

Nuclear Shape Dynamics at Different Energy Scales Bulg. J. Phys. 44 (207) 434 442 Nuclear Shape Dynamics at Different Energy Scales N. Minkov Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tzarigrad Road 72, BG-784 Sofia,

More information

Quasi-elastic reactions : an interplay of reaction dynamics and nuclear structure

Quasi-elastic reactions : an interplay of reaction dynamics and nuclear structure Journal of Physics: Conference Series Quasi-elastic reactions : an interplay of reaction dynamics and nuclear structure To cite this article: S Szilner et al 2011 J. Phys.: Conf. Ser. 282 012021 View the

More information

Shell Eects in Atomic Nuclei

Shell Eects in Atomic Nuclei L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 1/37 Shell Eects in Atomic Nuclei Laurent Gaudefroy 1 Alexandre Obertelli 2 1 CEA, DAM, DIF - France 2 CEA, Irfu - France Shell Eects in Finite Quantum

More information

Quantum mechanics of many-fermion systems

Quantum mechanics of many-fermion systems Quantum mechanics of many-fermion systems Kouichi Hagino Tohoku University, Sendai, Japan 1. Identical particles: Fermions and Bosons 2. Simple examples: systems with two identical particles 3. Pauli principle

More information

Stability of heavy elements against alpha and cluster radioactivity

Stability of heavy elements against alpha and cluster radioactivity CHAPTER III Stability of heavy elements against alpha and cluster radioactivity The stability of heavy and super heavy elements via alpha and cluster decay for the isotopes in the heavy region is discussed

More information

Montecarlo simulation of the decay of warm superdeformed nuclei

Montecarlo simulation of the decay of warm superdeformed nuclei Montecarlo simulation of the decay of warm superdeformed nuclei E. Vigezzi INFN Milano Understanding the dynamics in the SD well: probing γ strength functions, energy barriers, level densities, residual

More information

Magic Numbers of Ultraheavy Nuclei

Magic Numbers of Ultraheavy Nuclei Physics of Atomic Nuclei, Vol. 68, No. 7, 25, pp. 1133 1137. Translated from Yadernaya Fizika, Vol. 68, No. 7, 25, pp. 1179 118. Original Russian Text Copyright c 25 by Denisov. NUCLEI Theory Magic Numbers

More information

High-resolution Study of Gamow-Teller Transitions

High-resolution Study of Gamow-Teller Transitions High-resolution Study of Gamow-Teller Transitions Yoshitaka Fujita, Osaka Univ. @CNS-SS, 04.Aug.17-20 Nucleus : 3 active interactions out of 4 Strong, Weak, EM Comparison of Analogous Transitions High

More information

Development of a detector setup to determine the 2s hyperfine transition of 209 Bi 80+ at the Experimental Storage Ring at GSI

Development of a detector setup to determine the 2s hyperfine transition of 209 Bi 80+ at the Experimental Storage Ring at GSI Denis Anielski 28.01.2011 1 Development of a detector setup to determine the 2s hyperfine transition of 209 Bi 80+ at the Experimental Storage Ring at GSI Denis Anielski Westfälische Wilhelms-Universität

More information

The Nuclear Many Body Problem Lecture 3

The Nuclear Many Body Problem Lecture 3 The Nuclear Many Body Problem Lecture 3 Shell structure in nuclei and the phenomenological shell model approach to nuclear structure Ab initio approach to nuclear structure. Green's function Monte Carlo

More information

Question 1 (a) is the volume term. It reflects the nearest neighbor interactions. The binding energy is constant within it s value, so.

Question 1 (a) is the volume term. It reflects the nearest neighbor interactions. The binding energy is constant within it s value, so. Question (a) is the volume term. It reflects the nearest neighbor interactions. The binding energy is constant within it s value, so. + is the surface term. The volume term has to subtract this term since

More information

Shape coexistence in light Krypton isotopes

Shape coexistence in light Krypton isotopes Shape coexistence in light Krypton isotopes Introduction : Shape coexistence Safe Coulomb excitation of RIBs RDDS Lifetime measurement Results and conclusions Andreas Görgen DAPNIA / Service de Physique

More information

Nuclear Spin and Stability. PHY 3101 D. Acosta

Nuclear Spin and Stability. PHY 3101 D. Acosta Nuclear Spin and Stability PHY 3101 D. Acosta Nuclear Spin neutrons and protons have s = ½ (m s = ± ½) so they are fermions and obey the Pauli- Exclusion Principle The nuclear magneton is eh m µ e eh 1

More information

Mapping Low-Energy Fission with RIBs (in the lead region)

Mapping Low-Energy Fission with RIBs (in the lead region) Mapping Low-Energy Fission with RIBs (in the lead region) Andrei Andreyev University of York, UK Japan Atomic Energy Agency (JAEA), Tokai, Japan Low-energy fission in the new regions of the Nuclear Chart

More information