Gamma-ray spectroscopy II

Size: px
Start display at page:

Download "Gamma-ray spectroscopy II"

Transcription

1 Gamma-ray spectroscopy II Andreas Görgen DAPNIA/SPhN, CEA Saclay F Gif-sur-Yvette France Lectures presented at the IoP Nuclear Physics Summer School September 4 17, 2005 Chester, UK 1

2 Outline First lecture Properties of γ-ray transitions Fusion-evaporation reactions Germanium detector arrays Coincidence technique Nuclear deformations Rotation of deformed nuclei Pair alignment Superdeformed nuclei Hyperdeformed nuclei Triaxiality and wobbling Second lecture Angular distribution Linear polarization Jacobi shape transition Charged-particle detectors Neutron detectors Prompt proton decay Recoil-decay tagging Rotation and deformation alignment Third lecture Spectroscopy of transfermium nuclei Conversion-electron spectroscopy Quadrupole moments and transition rates Recoil-distance method Doppler shift attenuation method Fractional Doppler shift method Magnetic moments Perturbed angular distribution Magnetic Rotation Shears Effect Fourth lecture Fast fragmentation beams Isomer spectroscopy after fragmentation E0 transitions Shape coexistence Two-level mixing Coulomb excitation Reorientation effect ISOL technique Low-energy Coulomb excitation of 74 Kr Relativistic Coulomb excitation of 58 Cr Gamma-ray tracking AGATA 2

3 Summary (I) veto I-2 1 I-4 n w = n w =2 I-3 n w =1 I I-2 3

4 Angular correlation I i π E i E γ,l,l,δ Y lm (θ,ϕ) l=1 m=0 l=1 m=±1 I f π E f + W ( ϑ) = 1 A k P k (cosϑ) k l=2 m=0 l=2 m=±1 l=2 m=±2 simple example: o 30 o 90 o 1 + m=+1 m=0 m=-1 30 o 90 o 90 o 30 o 0 + Directional correlation from oriented states R DCO = I( γ 1, θ1; γ 2, θ2) I( γ, θ ; γ, θ ) Most transitions following fusion-evaporation reactions have stretched dipole or quadrupole character. compare experimental R DCO with values for dipole-dipole, dipole-quadrupole, quadrupole-quadrupole cascades often sufficient for spin assignments 4

5 Angular distribution I i π I f π E i E γ,l,l,δ E f P(m) Alignment of angular momentum after fusion-evaporation reaction: + W ( ϑ) = 1 A k P k (cosϑ) k P( m) = 2 m exp 2 2σ I m' exp 2 2σ + m' = I 2 The coefficients A k depend on A ( L, L', I k f, I i 2 [ F ( L, L, I, I ) + 2δ F ( L, L', I, I ) 2δ F ( L', L', I, I )] 1 ) = ρ k ( Ii ) k f i k f i + 1+ δ I + m= I Ii m ρ ( I ) = 2I + 1 ( 1) I m I m k 0 P( m) k i i 2 k f i i the multipolarity L the mixing parameter δ the population width σ i Ferentz-Rosenzweig coefficients F k ( L, L', I f, I ) = ( 1) i I f + I i 1 (2L + 1)(2L' + 1)(2I + 1)(2k + 1) σ/i is approximately constant (for a given reaction). Normalize to transition with known multipolarity, e.g i L 1 L' 1 Clebsch- Gordan k 0 L Ii L' I i Racah I k f 5

6 Example: Angular distribution with EUROBALL 25 o angle: ring1 + ring2 (tapered) ring 7 (clusters) 90 o angle: ring4 + ring5 (clovers) W (25) W (90) W (25 25) W (90 25) 139 La( 29 Si,5n) 163 Lu with E beam = 153 MeV Average of 8 stretched E2 transitions in TSD1 and TSD2 90 o 25 o σ/i = 0.25 ± o 90 o 25 o 90 o 25 o 90 o All θ All θ 25 o 90 o 6

7 Measuring the mixing parameter δ TSD1 TSD2 49/2 + 45/ /2 + 43/2 + W(25 90) 41/2 + 37/ /2 + 35/2 + We know σ/i and have assigned I π For wobbling bands, we expect I=1 E2 inter-band transitions. L=1, L =2, large δ 43/2 + 41/2 + 80% M1 20% E2 Two possible solutions 10% M1 90% E2 wobbling something else Angular distribution cannot distinguish between the two. measure the linear polarization to establish electric or magnetic character. 7

8 Linear polarization B E k Clover detectors as Compton polarimeters (at 90 in Euroball) horizontal vs. vertical scattering linear polarization: fixed direction of electric field vector E k E θ k ζ P = A Q = 1 Q N( ζ = 90 ) N( ζ = 0 ) N( ζ = 90 ) + N( ζ = 0 ) Compton scattering is sensitive to linear polarization: Klein-Nishina formula 2 2 dσ r0 ω' ω' ω 2 2 = + 2sin θ cos ζ 2 dω 2 ω ω ω' Effect is largest at θ=90 electric transitions appear positive, magnetic transitions negative N(90 )-N(0 ) 8

9 Polarization measurement in 163 Lu 49/2 + 47/ /2 + 43/ /2 + 39/ /2 + 35/2 + E2 M1 inter-band N(90 ) N(0 ) A = Eγ N(90 ) + N(0 ) ± ± ± ± ± ± 0.05 positive negative W(25 90) ± ± ± ± 0.09 positive electric 43/2 + 41/2 + 10% M1 90% E2 80% M1 20% E2 S.W. Ødegård et al., Phys. Rev. Lett. 86, 5866 (2001) Confirmation of the wobbling mode in 163 Lu through combined angular distribution and linear polarization measurement. 9

10 MacLaurin shapes What happens if we spin a liquid drop? It becomes oblate! Jupiter: T = 9 h 50 min polar / equatorial axis ~ 15/16 MacLaurin shape after C. MacLaurin ( ) But what if we spin really fast? 10

11 Jacobi shapes The equilibrium shape changes abruptly to a very elongated triaxial shape rotating about its shortest axis. piece of moon rock from Apollo mission Andreas Görgen IoP Nuclear Physics Summer School Chester, September

12 The Jacobi shape transition in nuclei Carl Gustav Jacob Jacobi ( ) discovered transition from oblate to triaxial shapes in the context of rotating, idealized, incompressible gravitating masses in In 1961 Beringer and Knox suggested a similar transition in the case of atomic nuclei, idealized as incompressible, uniformly charged, liquid drops endowed with surface tension. Liquid drop calculation Jacobi transition for L > L 1 Fission barrier vanishes for L > L 2 W.D. Myers and W.J. Swiatecki Acta Phys. Pol. B 32, 1033 (2001) 12

13 What is the signature of a Jacobi transition in nuclei? sharp decrease of frequency with increasing angular momentum (giant backbend of the moment of inertia) frequency of collective rotation is related to the E2 γ-ray energy: hω = E γ many rotational bands at high spin quasi-continuous transitions measure the energy of the quasi-continuous E2 bump as a function of angular momentum series of experiments with Gammasphere Ca MeV 48 Ca MeV 48 Ca MeV 48 Ca MeV as neutron rich as possible: higher fission barrier 13

14 Measuring angular momentum with Gammasphere 108 Compton-suppressed HPGe detectors K M J 108 Ge detectors 6 x 108 = 648 BGO detectors K = number of hits = fold M = γ rays emitted = multiplicity (from response function) J = initial angular momentum (from angular distribution) increase in false veto signals reduced Ge efficiency but very high granularity 14

15 The E2 bump Incremental spectra: Multiplicity (K av -1) gated spectrum subtracted from (K av +1) spectrum K measures the angular momentum E2 bump measures rotational frequency 15

16 Comparison to liquid drop calculations D. Ward et al., Phys. Rev. C 66, (2002) two modifications: lower effective moment of inertia at low spin due to pairing no collective rotation about axially symmetric (MacLaurin) shapes in nuclei, instead, collective rotations are associated with (mostly) prolate shapes no sharp transition caused by breaking of axial symmetry, but smooth transition 16

17 Charged-particle evaporation 40 Ca MeV The nucleus of interest is often only weakly populated compared to a large background of other nuclei. neutrons are deeply bound, chargedparticle evaporation favored despite Coulomb barrier 76 Y p3n 75 Sr αn 78 Zr 2n 77 Y p2n Sr 2p2n Zr 1n 78 Y pn 77 Sr 2pn Zr 79 Y 1p 78 Sr 2p Additional sensitivity from: charged-particle detectors neutron detectors recoil detectors tagging techniques 70 Kr 2α2n 69 Br 2αp2n 72 Rb αp3n 71 Kr 2αn Br 2αpn Rb αp2n Kr 2α Br 2αp Rb αpn Kr α2pn Br α3pn Rb αp Kr α2p Br α3p Rb 3pn Kr 4pn Br 5pn Rb 3p Kr 4p Br 5p Se 3αn 68 Se 3α Se 2α2pn Se 2α2p Se α4pn Se α4p Se 6pn 74 Se 6p As 3αpn 67 As 3αp As 2α3pn 69 As 2α3p As α5pn 71 As α5p As 7pn 73 As 7p 64 Ge 4α Ge 3α2pn 66 Ge 3α2p Ge 2α4pn 68 Ge 2α4p Ge α6pn cross sections in mb 17

18 Charged particle detection Si telescope E E p, α beam Italian Silicon Sphere ISIS Laboratori Nazionali di Legnaro 30 hexagons 12 pentagons used with GASP and Euroball 100µm 1mm stopping power de dx mz E 2 E E Microball, Washington University St. Louis 95 CsI(Tl) Scintillators in 9 rings used with Gammasphere 18

19 Neutron detection Gammasphere with Microball and Neutron shell (Washington University, St. Louis) Euroball with Neutron wall (Uppsala University) can be used to select or veto neutron evaporation most powerful together with charged-particle detection used to study nuclei near N=Z line isospin symmetry proton-neutron pairing shape coexistence astrophysical rapid-proton capture process neutrons are separated from γ rays by time of flight and pulse shapes (zero-crossing time) difficult to distinguish two-neutron hit from scattering 19

20 Prompt proton decay in 58 Cu 28 Si( 36 Ar,αpn) 58 Cu gate on 1α + 1p +1n σ rel = 0.3 % Gammasphere, Microball, Neutron Shell D. Rudolph et al., Phys. Rev. Lett. 80, 3018 (1998) Eur. Phys. J. A 14, 137 (2002) 20

21 Recoil decay tagging γ detectors Filter Identification : ToF, recoil energy, characteristic decay Beam Recoils Ionisation chamber Eγ, T associate with γ Pin diodes: electrons Silicon DSSD Planar Ge α decay: E α, T E, T recoil identified ToF, E-E same pixel T T ½ isotope identified E, T 21

22 JUROGAM RITU GREAT at Jyväskylä 109 Ag( 83 Kr,3n) 189 Bi ; 12µb scattered beam α spectrum at focal plane ground state time of flight [a.u.] fusion-evaporation residues counts excited states energy in Si detector [a.u.] α energy [kev] 22

23 Recoil-decay tagging: 189 Bi spectra 357 T 1/2 =880 ns 13/ /2 + counts /2-189 Bi 9/2 - T 1/2 =667 ms T recoil - Tα [s] γ rays at focal plane Tγ - Tα [µs] 284 3/2 + recoil gated α energy [kev] prompt γ rays at target 185 Tl 1/2 + total γ α gated 6672 kev recoil gate α and γ tagging: α gate: 6672 kev; γ gate: 357 kev A. Hürstel et al., Eur. Phys. J. A 15, 329 (2002) α gate 6672 counts 23 E γ [kev]

24 189 Bi level schemes Bi 1/2 + 9/2 - A. Hürstel et al., Eur. Phys. J. A 21, 365 (2004) /2-3/2 + α gate 7266 kev 185 Tl 1/2 + 9/ ms α and γ tagging: α gate: 6672 kev; γ gate: 357 kev counts E γ [kev] 24

25 Systematics of the neutron-deficient Bi isotopes M1 E2 M2 19/2 + 15/ Bi /2 + 17/2 + 13/2 + 9/2 - P. Nieminen et al Phys. Rev. C 69, (2004) 19/2 + 15/ Bi /2 + 17/2 + 13/2 + 9/ Bi 29/2 + 25/2 + 21/2 + 17/2 + 13/2 + 9/2 - A. Hürstel et al. Eur. Phys. J. A21, 365 (2004) Bi 25/2 + 21/2 + 17/2 + 13/2 + 9/2 - strongly coupled bands deformation aligned decoupled bands rotation aligned Ω=13/2 Ω=9/2 Ω=1/2 Ω=3/2 Ω Ω large Ω small Ω 25

Gamma-ray spectroscopy I

Gamma-ray spectroscopy I Gamma-ray spectroscopy I Andreas Görgen DAPNIA/SPhN, CEA Saclay F-91191 Gif-sur-Yvette France agoergen@cea.fr Lectures presented at the IoP Nuclear Physics Summer School September 4 17, 2005 Chester, UK

More information

Isospin symmetry breaking in mirror nuclei. Experimental and theoretical methods

Isospin symmetry breaking in mirror nuclei. Experimental and theoretical methods Isospin symmetry breaking in mirror nuclei Experimental and theoretical methods Silvia M. Lenzi Dipartimento di Fisica dell Università and INFN, Padova, Italy 2. Experimental techniques for mirror spectroscopy

More information

Status & Future for In-Beam Spectrometers for Tagging at JYFL

Status & Future for In-Beam Spectrometers for Tagging at JYFL Status & Future for In-Beam Spectrometers for Tagging at JYFL Department of Physics, Finland Task 1 - Improvement of RDT method (Jyväskylä) Extend the method from α-decay tagging to β-γ tagging, for the

More information

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes Outline: Alain Astier, CSNSM Orsay, France Motivations Experimental conditions

More information

Collective Excitations in Exotic Nuclei

Collective Excitations in Exotic Nuclei Collective Excitations in Exotic Nuclei David Radford (ORNL) RIA Summer School, August 2002 I Nuclear Excitations: Single particle motion vs. Collective motion Collective Modes: Rotations and Vibrations

More information

Spectroscopy of fission fragments using prompt-delayed coincidence technique

Spectroscopy of fission fragments using prompt-delayed coincidence technique PRAMANA c Indian Academy of Sciences Vol. 85, No. journal of September 5 physics pp. 95 Spectroscopy of fission fragments using prompt-delayed coincidence technique RPALIT and S BISWAS Department of Nuclear

More information

RITU and the GREAT Spectrometer

RITU and the GREAT Spectrometer RITU and the GREAT Spectrometer Cath Scholey Department of Physics University of Jyväskylä 19 th March 2006 3rd TASCA Detector Group Meeting, GSI Darmstadt C. Scholey (JYFL, Finland) RITU and the GREAT

More information

Chapter 6. Summary and Conclusions

Chapter 6. Summary and Conclusions Chapter 6 Summary and Conclusions The basic aim of the present thesis was to understand the interplay between single particle and collective degrees of freedom and underlying nuclear phenomenon in mass

More information

Spectroscopy of 252No to Investigate its K-isomer

Spectroscopy of 252No to Investigate its K-isomer Spectroscopy of to Investigate its K-isomer Edward Parr Motivation in Superheavies PROTONS Single Particle Energy (MeV) Single Particle Energy (MeV) NEUTRONS Next shell gaps predicted for Superheavy spherical

More information

A Comparison between Channel Selections in Heavy Ion Reactions

A Comparison between Channel Selections in Heavy Ion Reactions Brazilian Journal of Physics, vol. 39, no. 1, March, 2009 55 A Comparison between Channel Selections in Heavy Ion Reactions S. Mohammadi Physics Department, Payame Noor University, Mashad 91735, IRAN (Received

More information

Particle excitations and rotational modes in nuclei with A 70-90

Particle excitations and rotational modes in nuclei with A 70-90 . 4 5 7 / 5-6 4 7 4 5 5 -, 4. 1 I J E J K J B H A H K @ = @ H A F D O I E Particle excitations and rotational modes in nuclei with A 7-9 In nuclei of the mass region with A 7-9 both protons and neutrons

More information

Rotational motion in thermally excited nuclei. S. Leoni and A. Bracco

Rotational motion in thermally excited nuclei. S. Leoni and A. Bracco Rotational motion in thermally excited nuclei S. Leoni and A. Bracco 4. Rotational motion in thermally excited nuclei * 4.1. Introduction The study of the nucleus at the limits of excitation energy and

More information

Exploring the Structure of Cold and Warm Nuclei Using Particle Accelerators in India

Exploring the Structure of Cold and Warm Nuclei Using Particle Accelerators in India Exploring the Structure of Cold and Warm Nuclei Using Particle Accelerators in India GOPAL MUKHERJEE VARIABLE ENERGY CYCLOTRON CENTRE, KOLKATA ABSTRACT The Indian National Gamma Array (INGA) and the VECC

More information

4. Rotational motion in thermally excited nuclei *

4. Rotational motion in thermally excited nuclei * 4. Rotational motion in thermally excited nuclei * 4.1. Introduction The study of the nucleus at the limits of excitation energy and angular momentum is one of the central topics addressed with EUROBALL

More information

Fission fragment mass distributions via prompt γ -ray spectroscopy

Fission fragment mass distributions via prompt γ -ray spectroscopy PRAMANA c Indian Academy of Sciences Vol. 85, No. 3 journal of September 2015 physics pp. 379 384 Fission fragment mass distributions via prompt γ -ray spectroscopy L S DANU, D C BISWAS, B K NAYAK and

More information

Shape coexistence in light Krypton isotopes

Shape coexistence in light Krypton isotopes Shape coexistence in light Krypton isotopes Introduction : Shape coexistence Safe Coulomb excitation of RIBs RDDS Lifetime measurement Results and conclusions Andreas Görgen DAPNIA / Service de Physique

More information

Monte Carlo Simulations for Modern gammatracking

Monte Carlo Simulations for Modern gammatracking Monte Carlo Simulations for Modern gammatracking Arrays E.Farnea INFN Sezione di Padova, Italy Outline From conventional to gamma-ray tracking arrays Results from Monte Carlo simulations for AGATA Polarization

More information

A taste of Proton-rich nuclei. David Jenkins

A taste of Proton-rich nuclei. David Jenkins A taste of Proton-rich nuclei David Jenkins even%a% odd%a%!2%%%%%%%%%%%%%!1%%%%%%%%%%%%%%0%%%%%%%%%%%%%%1%%%%%%%%%%%%%%2%!5/2%%%%%%%%%!3/2%%%%%%%%%!1/2%%%%%%%%%%1/2%%%%%%%%%%3/2%%%%%%%%%%5/2% Isobaric

More information

Charged particles detectors Arrays (1)

Charged particles detectors Arrays (1) Charged particles detectors Arrays (1) Basic concepts of particle detection: scintillators & semiconductors Light charged particles (p, α, e) Arrays: DIAMANT, ISIS, EUCLIDES, MiniOrange Large Arrays: CHIMERA,

More information

5 th ASRC International Workshop, 14 th -16 th March 2012

5 th ASRC International Workshop, 14 th -16 th March 2012 Fission Fragment Fragment Spectroscopy with Large Arrays and STEFF A.G. Smith, J. Dare, A. Pollitt, E. Murray The University of Manchester W. Urban, T. Soldner ILL Grenoble I. Tsekhanovich, J. Marrantz

More information

First results from the AGATA Demonstrator. Francesco Recchia Università di Padova

First results from the AGATA Demonstrator. Francesco Recchia Università di Padova First results from the AGATA Demonstrator Francesco Recchia Università di Padova XCVII Congresso Nazionale SIF L'Aquila, 26-30 Settembre, 2011 Challenges in Nuclear Structure Shell structure in nuclei

More information

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL SURROGATE REACTIONS An overview of papers by Jason Burke from LLNL Compound Nuclear Reaction cross sections Cross sections for compound-nuclear reactions are required input for astrophysical models and

More information

What do we measure, and how do we measure it?

What do we measure, and how do we measure it? What do we measure, and how do we measure it? Production of transactinides Isolation of nuclei of interest Instrumentation and measurements K. Hauschild Production of Transactinides N-capture + β-decay

More information

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

More information

Isospin non-conserving interactions studied through triplet energy differences. David Jenkins

Isospin non-conserving interactions studied through triplet energy differences. David Jenkins Isospin non-conserving interactions studied through triplet energy differences David Jenkins evena odda!2!1012!5/2!3/2!1/21/23/25/2 Isobaric Spin (Isospin) In the absence of Coulomb interactions between

More information

TIGRESS Auxiliary Detectors

TIGRESS Auxiliary Detectors TIGRESS Auxiliary Detectors Gordon Ball, TRIUMF GRETINA Auxiliary Detector Workshop Washington University, St. Louis MO January 28 9, 2006 TIGRESS 32 Fold Segmented HPGe Clover Detector Four ~40% n type

More information

Status and perspectives of the GANIL Campaign ACC meeting - Venice

Status and perspectives of the GANIL Campaign ACC meeting - Venice Status and perspectives of the GANIL Campaign 2016 ACC meeting - Venice The GANIL Campaign Charged particles detectors for Coulex and nucleon transfer Post-accelerated RIB from SPIRAL1 Neutron and charged

More information

The rotational γ -continuum in the mass region A 110

The rotational γ -continuum in the mass region A 110 Nuclear Physics A 673 (2000) 64 84 www.elsevier.nl/locate/npe The rotational γ -continuum in the mass region A 110 A. Bracco a, S. Frattini a,s.leoni a, F. Camera a, B. Million a,n.blasi a, G. Falconi

More information

Sunday Monday Thursday. Friday

Sunday Monday Thursday. Friday Nuclear Structure III experiment Sunday Monday Thursday Low-lying excited states Collectivity and the single-particle degrees of freedom Collectivity studied in Coulomb excitation Direct reactions to study

More information

Excited States in 103 Sn

Excited States in 103 Sn Master thesis Excited States in 103 Sn by Lars-Erik Berglund Supervisor: Prof. Claes Fahlander Department of Physics Division of Cosmic and Subatomic Physics Lund University Sölvegatan 14, 3 6 Lund February

More information

HEIDI WATKINS. Plunger Measurements of Shape Coexistence in the Neutron Deficient 174 Pt Nuclei

HEIDI WATKINS. Plunger Measurements of Shape Coexistence in the Neutron Deficient 174 Pt Nuclei Plunger Measurements of Shape Coexistence in the Neutron Deficient 174 Pt Nuclei HEIDI WATKINS 2009 IoP NUCLEAR PHYSICS CONFERENCE UNIVERSITY OF BIRMINGHAM OVERVIEW Physics Motivation. Shape Coexistence

More information

PHL424: Nuclear fusion

PHL424: Nuclear fusion PHL424: Nuclear fusion Hot Fusion 5 10 15 5 10 8 projectiles on target compound nuclei 1 atom Hot fusion (1961 1974) successful up to element 106 (Seaborgium) Coulomb barrier V C between projectile and

More information

RFSS: Lecture 6 Gamma Decay

RFSS: Lecture 6 Gamma Decay RFSS: Lecture 6 Gamma Decay Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition Probabilities Internal Conversion Angular Correlations Moessbauer

More information

HiRA: Science and Design Considerations

HiRA: Science and Design Considerations HiRA: Science and Design Considerations Scientific Program: Astrophysics: Transfer reactions Resonance spectroscopy Nuclear Structure: Inelastic scattering Transfer reactions Resonance spectroscopy Breakup

More information

Nuclear Spectroscopy I

Nuclear Spectroscopy I Nuclear Spectroscopy I Augusto O. Macchiavelli Nuclear Science Division Lawrence Berkeley National Laboratory Many thanks to Rod Clark, I.Y. Lee, and Dirk Weisshaar Work supported under contract number

More information

One- and two-phonon wobbling excitations in triaxial 165 Lu

One- and two-phonon wobbling excitations in triaxial 165 Lu Physics Letters B 552 (2003) 9 16 www.elsevier.com/locate/npe One- and two-phonon wobbling excitations in triaxial 165 Lu G. Schönwaßer a, H. Hübel a, G.B. Hagemann b,p.bednarczyk c,d,g.benzoni e, A. Bracco

More information

Conversion Electron Spectroscopy in Transfermium Nuclei

Conversion Electron Spectroscopy in Transfermium Nuclei Conversion Electron Spectroscopy in Transfermium Nuclei R.-D. Herzberg University of iverpool, iverpool, 69 7ZE, UK Abstract Conversion electron spectroscopy is an essential tool for the spectroscopy of

More information

Detection of γ-rays from nuclear decay: 0.1 < E γ < 20 MeV

Detection of γ-rays from nuclear decay: 0.1 < E γ < 20 MeV Detection of -rays from nuclear decay: 0.1 < < 0 MeV Basic concepts of radiation interaction & detection Compound Nucleus reactions and -ray emission High resolution detectors: the semiconductor Ge s Present

More information

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron. 1 Lecture 3 Nuclear Decay modes, Nuclear Sizes, shapes, and the Liquid drop model Introduction to Decay modes (continued) Gamma Decay Electromagnetic radiation corresponding to transition of nucleus from

More information

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Andreas Görgen Service de Physique Nucléaire CEA Saclay Sunniva Siem Department of Physics University of Oslo 1 Context

More information

Low-spin structure of 210 Bi

Low-spin structure of 210 Bi Low-spin structure of 21 Bi investigated in cold-neutron capture reaction on 29 Bi Natalia Cieplicka, S. Leoni, B. Fornal INFN, Sezione di Milano 5th orkshop on Nuclear Level Density and Gamma Strength,

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies Bertram Blank CEN Bordeaux-Gradignan EPS European Nuclear Physics Conference 2009 Spring meeting

More information

PHY492: Nuclear & Particle Physics. Lecture 3 Homework 1 Nuclear Phenomenology

PHY492: Nuclear & Particle Physics. Lecture 3 Homework 1 Nuclear Phenomenology PHY49: Nuclear & Particle Physics Lecture 3 Homework 1 Nuclear Phenomenology Measuring cross sections in thin targets beam particles/s n beam m T = ρts mass of target n moles = m T A n nuclei = n moles

More information

arxiv:nucl-th/ v1 14 Nov 2005

arxiv:nucl-th/ v1 14 Nov 2005 Nuclear isomers: structures and applications Yang Sun, Michael Wiescher, Ani Aprahamian and Jacob Fisker Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre

More information

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011 Gamma-ray decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 7, 2011 NUCS 342 (Lecture 18) March 7, 2011 1 / 31 Outline 1 Mössbauer spectroscopy NUCS 342 (Lecture

More information

C.J. Lister Argonne National Laboratory

C.J. Lister Argonne National Laboratory Physics Opportunities and Functional Requirements for Offline γ-ray spectrometers C.J. Lister Argonne National Laboratory Even at an Equipment meeting.physics First! What will we be measuring with RIA?

More information

Coexisting normal and triaxial superdeformed structures in 165 Lu

Coexisting normal and triaxial superdeformed structures in 165 Lu Nuclear Physics A 735 (2004) 393 424 www.elsevier.com/locate/npe Coexisting normal and triaxial superdeformed structures in 165 Lu G. Schönwaßer a,n.nenoff a,h.hübel a,, G.B. Hagemann b, P. Bednarczyk

More information

Study of Isospin simmetry using the PARIS detector. Alice Mentana

Study of Isospin simmetry using the PARIS detector. Alice Mentana Study of Isospin simmetry using the PARIS detector Alice Mentana The Isospin simmetry Isospin Mixing (breaking of Isospin simmetry) Experimental technique: γ-decay of GDR Experimental apparatus: the PARIS

More information

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei R.Avigo 1,2, O.Wieland 1, A.Bracco 1,2, F.Camera 1,2 on behalf of the AGATA and DALI2 collaborations 1 INFN, sezione di Milano 2 Università

More information

Status of the TRACE array

Status of the TRACE array Status of the TRACE array D. Mengoni University of the West of Scotland, Paisley - U.K. INFN - Sezione di Padova, Padova - Italy SPES workshop, LNL - Italy Nov 15 th 17 th, 2010 Outline 1 Introduction

More information

Charged particle detection in GE6 To stop high energy particles need large thickness of Germanium (GE6 has ~13 cm) Charged particle detection in Ge

Charged particle detection in GE6 To stop high energy particles need large thickness of Germanium (GE6 has ~13 cm) Charged particle detection in Ge Using stacked germanium detectors for charged hadron detection Daniel Watts Edinburgh University Derek Branford, Klaus Foehl Charged particle detection in GE To stop high energy particles need large thickness

More information

Magnetic rotation past, present and future

Magnetic rotation past, present and future PRAMANA c Indian Academy of Sciences Vol. 75, No. 1 journal of July 2010 physics pp. 51 62 Magnetic rotation past, present and future A K JAIN and DEEPIKA CHOUDHURY Department of Physics, Indian Institute

More information

New experiments on neutron rich r-process Ge Br isotopes at the NSCL

New experiments on neutron rich r-process Ge Br isotopes at the NSCL New experiments on neutron rich r-process Ge Br isotopes at the NSCL M. Quinn* 1,2, A. Aprahamian 1,2, S. Almaraz 1,2, B.B. Skorodumov 1,2, A. Woehr 1,2 1) Institute for Structure and Nuclear Astrophysics

More information

High-spin states in 90 Ru and the projected shell model description

High-spin states in 90 Ru and the projected shell model description PHYSICAL REVIEW C 69, 064319 (2004) High-spin states in 90 Ru and the projected shell model description D. Bucurescu, 1 N. Mărginean, 2,1 C. Rossi Alvarez, 3 Y. Sun, 4,5 C. A. Ur, 3,1 L. C. Mihăilescu,

More information

A NEW GENERATION OF GAMMA-RAY TELESCOPE

A NEW GENERATION OF GAMMA-RAY TELESCOPE A NEW GENERATION OF GAMMA-RAY TELESCOPE Aleksandar GOSTOJIĆ CSNSM, Orsay, France 11 th Russbach School on Nuclear Astrophysics, March 2014. Introduction: Gamma-ray instruments GROUND BASED: ENERGY HIGHER

More information

Transfer reactions to probe structure of weakly bound 6 He, 7 Li around the Coulomb barrier. Aradhana Shrivastava Bhabha Atomic Research Centre, India

Transfer reactions to probe structure of weakly bound 6 He, 7 Li around the Coulomb barrier. Aradhana Shrivastava Bhabha Atomic Research Centre, India Transfer reactions to probe structure of weakly bound 6 He, 7 Li around the Coulomb barrier Aradhana Shrivastava Bhabha Atomic Research Centre, India Transfer Reactions with weakly bound nucleon / cluster

More information

Fitting Function for Experimental Energy Ordered Spectra in Nuclear Continuum Studies

Fitting Function for Experimental Energy Ordered Spectra in Nuclear Continuum Studies Fitting Function for Experimental Energy Ordered Spectra in Nuclear Continuum Studies J.R. Pinzón, F. Cristancho January 17, 2012 Abstract We review the main features of the Hk-EOS method for the experimental

More information

High Spin States in Nuclei: Exotic Quantal Rotation III. Umesh Garg. University of Notre Dame. Supported in part by the National Science Foundation

High Spin States in Nuclei: Exotic Quantal Rotation III. Umesh Garg. University of Notre Dame. Supported in part by the National Science Foundation High Spin States in Nuclei: Exotic Quantal Rotation III Umesh Garg University of Notre Dame Supported in part by the National Science Foundation CNSSS17 August 23-29, 2017 u normal collective rotation

More information

Spectroscopy of 74 Ge: from soft to rigid triaxiality

Spectroscopy of 74 Ge: from soft to rigid triaxiality Spectroscopy of 7 Ge: from soft to rigid triaxiality J. J. Sun a, Z. Shi b, X. Q. Li a,, H. Hua a,, C. Xu a, Q. B. Chen a, S. Q. Zhang a, C. Y. Song b, J. Meng a, X. G. Wu c, S. P. Hu c, H. Q. Zhang c,

More information

Going beyond the traditional nuclear shell model with the study of neutron-rich (radioactive) light nuclei

Going beyond the traditional nuclear shell model with the study of neutron-rich (radioactive) light nuclei Going beyond the traditional nuclear shell model with the study of neutron-rich (radioactive) light nuclei Fred SARAZIN Colorado School of Mines SORRY Overview What is low-energy nuclear physics? Stable

More information

Physics with Exotic Nuclei. Hans-Jürgen Wollersheim

Physics with Exotic Nuclei. Hans-Jürgen Wollersheim Physics with Exotic Nuclei Hans-Jürgen Wollersheim Outline Scattering Experiments with RIBs Nuclear Structure Results Experimental evidence for closed-shell nuclei Scattering experiments at relativistic

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 13 - Gamma Radiation Material For This Lecture Gamma decay: Definition Quantum interpretation Uses of gamma spectroscopy 2 Turn to γ decay

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Nuclear Isomerism. Phil Walker. University of Surrey. on the occasion of the 70th birthday of Geirr Sletten

Nuclear Isomerism. Phil Walker. University of Surrey. on the occasion of the 70th birthday of Geirr Sletten Nuclear Isomerism Phil Walker University of Surrey on the occasion of the 70th birthday of Geirr Sletten Nuclear Isomerism Phil Walker University of Surrey on the occasion of the 70th birthday of Geirr

More information

Radioactivity at the limits of nuclear existence

Radioactivity at the limits of nuclear existence Radioactivity at the limits of nuclear existence Zenon Janas Institute of Experimental Physics University of Warsaw Chart of nuclei - stable - β + - β - - α - fission - p p and 2p radioactivty proton radioactivity

More information

High Resolution γ-spectroscopy at SPIRAL2 with AGATA and EXOGAM2. A. Gadea (IFIC Valencia, Spain) on behalf of the HRGS community

High Resolution γ-spectroscopy at SPIRAL2 with AGATA and EXOGAM2. A. Gadea (IFIC Valencia, Spain) on behalf of the HRGS community High Resolution γ-spectroscopy at SPIRAL2 with AGATA and EXOGAM2 A. Gadea (IFIC Valencia, Spain) on behalf of the HRGS community Physics Case, LoIs for SPIRAL2 Nuclei with N=Z (Symmetric nuclear matter)

More information

Physics with Exotic Nuclei

Physics with Exotic Nuclei Physics with Exotic Nuclei Hans-Jürgen Wollersheim NUclear STructure, Astrophysics and Reaction Outline Projectile Fragmentation A Route to Exotic Nuclei Fragmentation Cross Sections Nuclear Reaction Rates

More information

The Super-FRS Project at GSI

The Super-FRS Project at GSI 2 m A G A T A The Super-FRS Project at GSI FRS facility The concept of the new facility The Super-FRS and its branches Summary Martin Winkler for the Super-FRS working group CERN, 3.1.22 Energy Buncher

More information

Status of the magnetic spectrometer PRISMA

Status of the magnetic spectrometer PRISMA Status of the magnetic spectrometer PRISMA E. Fioretto INFN Laboratori Nazionali di Legnaro 1 PRISMA in vacuum mode Dipole 50 cm 120 cm 60 +130 Quadrupole 30 cm Beam Target 2-20 Rotating platform PRISMA:

More information

GDR FEEDING OF THE HIGHLY-DEFORMED BAND IN 42 Ca

GDR FEEDING OF THE HIGHLY-DEFORMED BAND IN 42 Ca Vol. 36 (2005) ACTA PHYSICA POLONICA B No 4 GDR FEEDING OF THE HIGHLY-DEFORMED BAND IN 42 Ca M. Kmiecik a, A. Maj a, J. Styczeń a, P. Bednarczyk a,d,e M. Brekiesz a, J. Grębosz a, M. Lach a, W. Męczyński

More information

Shape Coexistence in Neutron-rich Strontium Isotopes at N=60

Shape Coexistence in Neutron-rich Strontium Isotopes at N=60 Shape Coexistence in Neutron-rich Strontium Isotopes at N=60 GANIL, CEA/DRF-CNRS/IN2P3, F-14076 Caen Cedex 05, France E-mail: clement@ganil.fr M. Zielińska Irfu, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette,

More information

Report on Nuclear Spectroscopy at JYFL

Report on Nuclear Spectroscopy at JYFL Report on on Report Nuclear Spectroscopy Spectroscopy Nuclear at JYFL JYFL at In-beam & Decay Spectroscopy (Daresbury, Liverpool, Manchester, Paisley, Surrey, York) Collinear Laser Spectroscopy (Birmingham,

More information

Silvia M. Lenzi University of Padova and INFN. Silvia Lenzi, 10th Int. Spring Seminar on Nuclear Physics, Vietri sul Mare, May 21-25, 2010

Silvia M. Lenzi University of Padova and INFN. Silvia Lenzi, 10th Int. Spring Seminar on Nuclear Physics, Vietri sul Mare, May 21-25, 2010 Structure of Neutron-Rich Nuclei near N=40 Silvia M. Lenzi University of Padova and INFN 10th International Spring Seminar on Nuclear Physics Vietri sul Mare, May 21-25, 2010 Collaboration Theory: F. Nowacki,

More information

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS ANTOANETA ENE 1, I. V. POPESCU 2, T. BÃDICÃ 3, C. BEªLIU 4 1 Department of Physics, Faculty

More information

RNB at GANIL from SPIRAL to SPIRAL 2

RNB at GANIL from SPIRAL to SPIRAL 2 RNB at GANIL from SPIRAL to SPIRAL 2 GANIL/SPIRAL facility Recent highlights Future SPIRAL 2 facility Layout of the facility Scientific opportunities Letters of Intent for SPIRAL 2 See also talks of: Y.

More information

Decay studies of 170,171 Au, Hg, and 176 Tl

Decay studies of 170,171 Au, Hg, and 176 Tl PHYSICAL REVIEW C 69, 054323 (2004) Decay studies of 170,171 Au, 171 173 Hg, and 176 Tl H. Kettunen, T. Enqvist, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, P. Kuusiniemi, M.

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

Addendum to the ISOLDE and Neutron Time-of-Flight Committee

Addendum to the ISOLDE and Neutron Time-of-Flight Committee ` EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Addendum to the ISOLDE and Neutron Time-of-Flight Committee IS530: Properties of low-lying intruder states in 34 Al and 34 Si sequentially populated in beta-decay

More information

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy. Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy Hiroshi Watanabe Outline Prospects for decay spectroscopy of neutron-rich

More information

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Thomas Aumann December 11 th 2013 27 th Texas Symposium on Relativistic Astrophysics Dallas, Texas Supported by the BMBF under contract

More information

Towards 78 Ni: In-beam γ-ray spectroscopy of the exotic nuclei close to N=50

Towards 78 Ni: In-beam γ-ray spectroscopy of the exotic nuclei close to N=50 Towards 78 Ni: In-beam γ-ray spectroscopy of the exotic nuclei close to N= IPN Orsay: D. Verney, M. Niikura, F. Aziez, S. Franchoo, F. Ibrahim, F. Le Blanc, I. Matea, I. Stefan CSNSM Orsay: A. Korichi

More information

GANIL / SPIRAL1 / SPIRAL2

GANIL / SPIRAL1 / SPIRAL2 Nuclear Structure, Reaction and Dynamics GANIL / SPIRAL1 / SPIRAL2 A huge discovery potential Exotic Nuclei Proton number Z Which force? 3-body, tensor, spin-orbit, Isospin dependence, Continuum coupling

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture Nuclear Physics (PHY-31) Dr C. M. Cormack 11 Nuclear Physics This Lecture This Lecture We will discuss an important effect in nuclear spectroscopy The Mössbauer Effect and its applications in technology

More information

Nuclear astrophysics of the s- and r-process

Nuclear astrophysics of the s- and r-process Nuclear astrophysics of the s- and r-process René Reifarth Goethe University Frankfurt Ecole Joliot Curie School on Neutrons and Nuclei Frejus, France, Sep-28 Oct-3 2014 Nucleosynthesis tales from the

More information

3. Perturbed Angular Correlation Spectroscopy

3. Perturbed Angular Correlation Spectroscopy 3. Perturbed Angular Correlation Spectroscopy Dileep Mampallil Augustine K.U.Leuven, Belgium Perturbed Angular Correlation Spectroscopy (PAC) is a gamma ray spectroscopy and can be used to investigate

More information

Study of multi-nucleon transfer reactions with light nuclei

Study of multi-nucleon transfer reactions with light nuclei Study of multi-nucleon transfer reactions with light nuclei G. Benzoni, D. Montanari, A. Bracco,N.Blasi, F. Camera, F.C.L. Crespi,A.Corsi,S.Leoni, B. Million, R. Nicolini, O. Wieland, A. Zalite,F.Zocca,

More information

AGATA at GSI and FAIR

AGATA at GSI and FAIR AGATA at GSI and FAIR J. Gerl GSI Darmstadt, Germany NUSPIN + AGATA Venice, Italy July 1, 2016 PRESPEC-AGATA Physics Campaign 2012-2014 Physics workshop 4.-7.5.2010 in Istanbul 34 LOIs, 12 proposals initially

More information

Probing the Symmetries of Isobaric Analogue States M.A.Bentley University of York, UK. in collaboration with. Dave Warner

Probing the Symmetries of Isobaric Analogue States M.A.Bentley University of York, UK. in collaboration with. Dave Warner DDW Symposium CCLRC Daresbury February 2006 1 Probing the Symmetries of Isobaric Analogue States M.A.Bentley University of York, UK in collaboration with Dave Warner Overview Overview DDW Symposium CCLRC

More information

Role of Hexadecupole Deformation in the Shape Evolution of Neutron-rich Nd Isotopes

Role of Hexadecupole Deformation in the Shape Evolution of Neutron-rich Nd Isotopes Role of Hexadecupole Deformation in the Shape Evolution of Neutron-rich Nd Isotopes Center for Nuclear Study, the University of Tokyo Rin Yokoyama INPC 2016 at Adelaide, Australia Sep. 13, 2016 Sep. 13,

More information

Some (more) High(ish)-Spin Nuclear Structure. Lecture 2 Low-energy Collective Modes and Electromagnetic Decays in Nuclei

Some (more) High(ish)-Spin Nuclear Structure. Lecture 2 Low-energy Collective Modes and Electromagnetic Decays in Nuclei Some (more) High(ish)-Spin Nuclear Structure Lecture 2 Low-energy Collective Modes and Electromagnetic Decays in Nuclei Paddy Regan Department of Physics Univesity of Surrey Guildford, UK p.regan@surrey.ac.uk

More information

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly.

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly. Sample questions for Quiz 3, 22.101 (Fall 2006) Following questions were taken from quizzes given in previous years by S. Yip. They are meant to give you an idea of the kind of questions (what was expected

More information

"DIAMANT": A 41t LIGHT CHARGED PARTICLe DETECTOR ARRAY. AN EFFICIENT TOOL FOR NUCLEAR SPECTROSCOPY

DIAMANT: A 41t LIGHT CHARGED PARTICLe DETECTOR ARRAY. AN EFFICIENT TOOL FOR NUCLEAR SPECTROSCOPY 371 "DIAMANT": A 41t LIGHT CHARGED PARTICLe DETECTOR ARRAY. AN EFFICIENT TOOL FOR NUCLEAR SPECTROSCOPY J.N. scheurer

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

Antimagnetic Rotation in Cd isotopes

Antimagnetic Rotation in Cd isotopes Proceedings of the DAE Symp. on Nucl. Phys. 56 (2011) 3 Antimagnetic Rotation in Cd isotopes S.Chattopadhyay,* and S. Roy Saha Institute of Nuclear Physics, Kolkata - 700064, INDIA. * email: Sukalyan.chattopadhyay@saha.ac.in

More information

Nuclear structure and Indian Clover array

Nuclear structure and Indian Clover array PRAMANA cfl Indian Academy of Sciences Vol. 57, No. 1 journal of July 2001 physics pp. 21 30 Nuclear structure and Indian Clover array HCJAIN Tata Institute of Fundamental Research, Mumbai 400 005, India

More information

What did you learn in the last lecture?

What did you learn in the last lecture? What did you learn in the last lecture? Charge density distribution of a nucleus from electron scattering SLAC: 21 GeV e s ; λ ~ 0.1 fm (to first order assume that this is also the matter distribution

More information

Studying the nuclear pairing force through. Zack Elledge and Dr. Gregory Christian

Studying the nuclear pairing force through. Zack Elledge and Dr. Gregory Christian Studying the nuclear pairing force through 18 O( 26 Mg, 28 Mg) 16 O Zack Elledge and Dr. Gregory Christian Weizsaecker Formula Binding energy based off of volume and surface terms (strong force), coulomb

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information