Collective Excitations in Exotic Nuclei

Size: px
Start display at page:

Download "Collective Excitations in Exotic Nuclei"

Transcription

1 Collective Excitations in Exotic Nuclei David Radford (ORNL) RIA Summer School, August 2002 I Nuclear Excitations: Single particle motion vs. Collective motion Collective Modes: Rotations and Vibrations II Experimental Techniques and Examples of Results Gamma-Ray Spectroscopy - High angular momentum Band crossing and mixing Band termination Wobbling mode in triaxial SDBs - Towards the limits of stability Giant Resonances (high-frequency vibrations) - Photoabsorption - Hot, rotating nuclei - Pygmy resonance - Nuclear resonance fluorescence Intermediate-Energy Coulomb Excitation - Fragmentation beams, light (sd shell) nuclei III Towards RIA: Experiments with n-rich beams at the HRIBF

2 Beam Nucleus Target nucleus Fusion In-Beam Gamma Spectroscopy: Fusion-Evaporation Reactions - Large cross section; ~1 barn - Ideal for populating states with very high angular momentum (as high as ~70 h) - Large gamma-ray multiplicity need high-granularity high-efficiency high-resolution gamma detector array - No Coulomb barrier for neutrons tends towards proton-rich nuclei, hard to make neutron-rich sec sec sec 10-9 sec Fast Fission Compound Formation hω ~0.75 MeV ~2x10 20 Hz Rotation I x n p I x Groundstate n γ n

3 Gammasphere 110 Compton-suppressed Ge detectors, each with 70% efficiency. Total efficiency = 9% at 1.3 MeV.

4 Euroball

5 Improving Peak-to-Background - gated spectra Total projection gates (8) One gate gates (28) 500 Two gates gates (56) Counts Three gates gates (70) 60 Four gates gates (56) Five gates 50 6-gates (28)

6 Fold Sensitivity limit as a function of fold 10-2 Gammasphere: different reactions v/c=2.5%; M =25; SE =60 kev min = (Sensitivity) v/c=1.5%; M =15; SE =80 kev v/c=0; M =15; SE =80 kev

7 How close are we now to complete spectroscopy? Selected examples of most-complete level schemes - From RadWare level-scheme data base - Sorted by number of gammas Nuclide Bands Levels Gammas /level 174 Hf Er Dy Tm Hf I Lu Ta W Lu Hf

8 174 Hf D.J. Hartley et al. Private Communication

9 163 Er G.B. Hagemann et al. Nucl. Phys. A618 (1997) 199

10 156 Dy F.G. Kondev et al. J. Phys. G25 (1999) 897

11 150 Gd Suderdef Bands S. Erturk et al. Private Communication

12 Number of N-fold coincidences Tm Number of coincidences calculated from the present level scheme for different -ray fold N = 7 N = 6 N = 5 N = 4 N = 3 N = 2 N = 1 1.4G 237M 31M 3.0M 223k 11k Intensity Threshold

13 Number of N-fold coincidences Number of coincidences calculated from the present level scheme for different -ray fold 2s 162 Tm 119 I 179 W 25min Calculation Time (s) Fold (N)

14 G.B. Hagemann et al., Nucl. Phys. A618 (1997) Er

15 163 Er G.B. Hagemann et al., Nucl. Phys. A618 (1997) 199 Circles show band crossings where E2 cross-band transitions are observed. These are used to accurately determine the inter-band interaction strength.

16 Smooth Band Termination At medium spin, the nucleus is a prolate collective rotor. As spin is increased, it changes smoothly to an oblate non-collective shape. The nucleus changes the mechanism by which it generates angular momentum, from collective rotation perpendicular to the symmetry axis, to singleparticle alignment. The rotational band terminates at an angular momentum that exhausts the total aligned spin of the valence particles.

17 Wobbling Mode of Triaxial Superdeformed Nuclei S.W. Ødegård et al., Phys. Rev. Lett. 86 (2001) 5866 Cranking: I+1 E2 I I-1 Wobbling: -Requires Triaxialty!

18

19 Example of Recoil-Decay Tagging: 109 I C.-H. Yu et al., Phys. Rev. C59 (1999) R1836

20 Gamma Spectroscopy of 254 No P. Reiter et al., Phys. Rev. Lett. 84 (2000) 3542 Observe discrete transitions to spin 20 Measured entry distribution in (E X,I) Provides new data on formation mechanism and fission barrier.

21 The Giant Dipole Resonance protons neutrons The GDR can be considered as an oscillation of the protons against the neutrons. This results in a large oscillating electric dipole moment. Since the protons and neutrons are moving differently, the isospin T = 1; this is the Isovector GDR. E Γ 14 MeV ~ 4.2 MeV ~ 3.5 Strongly damped.

22 S. Kamerdzhiev and J. Speth, Nucl. Phys. A599 (1996) 373c (E1) Pb (M1) 0 (M1) 1 (E2) 0 (E2) 1 Giant resonance photoabsorption cross section in 208 Pb, decomposed into mulitpoles. Subscripts show isospin.

23 Giant Resonances Bohr and Mottelson, vol. 2, p. 475 Γ = 4.2 MeV E Res ~ 14 MeV

24 In the simple geometric picture, the M1 scissors mode is the magnetic analog of the Giant Dipole Resonance. p n p n M1 - Scissors E1 - GDR

25 Two-Phonon GDR in 136 Xe R. Schmidt et al., Phys. Rev. Lett. 70 (1993) 1767

26 Giant Dipole Resonance in Hot, Rotating Nuclei Populated in fusion-evaporation Detect GDR γ rays above tail of high-energy statistical γ rays E X Compound Nucleus γ x + α i GDR n i n n γ Spin

27 M.P. Kelley et al., Nucl. Phys. A649 (1999) 123c 100 Mo + 18 O ; E = MeV Gammas detected in 3 large NaI detectors Colder Hotter Γ 1 Γ 2

28 Y. Alhassid, Nucl. Phys. A649 (1999) 107c

29 The Pygmy Resonance:

30 D. Vretenar, Conference on Frontiers of Nuclear Structure, Berkeley CA, 2002 RRPA isovector dipole strength distributions in oxygen isotopes. 16 O 22 O 0.4 R[e 2 fm 2 ] 0.2 R[e 2 fm 2 ] O 28 O E[MeV] E[MeV]

31 D. Vretenar, Conference on Frontiers of Nuclear Structure, Berkeley CA, 2002 RRPA isovector dipole strength distributions in Sn isotopes. R[e 2 fm 2 ] Sn 114 Sn Sn 132 Sn R[e 2 fm 2 ] E[MeV] E[MeV]

32 X(γ,γ ) - Nuclear Resonance Fluorescence Ideal for studying low-lying dipole collectivity Gamma sources: - Bremsstrahlung - HIGS facility at Duke University free electron laser HIGS: Eγ tunable 5-8 MeV (or more?) FWHM Eγ/Eγ ~ 2-4% ~ 10 7 γ/s

33 Looking at the Target 5.0(2) MeV γ ray beam collimator 11B Target Pb beam monitor Ge Count Rate (a.u.) me x 3 40K First NRF at HIGS 5/15/01 Th Gamma Energy (MeV) 5.02 MeV 11B 3/2 1/2 3/2 Counts per 2 kev h beam 11B 3/2 1/2 DEP 3/2 gs SEP Gamma Energy (MeV) N.Pietralla et al., Nucl.Instrum.Methods A483, 556 (2002).

34 Parity Measurements with a Polarized Photon Beam 1 π Azimuthal Intensity distribution E1 Target M1 polarization plane 0+ θ = 90o Σ = I( ) - I( ) I( ) + I( ) = +1 for 1 + { TUNL/HIGS polarimeter: Ge φ Ge Ge Ge θ = 90 o

35 Proof of Principle 8.1(3) MeV γ ray beam collimator 32S Target Pb beam monitor Ge 8.12 MeV in plane SEP known 1+ M1 Counts per 2 kev out of plane DEP τ=0.23fs 32S( γ, γ ) E in = 8.1(3) MeV 5 h beam on target 3.7 g/cm Energy (kev) 32S Yale/TUNL polarimeter ~ 80% 0+ Asymmetry N.Pietralla et al., Nucl.Instrum.Methods A483, 556 (2002).

36 Polarimetry at HIgS M1 E1 N.Pietralla et al., Phys.Rev.Lett.88, (2002).

37 Intermediate-Energy Coulomb Excitation Ideally suited for use with fragmentation beams E Beam 30 MeV/u Large cross sections ~ 100 mb Can use thick targets ~ 100 mg/cm 2 Target γ Radioactive Beam Gamma Detector Virtual Photon Scattering

38 Coulomb excitation in the π(sd) shell ν(sd) ν(f 7/2 ) ν(pf) N=20 N=28 Z=20 Ca40 Ca42 Ca44 Ca46 Ca48 Ca58 Ar32 Ar36 Ar38 Ar40 Ar42 Ar44 Ar46 Ar54 S32 S34 S36 S38 S40 S42 S44 S50 Si26 Si28 Si30 Si32 Si34 Si36 Si38 Si44 Mg24 Mg26 Mg28 Mg30 Mg32 Mg34 Mg40 O16 Ne20 Ne22 Ne24 Ne26 Ne28 O18 O20 O22 O24 Z=8 Ne30 Ne32 Neutron drip line Experiment / Möller-Nix 1988 stable E(2+) and B(E2) known E(2+) and B(E2) measured at MSU nucleus known nucleus unknown References at

39 Intermediate energy Coulomb excitation - Ideally suited for beam-fragmentation products S b min bmin = a 0 cot ( θ max /2) / γ a 0 = Z S Z Au e2 m 0 c 2 β 2 Au θ max Zero degree detector E beam 40 MeV/nucl. β 0.3, γ 1.05 b min 20 fm touching spheres 1.2(A 1/3 S +A 1/3 Au )= 11 fm σ ~ 100 mb target ~ 100 mg/cm 2 K. Alder et al., Rev. Mod. Phys. 28, 432 (1956). A. Winther and K. Alder, Nucl. Phys. A 319, 518 (1979). C.A. Bertulani and G. Baur, Phys. Rep. 163, 300 (1988). T. Glasmacher, Ann. Rev. Nucl. Part. Sci. 48 (1998), 1.

40 Energy spectra in target and projectile frames for 40 S+ 197 Au Counts / (10 kev) /2+ 3/ Au γ 40 S Energy (kev) H. Scheit et al. Phys. Rev. Lett. 77 (1996) 3967 γ kev 0 kev 891 kev 0 kev β = 0 β = 0.27

41 Deformation parameters β 2 and excitation energies E(2 + ): 30 S 44 S β Mass A Experiment Shell model Relativistic Mean Field Hartree-Fock E(2 + ) (MeV) Sulfur Neutron number N N=28 shell gap weakened

42 NaI(Tl): Former APEX NaI trigger barrel and Ge detectors at the NSCL APEX trigger detector 24 position-sensitive NaI(Tl) crystals 20% photo-peak efficiency 15% energy resolution Ge: fold segmented Ge detectors ~0.1% - 6% photo-peak efficiency <3 kev energy resolution

43 32-fold segmented germanium detector at Michigan State University All 18 Detectors received Manufactured by Eurisys Mesures N-type germanium crystal 8 cm long, 7 cm diameter (75%) 32 segments, 1 central contact, all fully instrumented with analog electronics Warm FETs

44 Conclusions A whirlwind tour of a (very) few selected topics in the study of collective excitations Great diversity! - There is much to be done - An exciting challenge: extending these types of studies to RIA

Gamma-ray spectroscopy I

Gamma-ray spectroscopy I Gamma-ray spectroscopy I Andreas Görgen DAPNIA/SPhN, CEA Saclay F-91191 Gif-sur-Yvette France agoergen@cea.fr Lectures presented at the IoP Nuclear Physics Summer School September 4 17, 2005 Chester, UK

More information

Sunday Monday Thursday. Friday

Sunday Monday Thursday. Friday Nuclear Structure III experiment Sunday Monday Thursday Low-lying excited states Collectivity and the single-particle degrees of freedom Collectivity studied in Coulomb excitation Direct reactions to study

More information

Gamma-ray spectroscopy II

Gamma-ray spectroscopy II Gamma-ray spectroscopy II Andreas Görgen DAPNIA/SPhN, CEA Saclay F-91191 Gif-sur-Yvette France agoergen@cea.fr Lectures presented at the IoP Nuclear Physics Summer School September 4 17, 2005 Chester,

More information

Fission fragment mass distributions via prompt γ -ray spectroscopy

Fission fragment mass distributions via prompt γ -ray spectroscopy PRAMANA c Indian Academy of Sciences Vol. 85, No. 3 journal of September 2015 physics pp. 379 384 Fission fragment mass distributions via prompt γ -ray spectroscopy L S DANU, D C BISWAS, B K NAYAK and

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei 5th Workshop on Nuclear Level Density and Gamma Strength Oslo, May 18-22, 2015 LLNL-PRES-670315 LLNL-PRES-XXXXXX This work was performed

More information

Coupling of giant resonances to soft E1 and E2 modes in 8 B

Coupling of giant resonances to soft E1 and E2 modes in 8 B Physics Letters B 547 (2002) 205 209 www.elsevier.com/locate/npe Coupling of giant resonances to soft E1 and E2 modes in 8 B C.A. Bertulani National Superconducting Cyclotron Laboratory, Michigan State

More information

Rotational motion in thermally excited nuclei. S. Leoni and A. Bracco

Rotational motion in thermally excited nuclei. S. Leoni and A. Bracco Rotational motion in thermally excited nuclei S. Leoni and A. Bracco 4. Rotational motion in thermally excited nuclei * 4.1. Introduction The study of the nucleus at the limits of excitation energy and

More information

4. Rotational motion in thermally excited nuclei *

4. Rotational motion in thermally excited nuclei * 4. Rotational motion in thermally excited nuclei * 4.1. Introduction The study of the nucleus at the limits of excitation energy and angular momentum is one of the central topics addressed with EUROBALL

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Study of Isospin simmetry using the PARIS detector. Alice Mentana

Study of Isospin simmetry using the PARIS detector. Alice Mentana Study of Isospin simmetry using the PARIS detector Alice Mentana The Isospin simmetry Isospin Mixing (breaking of Isospin simmetry) Experimental technique: γ-decay of GDR Experimental apparatus: the PARIS

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

R.L. VARNER, N. GAN, J.R. BEENE, M.L. HALBERT, D.W. STRACENER. Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

R.L. VARNER, N. GAN, J.R. BEENE, M.L. HALBERT, D.W. STRACENER. Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA GIANT DIPOLE RESONANCE IN EXOTIC NUCLEI: BE R.L. VARNER, N. GAN, J.R. BEENE, M.L. HALBERT, D.W. STRACENER Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA A. AZHARI, E. RAMAKRISHNAN,

More information

Isospin symmetry breaking in mirror nuclei. Experimental and theoretical methods

Isospin symmetry breaking in mirror nuclei. Experimental and theoretical methods Isospin symmetry breaking in mirror nuclei Experimental and theoretical methods Silvia M. Lenzi Dipartimento di Fisica dell Università and INFN, Padova, Italy 2. Experimental techniques for mirror spectroscopy

More information

Chapter 6. Summary and Conclusions

Chapter 6. Summary and Conclusions Chapter 6 Summary and Conclusions The basic aim of the present thesis was to understand the interplay between single particle and collective degrees of freedom and underlying nuclear phenomenon in mass

More information

Nuclear Resonance Fluorescence with. NRF with monoenergetic photons and fundamental experiments at ELI-NP. Julius Wilhelmy

Nuclear Resonance Fluorescence with. NRF with monoenergetic photons and fundamental experiments at ELI-NP. Julius Wilhelmy Nuclear Resonance Fluorescence with monoenergetic photons and fundamental experiments at ELI-NP Julius Wilhelmy Institute for Nuclear Physics, University of Cologne g BMBF Verbund 05P2015 Darmstadt Köln

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B investigated at relativistic energies at R 3 B for the R 3 B collaboration Technische Universität Darmstadt E-mail: fa.schindler@gsi.de Reactions of neutron-rich Sn isotopes have been measured in inverse

More information

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS Page 1 1. Within the nucleus, the charge distribution A) Is constant, but falls to zero sharply at the nuclear radius B) Increases linearly from the centre, but falls off exponentially at the surface C)

More information

Nuclear Spectroscopy I

Nuclear Spectroscopy I Nuclear Spectroscopy I Augusto O. Macchiavelli Nuclear Science Division Lawrence Berkeley National Laboratory Many thanks to Rod Clark, I.Y. Lee, and Dirk Weisshaar Work supported under contract number

More information

Spectroscopy of fission fragments using prompt-delayed coincidence technique

Spectroscopy of fission fragments using prompt-delayed coincidence technique PRAMANA c Indian Academy of Sciences Vol. 85, No. journal of September 5 physics pp. 95 Spectroscopy of fission fragments using prompt-delayed coincidence technique RPALIT and S BISWAS Department of Nuclear

More information

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL SURROGATE REACTIONS An overview of papers by Jason Burke from LLNL Compound Nuclear Reaction cross sections Cross sections for compound-nuclear reactions are required input for astrophysical models and

More information

Radiative Capture Reaction

Radiative Capture Reaction A New Decay Path in the C+16O Radiative Capture Reaction Institut Pluridisciplinaire Hubert Curien, Strasbourg, France Outline Narrow Resonances, C +16O Detailed study of the C(16O,γ)28Si resonant radiative

More information

Structure of hot nuclear states

Structure of hot nuclear states Structure of hot nuclear states Teng Lek Khoo Argonne National Laboratory 2nd Workshop on Level Density and Gamma Strength Oslo, May 11-15, 2009 5/25/09 T. L. Khoo @ Level Density and Gamma Strength W'shop

More information

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Thomas Aumann December 11 th 2013 27 th Texas Symposium on Relativistic Astrophysics Dallas, Texas Supported by the BMBF under contract

More information

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy. Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy Hiroshi Watanabe Outline Prospects for decay spectroscopy of neutron-rich

More information

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei R.Avigo 1,2, O.Wieland 1, A.Bracco 1,2, F.Camera 1,2 on behalf of the AGATA and DALI2 collaborations 1 INFN, sezione di Milano 2 Università

More information

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 509 514 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca DONG

More information

University of Groningen. Study of compression modes in 56Ni using an active target Bagchi, Soumya

University of Groningen. Study of compression modes in 56Ni using an active target Bagchi, Soumya University of Groningen Study of compression modes in 56Ni using an active target Bagchi, Soumya IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite

More information

High Spin States in Nuclei: Exotic Quantal Rotation III. Umesh Garg. University of Notre Dame. Supported in part by the National Science Foundation

High Spin States in Nuclei: Exotic Quantal Rotation III. Umesh Garg. University of Notre Dame. Supported in part by the National Science Foundation High Spin States in Nuclei: Exotic Quantal Rotation III Umesh Garg University of Notre Dame Supported in part by the National Science Foundation CNSSS17 August 23-29, 2017 u normal collective rotation

More information

Montecarlo simulation of the decay of warm superdeformed nuclei

Montecarlo simulation of the decay of warm superdeformed nuclei Montecarlo simulation of the decay of warm superdeformed nuclei E. Vigezzi INFN Milano Understanding the dynamics in the SD well: probing γ strength functions, energy barriers, level densities, residual

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

NUCLEAR PHOTONICS. Opportunities for photonuclear reactions at the ELI-NP facility. Andreas Zilges University of Cologne.

NUCLEAR PHOTONICS. Opportunities for photonuclear reactions at the ELI-NP facility. Andreas Zilges University of Cologne. NUCLEAR PHOTONICS Opportunities for photonuclear reactions at the ELI-NP facility Andreas Zilges University of Cologne for the ELI-NP team supported by: IOP Annual Nuclear Physics Conference University

More information

A Comparison between Channel Selections in Heavy Ion Reactions

A Comparison between Channel Selections in Heavy Ion Reactions Brazilian Journal of Physics, vol. 39, no. 1, March, 2009 55 A Comparison between Channel Selections in Heavy Ion Reactions S. Mohammadi Physics Department, Payame Noor University, Mashad 91735, IRAN (Received

More information

Exotic Nuclei. Ingo Wiedenhöver, National Nuclear Physics Summer School 7/16/2007 Tallahassee, Florida

Exotic Nuclei. Ingo Wiedenhöver, National Nuclear Physics Summer School 7/16/2007 Tallahassee, Florida Exotic Nuclei Outline Shell Structure Collective Structure: Experimental methods: Coulomb excitation Knockout reactions Magic Numbers in exotic nuclei New modes of collectivity? Ingo Wiedenhöver, National

More information

One- and two-phonon wobbling excitations in triaxial 165 Lu

One- and two-phonon wobbling excitations in triaxial 165 Lu Physics Letters B 552 (2003) 9 16 www.elsevier.com/locate/npe One- and two-phonon wobbling excitations in triaxial 165 Lu G. Schönwaßer a, H. Hübel a, G.B. Hagemann b,p.bednarczyk c,d,g.benzoni e, A. Bracco

More information

Neutron-Rich Ti Isotopes And Possible N = 32 And N = 34 Shell Gaps

Neutron-Rich Ti Isotopes And Possible N = 32 And N = 34 Shell Gaps Neutron-Rich Isotopes And Possible N = 32 And N = 34 Shell Gaps D.-C. Dinca Λ, R. V. F. Janssens ΛΛ, A. Gade, B. Fornal,S.Zhu ΛΛ, D. Bazin, R. Broda, C. M. Campbell Λ, M. P. Carpenter ΛΛ, P. Chowdhury

More information

Giant Dipole Resonance - New Experimental Perspectives

Giant Dipole Resonance - New Experimental Perspectives Proceedings of the DAE Symp. on Nucl. Phys. 7 (0) 4 Giant Dipole Resonance - New Experimental Perspectives Sudhee R. Banerjee Variable Energy Cyclotron Centre, /AF, Bidhan Nagar, Kolkata - 700 064, INDIA

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2 2358-20 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 2 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

Study of oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Study of oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Study of oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes CEA Saclay (A. Görgen, W. Korten, A. Obertelli, B. Sulignano, Ch. Theisen) Univ. Oslo (A. Bürger, M. Guttormsen,

More information

Probing the evolution of shell structure with in-beam spectroscopy

Probing the evolution of shell structure with in-beam spectroscopy Probing the evolution of shell structure with in-beam spectroscopy Alexandra Gade National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy at Michigan State University, East

More information

Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments

Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments V. Derya 1*, J. Endres 1, M. N. Harakeh 2,3, D. Savran 4,5, M. Spieker 1*, H. J. Wörtche 2, and A. Zilges 1 1 Institute

More information

Studying the nuclear pairing force through. Zack Elledge and Dr. Gregory Christian

Studying the nuclear pairing force through. Zack Elledge and Dr. Gregory Christian Studying the nuclear pairing force through 18 O( 26 Mg, 28 Mg) 16 O Zack Elledge and Dr. Gregory Christian Weizsaecker Formula Binding energy based off of volume and surface terms (strong force), coulomb

More information

Low-energy heavy-ion physics: glimpses of the future

Low-energy heavy-ion physics: glimpses of the future Low-energy heavy-ion physics: glimpses of the future There are two frontiers for low-energy heavy-ion physics: explore terra incognita of thousands of new neutron-rich isotopes, investigate physics of

More information

Physics of neutron-rich nuclei

Physics of neutron-rich nuclei Physics of neutron-rich nuclei Nuclear Physics: developed for stable nuclei (until the mid 1980 s) saturation, radii, binding energy, magic numbers and independent particle. Physics of neutron-rich nuclei

More information

Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy

Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy Ralph Massarczyk Helmholtz-Zentrum Dresden-Rossendorf 29.05.2013 R.Massarczyk (HZDR) dipole strength in

More information

Microscopic Fusion Dynamics Based on TDHF

Microscopic Fusion Dynamics Based on TDHF Dynamical Approach Microscopic Fusion Dynamics Based on TDHF FISSION FUSION Calculate PES as a function of nuclear shape Microscopic HF, HFB, RMF + constraints e.g. Q20, Q30, Q40 as H + lql0 Macroscopic-Microscopic

More information

Collective excitations of Λ hypernuclei

Collective excitations of Λ hypernuclei Collective excitations of Λ hypernuclei Kouichi Hagino (Tohoku Univ.) J.M. Yao (Southwest Univ.) Z.P. Li (Southwest Univ.) F. Minato (JAEA) 1. Introduction 2. Deformation of Lambda hypernuclei 3. Collective

More information

Physics with Exotic Nuclei

Physics with Exotic Nuclei Physics with Exotic Nuclei Hans-Jürgen Wollersheim NUclear STructure, Astrophysics and Reaction Outline Projectile Fragmentation A Route to Exotic Nuclei Fragmentation Cross Sections Nuclear Reaction Rates

More information

Opportunities with collinear laser spectroscopy at DESIR:

Opportunities with collinear laser spectroscopy at DESIR: Opportunities with collinear laser spectroscopy at DESIR: the LUMIERE facility GOALS of LUMIERE experiments: Gerda Neyens, K.U. Leuven, Belgium (1) measure ground state properties of exotic isotopes: (see

More information

First RIA Summer School on Exotic Beam Physics, August 12-17, Michael Thoennessen, NSCL/MSU. Lecture 1: Limits of Stability 1 A = 21

First RIA Summer School on Exotic Beam Physics, August 12-17, Michael Thoennessen, NSCL/MSU. Lecture 1: Limits of Stability 1 A = 21 Limits of Stability At the moment we are limited in our view of the atomic nucleus Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit? Some Basic Nuclear Property Neutron Drip Line? RIA Will

More information

Spectroscopy of 74 Ge: from soft to rigid triaxiality

Spectroscopy of 74 Ge: from soft to rigid triaxiality Spectroscopy of 7 Ge: from soft to rigid triaxiality J. J. Sun a, Z. Shi b, X. Q. Li a,, H. Hua a,, C. Xu a, Q. B. Chen a, S. Q. Zhang a, C. Y. Song b, J. Meng a, X. G. Wu c, S. P. Hu c, H. Q. Zhang c,

More information

Andreas Zilges. Newest results on pygmy resonances in atomic nuclei. Institut für Kernphysik Universität zu Köln. (ZI 510/4-1 and INST 216/544-1)

Andreas Zilges. Newest results on pygmy resonances in atomic nuclei. Institut für Kernphysik Universität zu Köln. (ZI 510/4-1 and INST 216/544-1) Newest results on pygmy resonances in atomic nuclei Andreas Zilges Institut für Kernphysik Universität zu Köln supported by (ZI 510/4-1 and INST 216/544-1) Giant Dipole Resonance (GDR) 1937: Z. Phys. 106

More information

B. PHENOMENOLOGICAL NUCLEAR MODELS

B. PHENOMENOLOGICAL NUCLEAR MODELS B. PHENOMENOLOGICAL NUCLEAR MODELS B.0. Basic concepts of nuclear physics B.0. Binding energy B.03. Liquid drop model B.04. Spherical operators B.05. Bohr-Mottelson model B.06. Intrinsic system of coordinates

More information

MICROSCOPIC NATURE OF THE PHOTON STRENGTH FUNCTION: STABLE AND UNSTABLE Ni AND Sn ISOTOPES

MICROSCOPIC NATURE OF THE PHOTON STRENGTH FUNCTION: STABLE AND UNSTABLE Ni AND Sn ISOTOPES MICROSCOPIC NATURE OF THE PHOTON STRENGTH FUNCTION: STABLE AND UNSTABLE Ni AND Sn ISOTOPES O. Achakovskiy 4, A. Avdeenkov 4, S. Goriely 2, S. Kamerdzhiev 1, S. Krewald 3, D. Voitenkov 4 1. Institute for

More information

Evidence for the inuence of reaction dynamics on the population of compound nuclei

Evidence for the inuence of reaction dynamics on the population of compound nuclei 1 Submitted to the Proceedings of the First Latin-American Workshop on: On and O Line Beam Gamma Spectroscopy for the Study of Heavy Ion Reactions and Pre-Equilibrium Processes, September 4-8, 1995, Universidad

More information

ISOMER BEAMS. P.M. WALKER Department of Physics, University of Surrey, Guildford GU2 7XH, UK

ISOMER BEAMS. P.M. WALKER Department of Physics, University of Surrey, Guildford GU2 7XH, UK International Journal of Modern Physics E c World Scientific Publishing Company ISOMER BEAMS P.M. WALKER Department of Physics, University of Surrey, Guildford GU2 7XH, UK p.@surrey.ac.uk Received (received

More information

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes K. Tajiri, T. Shimoda, K. Kura, M. Kazato, M. Suga, A. Takashima, T. Masue, T. Hori, T. Suzuki, T. Fukuchi, A.

More information

Descriptions of triaxial band structures in 133 La

Descriptions of triaxial band structures in 133 La Nov 6 th 12 nd, 2016, Orsay, France SSNET Workshop 2016 Descriptions of triaxial band structures in 133 La Qibo Chen ( 陈启博 ) School of Physics, Peking University Reference: Accepted by PRC@20161107 Outline

More information

The rotational γ -continuum in the mass region A 110

The rotational γ -continuum in the mass region A 110 Nuclear Physics A 673 (2000) 64 84 www.elsevier.nl/locate/npe The rotational γ -continuum in the mass region A 110 A. Bracco a, S. Frattini a,s.leoni a, F. Camera a, B. Million a,n.blasi a, G. Falconi

More information

3-D MEASUREMENT OF THE NSCL POSITION-SENSITIVE GAMMA RAY DETECTOR ARRAY

3-D MEASUREMENT OF THE NSCL POSITION-SENSITIVE GAMMA RAY DETECTOR ARRAY 3-D MEASUREMENT OF THE NSCL POSITION-SENSITIVE GAMMA RAY DETECTOR ARRAY D. P. Sanderson and W. F. Mueller The National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI,

More information

Missing Dipole Excitation Strength below the Particle Threshold

Missing Dipole Excitation Strength below the Particle Threshold Missing Dipole Excitation Strength below the Particle Threshold A.P. Tonchev a, C. Angell b, M. Boswell b, C.R. Howell a, H.J. Karwowski b, J.H. Kelley c, W. Tornow a, N. Tsoneva d a Duke University and

More information

Nuclear Structure (II) Collective models

Nuclear Structure (II) Collective models Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France NSDD Workshop, Trieste, March 2014 TALENT school TALENT (Training in Advanced Low-Energy Nuclear Theory, see http://www.nucleartalent.org).

More information

The Super-FRS Project at GSI

The Super-FRS Project at GSI 2 m A G A T A The Super-FRS Project at GSI FRS facility The concept of the new facility The Super-FRS and its branches Summary Martin Winkler for the Super-FRS working group CERN, 3.1.22 Energy Buncher

More information

Laser Compton Scattering Gamma-Ray Experiments for Supernova Neutrino Process )

Laser Compton Scattering Gamma-Ray Experiments for Supernova Neutrino Process ) Laser Compton Scattering Gamma-Ray Experiments for Supernova Neutrino Process ) Takehito HAYAKAWA 1,2), Shuji MIYAMOTO 3), Takayasu MOCHIZUKI 3), Ken HORIKAWA 3), Sho AMANO 3), Dazhi LI 4), Kazuo IMAZAKI

More information

Radioactivity at the limits of nuclear existence

Radioactivity at the limits of nuclear existence Radioactivity at the limits of nuclear existence Zenon Janas Institute of Experimental Physics University of Warsaw Chart of nuclei - stable - β + - β - - α - fission - p p and 2p radioactivty proton radioactivity

More information

Warm superdeformed nuclei:

Warm superdeformed nuclei: S. Leoni University of Milano and INFN Warm superdeformed nuclei: Probes of Nuclear Structure and Tunneling Processes At the Onset of Chaos Oslo WS May 29 Outline: 1- INTRO: Warm Superdeformed Nuclei 2-

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Extreme Light Infrastructure - Nuclear Physics ELI - NP

Extreme Light Infrastructure - Nuclear Physics ELI - NP Extreme Light Infrastructure - Nuclear Physics ELI - NP Nicolae-Victor Zamfir National Institute for Physics and Nuclear Engineering (IFIN-HH) Bucharest-Magurele, Romania www.eli-np.ro Bucharest-Magurele

More information

Measurements of B(E2) transition rates in neutron rich carbon isotopes, 16 C- 20 C.

Measurements of B(E2) transition rates in neutron rich carbon isotopes, 16 C- 20 C. Measurements of B(E2) transition rates in neutron rich carbon isotopes, 16 C- 20 C. Paul Fallon Lawrence Berkeley National Laboratory Marina Petri, R. M. Clark, M. Cromaz, S. Gros, H. B. Jeppesen, I-Y.

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

Coulomb Breakup as a novel spectroscopic tool to probe directly the quantum numbers of valence nucleon of the exotic nuclei

Coulomb Breakup as a novel spectroscopic tool to probe directly the quantum numbers of valence nucleon of the exotic nuclei Coulomb Breakup as a novel spectroscopic tool to probe directly the quantum numbers of valence nucleon of the exotic nuclei Saha Institute of Nuclear Physics, Kolkata 700064, India E-mail: ushasi.dattapramanik@saha.ac.in

More information

Minicourse on Experimental techniques at the NSCL Fragment Separators

Minicourse on Experimental techniques at the NSCL Fragment Separators Minicourse on Experimental techniques at the NSCL Fragment Separators Thomas Baumann National Superconducting Cyclotron Laboratory Michigan State University e-mail: baumann@nscl.msu.edu August 2, 2001

More information

The two-step (and multiple-step) γ cascade method as a tool for studying γ-ray strength functions. Milan Krtička

The two-step (and multiple-step) γ cascade method as a tool for studying γ-ray strength functions. Milan Krtička The two-step (and multiple-step) γ cascade method as a tool for studying γ-ray strength functions Milan Krtička Outline The method of two-step γ-cascades following thermal neutron capture (setup at Rez

More information

GANIL / SPIRAL1 / SPIRAL2

GANIL / SPIRAL1 / SPIRAL2 Nuclear Structure, Reaction and Dynamics GANIL / SPIRAL1 / SPIRAL2 A huge discovery potential Exotic Nuclei Proton number Z Which force? 3-body, tensor, spin-orbit, Isospin dependence, Continuum coupling

More information

Photonuclear Data at ELI-NP

Photonuclear Data at ELI-NP EUROPEAN UNION GOVERNMENT OF ROMANIA Sectoral Operational Programme Increase of Economic Competitiveness Investments for Your Future Structural Instruments 2007-2013 Extreme Light Infrastructure Nuclear

More information

Nuclear Isomerism. Phil Walker. University of Surrey. on the occasion of the 70th birthday of Geirr Sletten

Nuclear Isomerism. Phil Walker. University of Surrey. on the occasion of the 70th birthday of Geirr Sletten Nuclear Isomerism Phil Walker University of Surrey on the occasion of the 70th birthday of Geirr Sletten Nuclear Isomerism Phil Walker University of Surrey on the occasion of the 70th birthday of Geirr

More information

Stability of heavy elements against alpha and cluster radioactivity

Stability of heavy elements against alpha and cluster radioactivity CHAPTER III Stability of heavy elements against alpha and cluster radioactivity The stability of heavy and super heavy elements via alpha and cluster decay for the isotopes in the heavy region is discussed

More information

Probing the Symmetries of Isobaric Analogue States M.A.Bentley University of York, UK. in collaboration with. Dave Warner

Probing the Symmetries of Isobaric Analogue States M.A.Bentley University of York, UK. in collaboration with. Dave Warner DDW Symposium CCLRC Daresbury February 2006 1 Probing the Symmetries of Isobaric Analogue States M.A.Bentley University of York, UK in collaboration with Dave Warner Overview Overview DDW Symposium CCLRC

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

Detection of γ-rays from nuclear decay: 0.1 < E γ < 20 MeV

Detection of γ-rays from nuclear decay: 0.1 < E γ < 20 MeV Detection of -rays from nuclear decay: 0.1 < < 0 MeV Basic concepts of radiation interaction & detection Compound Nucleus reactions and -ray emission High resolution detectors: the semiconductor Ge s Present

More information

Accreting neutron stars provide a unique environment for nuclear reactions

Accreting neutron stars provide a unique environment for nuclear reactions , Tracy Steinbach, Jon Schmidt, Varinderjit Singh, Sylvie Hudan, Romualdo de Souza, Lagy Baby, Sean Kuvin, Ingo Wiedenhover Accreting neutron stars provide a unique environment for nuclear reactions High

More information

Michigan State University, East Lansing MI48824, USA INTRODUCTION

Michigan State University, East Lansing MI48824, USA INTRODUCTION Two-Proton Decay of the First Excited State of 17 Ne M.J. Chromik 1;2,P.G. Thirolf 1;2, M. Thoennessen 1, M. Fauerbach 1, T. Glasmacher 1, R. Ibbotson 1, R.A. Kryger 1, H. Scheit 1, and P.J. Woods 3 1

More information

Conversion Electron Spectroscopy in the Second Minimum of Actinides

Conversion Electron Spectroscopy in the Second Minimum of Actinides Mini Workshop on Future n Beam Conversion Electron Spectroscopy SKP Bonn, 3./4. January 3 Conversion Electron Spectroscopy in the Second Minimum of Actinides P.G. Thirolf, LMU München prompt fission energy

More information

Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities. G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H.

Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities. G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H. Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H. Nakada 5th Workshop on Nuclear Level Density and Gamma Strength,

More information

Dissociation of deuteron, 6 He and 11 Be from Coulomb dissociation reaction cross-section

Dissociation of deuteron, 6 He and 11 Be from Coulomb dissociation reaction cross-section PRAMANA c Indian Academy of Sciences Vol. 70, No. 5 journal of May 2008 physics pp. 949 953 Dissociation of deuteron, 6 He and 11 Be from Coulomb dissociation reaction cross-section RAMENDRA NATH MAJUMDAR

More information

DSAM lifetime measurements at ReA - from stable Sn to exotic Ca. Hiro IWASAKI (NSCL/MSU)

DSAM lifetime measurements at ReA - from stable Sn to exotic Ca. Hiro IWASAKI (NSCL/MSU) DSAM lifetime measurements at ReA - from stable to exotic Ca Hiro IWASAKI (NSCL/MSU) 8/20/2015 ReA3 upgrade workshop 1 Evolution of halo properties N=28 pf-shell N>40 gds-shell E0,E? Efimov? 62 Ca? N=8

More information

Fitting Function for Experimental Energy Ordered Spectra in Nuclear Continuum Studies

Fitting Function for Experimental Energy Ordered Spectra in Nuclear Continuum Studies Fitting Function for Experimental Energy Ordered Spectra in Nuclear Continuum Studies J.R. Pinzón, F. Cristancho January 17, 2012 Abstract We review the main features of the Hk-EOS method for the experimental

More information

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Andreas Görgen Service de Physique Nucléaire CEA Saclay Sunniva Siem Department of Physics University of Oslo 1 Context

More information

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies Bertram Blank CEN Bordeaux-Gradignan EPS European Nuclear Physics Conference 2009 Spring meeting

More information

Nuclear Physics using RadioIsotope Beams. T. Kobayashi (Tohoku Univ.)

Nuclear Physics using RadioIsotope Beams. T. Kobayashi (Tohoku Univ.) Nuclear Physics using RadioIsotope Beams T. Kobayashi (Tohoku Univ.) Nucleus: two kinds of Fermions: proton & neutron size ~1fm strong interaction: ~known tightly bound system < several fm < 300 nucleons

More information

S. YOKOYAMA 1;2. Abstract. Light particle-unstable nuclei were studied along the neutron. B is a possible candidate for neutron

S. YOKOYAMA 1;2. Abstract. Light particle-unstable nuclei were studied along the neutron. B is a possible candidate for neutron Submitted to the Proceedings of Hirschegg Workshop XXIV on \Extremes of Nuclear Structure", January -20, 1996. NUCLEAR STRUCTURE OF PARTICLE UNSTALE NUCLEI M. THOENNESSEN, 1;2 A. AZHARI, 1;2 T. AUMANN,

More information

Nuclear Photonics: Basic facts, opportunities, and limitations

Nuclear Photonics: Basic facts, opportunities, and limitations Nuclear Photonics: Basic facts, opportunities, and limitations Norbert Pietralla, TU Darmstadt SFB 634 GRK 2128 Oct.17th, 2016 Nuclear Photonics 2016, Monterey Nuclear Photonics: Basic Facts Prof.Dr.Dr.h.c.

More information

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011 Gamma-ray decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 7, 2011 NUCS 342 (Lecture 18) March 7, 2011 1 / 31 Outline 1 Mössbauer spectroscopy NUCS 342 (Lecture

More information

Introduction to Nuclear Science

Introduction to Nuclear Science Introduction to Nuclear Science PIXIE-PAN Summer Science Program University of Notre Dame 2006 Tony Hyder, Professor of Physics Topics we will discuss Ground-state properties of the nucleus Radioactivity

More information

Nuclear and Radiation Physics

Nuclear and Radiation Physics 501503742 Nuclear and Radiation Physics Why nuclear physics? Why radiation physics? Why in Jordan? Interdisciplinary. Applied? 1 Subjects to be covered Nuclear properties. Nuclear forces. Nuclear matter.

More information

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer Production of superheavy elements Seminar: Key experiments in particle physics 26.06.09 Supervisor: Kai Schweda Thorsten Heußer Outline 1. Introduction 2. Nuclear shell model 3. (SHE's) 4. Experiments

More information

Nuclear isomers: stepping stones to the unknown

Nuclear isomers: stepping stones to the unknown Nuclear isomers: stepping stones to the unknown P.M. Walker Department of Physics, University of Surrey, Guildford GU2 7XH, UK Abstract. The utility of isomers for exploring the nuclear landscape is discussed,

More information

Status of the magnetic spectrometer PRISMA

Status of the magnetic spectrometer PRISMA Status of the magnetic spectrometer PRISMA E. Fioretto INFN Laboratori Nazionali di Legnaro 1 PRISMA in vacuum mode Dipole 50 cm 120 cm 60 +130 Quadrupole 30 cm Beam Target 2-20 Rotating platform PRISMA:

More information