Linear ODEs and ruled surfaces

Size: px
Start display at page:

Download "Linear ODEs and ruled surfaces"

Transcription

1 Linear ODEs and ruled surfaces Camilo Sanabria CUNY Bronx Community College de los Andes University, Bogotá January 6 th, 2012

2 Klein s Theorem An early result of F. Klein states that: If y + a(x)y + b(x)y = 0 (a(x), b(x) C(x)) has finite projective Galois group G,

3 Klein s Theorem An early result of F. Klein states that: If y + a(x)y + b(x)y = 0 (a(x), b(x) C(x)) has finite projective Galois group G, then the solutions to the equation are of the form: f (x) 2F 1(α,β,γ) (P(x))

4 Klein s Theorem An early result of F. Klein states that: If y + a(x)y + b(x)y = 0 (a(x), b(x) C(x)) has finite projective Galois group G, then the solutions to the equation are of the form: f (x) 2F 1(α,β,γ) (P(x)) where f (x) is a solution to a first order homogeneous linear differential equation

5 Klein s Theorem An early result of F. Klein states that: If y + a(x)y + b(x)y = 0 (a(x), b(x) C(x)) has finite projective Galois group G, then the solutions to the equation are of the form: f (x) 2F 1(α,β,γ) (P(x)) where f (x) is a solution to a first order homogeneous linear differential equation, 2 F 1(α,β,γ) (x) is a hypergeometric function

6 Klein s Theorem An early result of F. Klein states that: If y + a(x)y + b(x)y = 0 (a(x), b(x) C(x)) has finite projective Galois group G, then the solutions to the equation are of the form: f (x) 2F 1(α,β,γ) (P(x)) where f (x) is a solution to a first order homogeneous linear differential equation, 2 F 1(α,β,γ) (x) is a hypergeometric function and P(x) C(x).

7 Klein s Theorem f (x) 2F 1(α,β,γ) (P(x)) In modern terms we say y + a(x)y + b(x)y = 0 is projectively equivalent to the pullback of a hypergeometric equation by a rational map.

8 Klein s Theorem f (x) 2F 1(α,β,γ) (P(x)) In modern terms we say y + a(x)y + b(x)y = 0 is projectively equivalent to the pullback of a hypergeometric equation by a rational map. The result was revisited by Dwork and Baldassari and algorithmically implemented in a joint work of M. Berkenbosch, M. van Hoeij and J.A. Weil.

9 Klein s Theorem f (x) 2F 1(α,β,γ) (P(x)) In modern terms we say y + a(x)y + b(x)y = 0 is projectively equivalent to the pullback of a hypergeometric equation by a rational map. The result was revisited by Dwork and Baldassari and algorithmically implemented in a joint work of M. Berkenbosch, M. van Hoeij and J.A. Weil. The three latter authors realized that the f (x) and the P(x) can be computed very efficiently.

10 Klein s Theorem f (x) 2F 1(α,β,γ) (P(x)) In modern terms we say y + a(x)y + b(x)y = 0 is projectively equivalent to the pullback of a hypergeometric equation by a rational map. The result was revisited by Dwork and Baldassari and algorithmically implemented in a joint work of M. Berkenbosch, M. van Hoeij and J.A. Weil. The three latter authors realized that the f (x) and the P(x) can be computed very efficiently. The triples (α, β, γ) correspond to the family of Galois coverings of the Riemann sphere by the Riemann sphere.

11 Klein s Theorem f (x) 2F 1(α,β,γ) (P(x)) In modern terms we say y + a(x)y + b(x)y = 0 is projectively equivalent to the pullback of a hypergeometric equation by a rational map. The result was revisited by Dwork and Baldassari and algorithmically implemented in a joint work of M. Berkenbosch, M. van Hoeij and J.A. Weil. The three latter authors realized that the f (x) and the P(x) can be computed very efficiently. The triples (α, β, γ) correspond to the family of Galois coverings of the Riemann sphere by the Riemann sphere. So, one triple for each finite group G PSL 2 (C).

12 Klein s Theorem The argument behind Klein s result goes as follows: two C-linearly independent solutions of the equation y 0, y 1 : U P 1 (C) C

13 Klein s Theorem The argument behind Klein s result goes as follows: two C-linearly independent solutions of the equation define an analytic map y 0, y 1 : U P 1 (C) C Φ : U P 1 (C) P 1 (C) x (y 0 (x) : y 1 (x))

14 Klein s Theorem P 1 (C) Φ U

15 Klein s Theorem P 1 (C) Φ U letting the projective Galois group G act by Mobiüs transformations on P 1 (C), we can postcompose Φ by the quotient P 1 (C) P 1 (C)/G

16 Klein s Theorem P 1 (C) Φ U letting the projective Galois group G act by Mobiüs transformations on P 1 (C), we can postcompose Φ by the quotient P 1 (C) P 1 (C)/G P 1 (C)

17 Klein s Theorem U Φ Φ G P 1 (C) P 1 (C)/G

18 Klein s Theorem U Φ Φ G P 1 (C) P 1 (C)/G by Galois correspondence the bottom arrow is algebraic;

19 Klein s Theorem U Φ Φ G P 1 (C) P 1 (C)/G by Galois correspondence the bottom arrow is algebraic; and therefore Φ G can be extended to an algebraic map Φ G : P 1 (C) P 1 (C) P 1 (C)/G

20 Klein s Theorem Φ G : P 1 (C) P 1 (C)/G x (y 0 (x) : y 1 (x)) G If Φ G is an isomorphism, then the equation is projectively equivalent to a hypergeometric equation.

21 Klein s Theorem Φ G : P 1 (C) P 1 (C)/G x (y 0 (x) : y 1 (x)) G If Φ G is an isomorphism, then the equation is projectively equivalent to a hypergeometric equation. If not, then it is projectively equivalent to the pullback, by Φ G, of a hypergeometric equation.

22 Standard Equations f (x) 2F 1(α,β,γ) (P(x)) The collection of hypergeometric equations corresponding to the triples (α, β, γ) were named by the three authors as Standard Equations. M. Berkenbosch extended Klein s result by broadening the concept of standard equation to third order.

23 Standard Equations One can actually easily extend the concept to equations of any order as follows: P n 1 (C) Φ U P n 1 (C)/G Φ G

24 Standard Equations One can actually easily extend the concept to equations of any order as follows: where P n 1 (C) Φ U P n 1 (C)/G Φ G Φ : U P 1 (C) P n 1 (C) x (y 0 (x) : y 1 (x) :... : y n 1 (x)) and the y i s are C-linearly independent solutions.

25 Standard Equations One can actually easily extend the concept to equations of any order as follows: where P n 1 (C) Φ U P n 1 (C)/G Φ G Φ : U P 1 (C) P n 1 (C) x (y 0 (x) : y 1 (x) :... : y n 1 (x)) and the y i s are C-linearly independent solutions. Again, the equation is standard if Φ G is an embedding;

26 Standard Equations One can actually easily extend the concept to equations of any order as follows: where P n 1 (C) Φ U P n 1 (C)/G Φ G Φ : U P 1 (C) P n 1 (C) x (y 0 (x) : y 1 (x) :... : y n 1 (x)) and the y i s are C-linearly independent solutions. Again, the equation is standard if Φ G is an embedding; if not, one can prove that, the equation is the pullback of one.

27 Standard Equations & Ruled Surfaces The issue now is that the collection of standard equations, for orders bigger than 2, cannot be classified by a structured family of coverings.

28 Standard Equations & Ruled Surfaces The issue now is that the collection of standard equations, for orders bigger than 2, cannot be classified by a structured family of coverings. Moreover, for a given group G PGL n (C) there are infinitely many standard equations.

29 Standard Equations & Ruled Surfaces The issue now is that the collection of standard equations, for orders bigger than 2, cannot be classified by a structured family of coverings. Moreover, for a given group G PGL n (C) there are infinitely many standard equations. We will classify the standard equations instead using ruled surfaces:

30 Standard Equations & Ruled Surfaces The issue now is that the collection of standard equations, for orders bigger than 2, cannot be classified by a structured family of coverings. Moreover, for a given group G PGL n (C) there are infinitely many standard equations. We will classify the standard equations instead using ruled surfaces: A ruled surface S is the total space of a bundle over a projective curve C where every fiber is isomorphic to P 1 (C): π : S C with π 1 (x) P 1 (C)

31 Ruled Surfaces The simplest ruled surface is P 1 (C) P 1 (C).

32 Ruled Surfaces The simplest ruled surface is P 1 (C) P 1 (C). In general, a ruled surface over C corresponds to the bundle obtained by the projective spaces defined by the fibers of a rank-2 vector bundle over C: S = P(O C (n) O C (m)).

33 Ruled Surfaces The simplest ruled surface is P 1 (C) P 1 (C). In general, a ruled surface over C corresponds to the bundle obtained by the projective spaces defined by the fibers of a rank-2 vector bundle over C: S = P(O C (n) O C (m)). The isomorphism class of the ruled surface S is determined by the quantity m n.

34 Linear ODEs & Ruled Surfaces We get our ruled surface as follows: U P n 1 (C) P n 1 (C) Ψ P n 1 (C)/G P n 1 (C)/G Ψ G

35 Linear ODEs & Ruled Surfaces We get our ruled surface as follows: U P n 1 (C) P n 1 (C) Ψ P n 1 (C)/G P n 1 (C)/G Ψ G where Ψ : U P 1 (C) P n 1 (C) P n 1 (C) x (y 0 (x) : y 1 (x) :... : y n 1 (x), y 0(x) : y 1(x) :... : y n 1(x)) (the y i s are C-linearly independent solutions).

36 Linear ODEs & Ruled Surfaces Ψ G : P 1 (C) P n 1 (C)/G P n 1 (C)/G x (y 0 (x) : y 1 (x) :... : y n 1 (x), y 0(x) : y 1(x) :... : y n 1(x)) G

37 Linear ODEs & Ruled Surfaces Ψ G : P 1 (C) P n 1 (C)/G P n 1 (C)/G x (y 0 (x) : y 1 (x) :... : y n 1 (x), y 0(x) : y 1(x) :... : y n 1(x)) G The result is: Two linear ODEs with the same projective Galois group G are projectively equivalent to the pullback of the same standard equation if the ruled surfaces defined by their corresponding Ψ G coincide.

38 Examples ( ) A 4 P O(2) O(26)

39 Examples ( ) A 4 P O(2) O(26) ( ) S 4 P O(1) O(25)

40 Examples ( ) A 4 P O(2) O(26) ( ) S 4 P O(1) O(25) ( ) A 5 P O(1) O(61)

41 Examples ( ) A 4 P O(2) O(26) ( ) S 4 P O(1) O(25) ( ) A 5 P O(1) O(61) ( ) D 2 n P O(2) O(2[2n + 1]) if 2 n

42 Examples ( ) A 4 P O(2) O(26) ( ) S 4 P O(1) O(25) ( ) A 5 P O(1) O(61) ( ) D 2 n P O(2) O(2[2n + 1]) if 2 n ( ) D 2 n P O(1) O(2n + 1) if 2 n

43 References F. Baldassarri, B. Dwork, On second order linear differential equations with algebraic solutions, Amer. J. Math. 101 (1979), no. 1, M. Berkenbosch, Algorithms and moduli spaces for differential equations, Séminaires & Congrès 13 (2006) 1-38.

Each is equal to CP 1 minus one point, which is the origin of the other: (C =) U 1 = CP 1 the line λ (1, 0) U 0

Each is equal to CP 1 minus one point, which is the origin of the other: (C =) U 1 = CP 1 the line λ (1, 0) U 0 Algebraic Curves/Fall 2015 Aaron Bertram 1. Introduction. What is a complex curve? (Geometry) It s a Riemann surface, that is, a compact oriented twodimensional real manifold Σ with a complex structure.

More information

Mathematics I. Exercises with solutions. 1 Linear Algebra. Vectors and Matrices Let , C = , B = A = Determine the following matrices:

Mathematics I. Exercises with solutions. 1 Linear Algebra. Vectors and Matrices Let , C = , B = A = Determine the following matrices: Mathematics I Exercises with solutions Linear Algebra Vectors and Matrices.. Let A = 5, B = Determine the following matrices: 4 5, C = a) A + B; b) A B; c) AB; d) BA; e) (AB)C; f) A(BC) Solution: 4 5 a)

More information

Symmetries of meromorphic connections over Riemann Surfaces

Symmetries of meromorphic connections over Riemann Surfaces Symmetries of meromorphic connections over Riemann Surfaces Camilo Sanabria The CUNY Graduate Center February 13 th, 2009 Example Consider: y + 3(3z2 1) z(z 1)(z + 1) y + 221z4 206z 2 + 5 12z 2 (z 1) 2

More information

Complex Algebraic Geometry: Smooth Curves Aaron Bertram, First Steps Towards Classifying Curves. The Riemann-Roch Theorem is a powerful tool

Complex Algebraic Geometry: Smooth Curves Aaron Bertram, First Steps Towards Classifying Curves. The Riemann-Roch Theorem is a powerful tool Complex Algebraic Geometry: Smooth Curves Aaron Bertram, 2010 12. First Steps Towards Classifying Curves. The Riemann-Roch Theorem is a powerful tool for classifying smooth projective curves, i.e. giving

More information

MATH Topics in Applied Mathematics Lecture 2-6: Isomorphism. Linear independence (revisited).

MATH Topics in Applied Mathematics Lecture 2-6: Isomorphism. Linear independence (revisited). MATH 311-504 Topics in Applied Mathematics Lecture 2-6: Isomorphism. Linear independence (revisited). Definition. A mapping f : V 1 V 2 is one-to-one if it maps different elements from V 1 to different

More information

Solving Second Order Linear Differential Equations with Klein s Theorem

Solving Second Order Linear Differential Equations with Klein s Theorem Solving Second Order Linear Differential Equations with Klein s Theorem M van Hoeij & J-A Weil ABSTRACT Given a second order linear differential equations with coefficients in a field k = C(x), the Kovacic

More information

Equations in Quadratic Form

Equations in Quadratic Form Equations in Quadratic Form MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: make substitutions that allow equations to be written

More information

Hyperelliptic Jacobians in differential Galois theory (preliminary report)

Hyperelliptic Jacobians in differential Galois theory (preliminary report) Hyperelliptic Jacobians in differential Galois theory (preliminary report) Jerald J. Kovacic Department of Mathematics The City College of The City University of New York New York, NY 10031 jkovacic@member.ams.org

More information

Core Mathematics 3 Algebra

Core Mathematics 3 Algebra http://kumarmathsweeblycom/ Core Mathematics 3 Algebra Edited by K V Kumaran Core Maths 3 Algebra Page Algebra fractions C3 The specifications suggest that you should be able to do the following: Simplify

More information

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4) Three Descriptions of the Cohomology of Bun G (X) (Lecture 4) February 5, 2014 Let k be an algebraically closed field, let X be a algebraic curve over k (always assumed to be smooth and complete), and

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45 RAVI VAKIL CONTENTS 1. Hyperelliptic curves 1 2. Curves of genus 3 3 1. HYPERELLIPTIC CURVES A curve C of genus at least 2 is hyperelliptic if it admits a degree

More information

LANGLANDS FOR GL(2): GALOIS TO AUTOMORPHIC, III (D APRÈS DRINFELD)

LANGLANDS FOR GL(2): GALOIS TO AUTOMORPHIC, III (D APRÈS DRINFELD) LANGLANDS FOR GL(2): GALOIS TO AUTOMORPHIC, III (D APRÈS DRINFELD) TONY FENG 1. Recollections Let ω be a meromorphic differential on X and ψ 0 : F q Q l be an additive character. Last time we produced

More information

4 Unit Math Homework for Year 12

4 Unit Math Homework for Year 12 Yimin Math Centre 4 Unit Math Homework for Year 12 Student Name: Grade: Date: Score: Table of contents 3 Topic 3 Polynomials Part 2 1 3.2 Factorisation of polynomials and fundamental theorem of algebra...........

More information

A WHIRLWIND TOUR BEYOND QUADRATICS Steven J. Wilson, JCCC Professor of Mathematics KAMATYC, Wichita, March 4, 2017

A WHIRLWIND TOUR BEYOND QUADRATICS Steven J. Wilson, JCCC Professor of Mathematics KAMATYC, Wichita, March 4, 2017 b x1 u v a 9abc b 7a d 7a d b c 4ac 4b d 18abcd u 4 b 1 i 1 i 54a 108a x u v where a 9abc b 7a d 7a d b c 4ac 4b d 18abcd v 4 b 1 i 1 i 54a x u v 108a a //017 A WHIRLWIND TOUR BEYOND QUADRATICS Steven

More information

BEZOUT S THEOREM CHRISTIAN KLEVDAL

BEZOUT S THEOREM CHRISTIAN KLEVDAL BEZOUT S THEOREM CHRISTIAN KLEVDAL A weaker version of Bézout s theorem states that if C, D are projective plane curves of degrees c and d that intersect transversally, then C D = cd. The goal of this

More information

arxiv:math/ v1 [math.ag] 18 Oct 2003

arxiv:math/ v1 [math.ag] 18 Oct 2003 Proc. Indian Acad. Sci. (Math. Sci.) Vol. 113, No. 2, May 2003, pp. 139 152. Printed in India The Jacobian of a nonorientable Klein surface arxiv:math/0310288v1 [math.ag] 18 Oct 2003 PABLO ARÉS-GASTESI

More information

QUADRATIC TWISTS OF AN ELLIPTIC CURVE AND MAPS FROM A HYPERELLIPTIC CURVE

QUADRATIC TWISTS OF AN ELLIPTIC CURVE AND MAPS FROM A HYPERELLIPTIC CURVE Math. J. Okayama Univ. 47 2005 85 97 QUADRATIC TWISTS OF AN ELLIPTIC CURVE AND MAPS FROM A HYPERELLIPTIC CURVE Masato KUWATA Abstract. For an elliptic curve E over a number field k we look for a polynomial

More information

An Atlas For Bun r (X)

An Atlas For Bun r (X) An Atlas For Bun r (X) As told by Dennis Gaitsgory to Nir Avni October 28, 2009 1 Bun r (X) Is Not Of Finite Type The goal of this lecture is to find a smooth atlas locally of finite type for the stack

More information

Zero cycles on twisted Cayley plane

Zero cycles on twisted Cayley plane Zero cycles on twisted Cayley plane V. Petrov, N. Semenov, K. Zainoulline August 8, 2005 Abstract In the present paper we compute the group of zero-cycles modulo rational equivalence of a twisted form

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by MATH 1700 MATH 1700 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 2 / 11 Rational functions A rational function is one of the form where P and Q are

More information

Exercise Sheet 3 - Solutions

Exercise Sheet 3 - Solutions Algebraic Geometry D-MATH, FS 2016 Prof. Pandharipande Exercise Sheet 3 - Solutions 1. Prove the following basic facts about algebraic maps. a) For f : X Y and g : Y Z algebraic morphisms of quasi-projective

More information

VARIETIES WITHOUT EXTRA AUTOMORPHISMS I: CURVES BJORN POONEN

VARIETIES WITHOUT EXTRA AUTOMORPHISMS I: CURVES BJORN POONEN VARIETIES WITHOUT EXTRA AUTOMORPHISMS I: CURVES BJORN POONEN Abstract. For any field k and integer g 3, we exhibit a curve X over k of genus g such that X has no non-trivial automorphisms over k. 1. Statement

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by Partial Fractions MATH 1700 December 6, 2016 MATH 1700 Partial Fractions December 6, 2016 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 Partial Fractions

More information

LECTURE 6: J-HOLOMORPHIC CURVES AND APPLICATIONS

LECTURE 6: J-HOLOMORPHIC CURVES AND APPLICATIONS LECTURE 6: J-HOLOMORPHIC CURVES AND APPLICATIONS WEIMIN CHEN, UMASS, SPRING 07 1. Basic elements of J-holomorphic curve theory Let (M, ω) be a symplectic manifold of dimension 2n, and let J J (M, ω) be

More information

Institutionen för matematik, KTH.

Institutionen för matematik, KTH. Institutionen för matematik, KTH. Contents 4 Curves in the projective plane 1 4.1 Lines................................ 1 4.1.3 The dual projective plane (P 2 )............. 2 4.1.5 Automorphisms of P

More information

AUTOMORPHISMS OF X(11) OVER CHARACTERISTIC 3, AND THE MATHIEU GROUP M 11

AUTOMORPHISMS OF X(11) OVER CHARACTERISTIC 3, AND THE MATHIEU GROUP M 11 AUTOMORPHISMS OF X(11) OVER CHARACTERISTIC 3, AND THE MATHIEU GROUP M 11 C. S. RAJAN Abstract. We show that the automorphism group of the curve X(11) is the Mathieu group M 11, over a field of characteristic

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

The Fricke-Macbeath Curve

The Fricke-Macbeath Curve The Fricke-Macbeath Curve Jaap Top BIRS, September 28th, 2016 joint work with Carlo Verschoor (master s student in Groningen during 2014/15, currently PhD student with Frits Beukers, Utrecht) Some history

More information

Maths Extension 2 - Polynomials. Polynomials

Maths Extension 2 - Polynomials. Polynomials Maths Extension - Polynomials Polynomials! Definitions and properties of polynomials! Factors & Roots! Fields ~ Q Rational ~ R Real ~ C Complex! Finding zeros over the complex field! Factorization & Division

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

Logarithmic and Exponential Equations and Change-of-Base

Logarithmic and Exponential Equations and Change-of-Base Logarithmic and Exponential Equations and Change-of-Base MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to solve exponential equations

More information

Systems of Equations and Inequalities. College Algebra

Systems of Equations and Inequalities. College Algebra Systems of Equations and Inequalities College Algebra System of Linear Equations There are three types of systems of linear equations in two variables, and three types of solutions. 1. An independent system

More information

Geometry 9: Serre-Swan theorem

Geometry 9: Serre-Swan theorem Geometry 9: Serre-Swan theorem Rules: You may choose to solve only hard exercises (marked with!, * and **) or ordinary ones (marked with! or unmarked), or both, if you want to have extra problems. To have

More information

Introduction Curves Surfaces Curves on surfaces. Curves and surfaces. Ragni Piene Centre of Mathematics for Applications, University of Oslo, Norway

Introduction Curves Surfaces Curves on surfaces. Curves and surfaces. Ragni Piene Centre of Mathematics for Applications, University of Oslo, Norway Curves and surfaces Ragni Piene Centre of Mathematics for Applications, University of Oslo, Norway What is algebraic geometry? IMA, April 13, 2007 Outline Introduction Curves Surfaces Curves on surfaces

More information

We can choose generators of this k-algebra: s i H 0 (X, L r i. H 0 (X, L mr )

We can choose generators of this k-algebra: s i H 0 (X, L r i. H 0 (X, L mr ) MODULI PROBLEMS AND GEOMETRIC INVARIANT THEORY 43 5.3. Linearisations. An abstract projective scheme X does not come with a pre-specified embedding in a projective space. However, an ample line bundle

More information

Polynomials in knot theory. Rama Mishra. January 10, 2012

Polynomials in knot theory. Rama Mishra. January 10, 2012 January 10, 2012 Knots in the real world The fact that you can tie your shoelaces in several ways has inspired mathematicians to develop a deep subject known as knot theory. mathematicians treat knots

More information

Projective geometry and spacetime structure. David Delphenich Bethany College Lindsborg, KS USA

Projective geometry and spacetime structure. David Delphenich Bethany College Lindsborg, KS USA Projective geometry and spacetime structure David Delphenich Bethany College Lindsborg, KS USA delphenichd@bethanylb.edu Affine geometry In affine geometry the basic objects are points in a space A n on

More information

Handout - Algebra Review

Handout - Algebra Review Algebraic Geometry Instructor: Mohamed Omar Handout - Algebra Review Sept 9 Math 176 Today will be a thorough review of the algebra prerequisites we will need throughout this course. Get through as much

More information

Midterm 1 Solutions Thursday, February 26

Midterm 1 Solutions Thursday, February 26 Math 59 Dr. DeTurck Midterm 1 Solutions Thursday, February 26 1. First note that since f() = f( + ) = f()f(), we have either f() = (in which case f(x) = f(x + ) = f(x)f() = for all x, so c = ) or else

More information

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA MATH 33 Sample Questions for Exam 3. Find x and y so that x 4 3 5x 3y + y = 5 5. x = 3/7, y = 49/7. Let A = 3 4, B = 3 5, C = 3 Perform the indicated operations, if possible: a AC b AB c B + AC d CBA AB

More information

Chapter 2 notes from powerpoints

Chapter 2 notes from powerpoints Chapter 2 notes from powerpoints Synthetic division and basic definitions Sections 1 and 2 Definition of a Polynomial Function: Let n be a nonnegative integer and let a n, a n-1,, a 2, a 1, a 0 be real

More information

LECTURES ON SHIMURA CURVES: ARITHMETIC FUCHSIAN GROUPS

LECTURES ON SHIMURA CURVES: ARITHMETIC FUCHSIAN GROUPS LECTURES ON SHIMURA CURVES: ARITHMETIC FUCHSIAN GROUPS PETE L. CLARK 1. What is an arithmetic Fuchsian group? The class of Fuchsian groups that we are (by far) most interested in are the arithmetic groups.

More information

Infinite rank of elliptic curves over Q ab and quadratic twists with positive rank

Infinite rank of elliptic curves over Q ab and quadratic twists with positive rank Infinite rank of elliptic curves over Q ab and quadratic twists with positive rank Bo-Hae Im Chung-Ang University The 3rd East Asian Number Theory Conference National Taiwan University, Taipei January

More information

The theory of integration says that the natural map

The theory of integration says that the natural map In this course we will discuss applications of the Model theory to Algebraic geometry and Analysis. There is long list of examples and I mention only some of applications: 1) Tarski proved the elimination

More information

FAMILIES OF ALGEBRAIC CURVES AS SURFACE BUNDLES OF RIEMANN SURFACES

FAMILIES OF ALGEBRAIC CURVES AS SURFACE BUNDLES OF RIEMANN SURFACES FAMILIES OF ALGEBRAIC CURVES AS SURFACE BUNDLES OF RIEMANN SURFACES MARGARET NICHOLS 1. Introduction In this paper we study the complex structures which can occur on algebraic curves. The ideas discussed

More information

Solutions of Linear system, vector and matrix equation

Solutions of Linear system, vector and matrix equation Goals: Solutions of Linear system, vector and matrix equation Solutions of linear system. Vectors, vector equation. Matrix equation. Math 112, Week 2 Suggested Textbook Readings: Sections 1.3, 1.4, 1.5

More information

Rational and Radical Functions. College Algebra

Rational and Radical Functions. College Algebra Rational and Radical Functions College Algebra Rational Function A rational function is a function that can be written as the quotient of two polynomial functions P(x) and Q(x) f x = P(x) Q(x) = a )x )

More information

Computing coefficients of modular forms

Computing coefficients of modular forms Computing coefficients of modular forms (Work in progress; extension of results of Couveignes, Edixhoven et al.) Peter Bruin Mathematisch Instituut, Universiteit Leiden Théorie des nombres et applications

More information

ALGEBRA QUALIFYING EXAM SPRING 2012

ALGEBRA QUALIFYING EXAM SPRING 2012 ALGEBRA QUALIFYING EXAM SPRING 2012 Work all of the problems. Justify the statements in your solutions by reference to specific results, as appropriate. Partial credit is awarded for partial solutions.

More information

A SHORT PROOF OF ROST NILPOTENCE VIA REFINED CORRESPONDENCES

A SHORT PROOF OF ROST NILPOTENCE VIA REFINED CORRESPONDENCES A SHORT PROOF OF ROST NILPOTENCE VIA REFINED CORRESPONDENCES PATRICK BROSNAN Abstract. I generalize the standard notion of the composition g f of correspondences f : X Y and g : Y Z to the case that X

More information

GEOMETRIC CLASS FIELD THEORY I

GEOMETRIC CLASS FIELD THEORY I GEOMETRIC CLASS FIELD THEORY I TONY FENG 1. Classical class field theory 1.1. The Artin map. Let s start off by reviewing the classical origins of class field theory. The motivating problem is basically

More information

Math 61CM - Solutions to homework 2

Math 61CM - Solutions to homework 2 Math 61CM - Solutions to homework 2 Cédric De Groote October 5 th, 2018 Problem 1: Let V be the vector space of polynomials of degree at most 5, with coefficients in a field F Let U be the subspace of

More information

Part II. Algebraic Topology. Year

Part II. Algebraic Topology. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section II 18I The n-torus is the product of n circles: 5 T n = } S 1. {{.. S } 1. n times For all n 1 and 0

More information

WHAT IS K-HOMOLOGY? Paul Baum Penn State. Texas A&M University College Station, Texas, USA. April 2, 2014

WHAT IS K-HOMOLOGY? Paul Baum Penn State. Texas A&M University College Station, Texas, USA. April 2, 2014 WHAT IS K-HOMOLOGY? Paul Baum Penn State Texas A&M University College Station, Texas, USA April 2, 2014 Paul Baum (Penn State) WHAT IS K-HOMOLOGY? April 2, 2014 1 / 56 Let X be a compact C manifold without

More information

Supplement 2 to the paper Floating bundles and their applications

Supplement 2 to the paper Floating bundles and their applications ariv:math/0104052v1 [math.at] 4 Apr 2001 Supplement 2 to the paper Floating bundles and their applications A.V. Ershov This paper is the supplement to the section 2 of the paper Floating bundles and their

More information

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are

More information

Irrationality of 2 and Arakelov Geometry

Irrationality of 2 and Arakelov Geometry Irrationality of 2 and Arakelov Geometry Jürg Kramer and Anna-Maria von Pippich Summary of a talk given by the first named author at the occasion of a visit to the Indian Institute of Technology at Madras

More information

MODULI SPACES OF CURVES

MODULI SPACES OF CURVES MODULI SPACES OF CURVES SCOTT NOLLET Abstract. My goal is to introduce vocabulary and present examples that will help graduate students to better follow lectures at TAGS 2018. Assuming some background

More information

THE MODULI OF SUBALGEBRAS OF THE FULL MATRIX RING OF DEGREE 3

THE MODULI OF SUBALGEBRAS OF THE FULL MATRIX RING OF DEGREE 3 THE MODULI OF SUBALGEBRAS OF THE FULL MATRIX RING OF DEGREE 3 KAZUNORI NAKAMOTO AND TAKESHI TORII Abstract. There exist 26 equivalence classes of k-subalgebras of M 3 (k) for any algebraically closed field

More information

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone :

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone : Lecturer: Math1 Lecture 1 Dr. Robert C. Busby Office: Korman 66 Phone : 15-895-1957 Email: rbusby@mcs.drexel.edu Course Web Site: http://www.mcs.drexel.edu/classes/calculus/math1_spring0/ (Links are case

More information

SPLITTING FIELDS OF CHARACTERISTIC POLYNOMIALS IN ALGEBRAIC GROUPS

SPLITTING FIELDS OF CHARACTERISTIC POLYNOMIALS IN ALGEBRAIC GROUPS SPLITTING FIELDS OF CHARACTERISTIC POLYNOMIALS IN ALGEBRAIC GROUPS E. KOWALSKI In [K1] and earlier in [K2], questions of the following type are considered: suppose a family (g i ) i of matrices in some

More information

Large Automorphism Groups of Algebraic Curves in Positive Characteristic. BMS-LMS Conference

Large Automorphism Groups of Algebraic Curves in Positive Characteristic. BMS-LMS Conference Large Automorphism Groups of Algebraic Curves in Positive Characteristic Massimo Giulietti (Università degli Studi di Perugia) BMS-LMS Conference December 4-5, 2009 Leuven Notation and Terminology K algebraically

More information

Math 248B. Applications of base change for coherent cohomology

Math 248B. Applications of base change for coherent cohomology Math 248B. Applications of base change for coherent cohomology 1. Motivation Recall the following fundamental general theorem, the so-called cohomology and base change theorem: Theorem 1.1 (Grothendieck).

More information

AN INTRODUCTION TO ARITHMETIC AND RIEMANN SURFACE. We describe points on the unit circle with coordinate satisfying

AN INTRODUCTION TO ARITHMETIC AND RIEMANN SURFACE. We describe points on the unit circle with coordinate satisfying AN INTRODUCTION TO ARITHMETIC AND RIEMANN SURFACE 1. RATIONAL POINTS ON CIRCLE We start by asking us: How many integers x, y, z) can satisfy x 2 + y 2 = z 2? Can we describe all of them? First we can divide

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

What is a (compact) Riemann surface?

What is a (compact) Riemann surface? What is a (compact) Riemann surface? Irwin Kra SUNY @ Stony Brook irwinkra@gmail.com Wednesday, March 5, 2014 Math CLUB talk. To help you make a decision about topics to study (in graduate school)? Irwin

More information

EQUIVARIANT COHOMOLOGY. p : E B such that there exist a countable open covering {U i } i I of B and homeomorphisms

EQUIVARIANT COHOMOLOGY. p : E B such that there exist a countable open covering {U i } i I of B and homeomorphisms EQUIVARIANT COHOMOLOGY MARTINA LANINI AND TINA KANSTRUP 1. Quick intro Let G be a topological group (i.e. a group which is also a topological space and whose operations are continuous maps) and let X be

More information

Algebraic Structures II

Algebraic Structures II MAS 305 Algebraic Structures II Notes 9 Autumn 2006 Composition series soluble groups Definition A normal subgroup N of a group G is called a maximal normal subgroup of G if (a) N G; (b) whenever N M G

More information

Partial Fractions. Calculus 2 Lia Vas

Partial Fractions. Calculus 2 Lia Vas Calculus Lia Vas Partial Fractions rational function is a quotient of two polynomial functions The method of partial fractions is a general method for evaluating integrals of rational function The idea

More information

Closed Form Solutions

Closed Form Solutions Closed Form Solutions Mark van Hoeij 1 Florida State University ISSAC 2017 1 Supported by NSF 1618657 1 / 26 What is a closed form solution? Example: Solve this equation for y = y(x). y = 4 x 3 (1 x) 2

More information

GALOIS GROUPS ATTACHED TO POINTS OF FINITE ORDER ON ELLIPTIC CURVES OVER NUMBER FIELDS (D APRÈS SERRE)

GALOIS GROUPS ATTACHED TO POINTS OF FINITE ORDER ON ELLIPTIC CURVES OVER NUMBER FIELDS (D APRÈS SERRE) GALOIS GROUPS ATTACHED TO POINTS OF FINITE ORDER ON ELLIPTIC CURVES OVER NUMBER FIELDS (D APRÈS SERRE) JACQUES VÉLU 1. Introduction Let E be an elliptic curve defined over a number field K and equipped

More information

Etale homotopy theory (after Artin-Mazur, Friedlander et al.)

Etale homotopy theory (after Artin-Mazur, Friedlander et al.) Etale homotopy theory (after Artin-Mazur, Friedlander et al.) Heidelberg March 18-20, 2014 Gereon Quick Lecture 1: Motivation March 18, 2014 Riemann, Poincare, Lefschetz: Until the early 20th century,

More information

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1 POLYNOMIALS A polynomial in x is an expression of the form p(x) = a 0 + a 1 x + a x +. + a n x n Where a 0, a 1, a. a n are real numbers and n is a non-negative integer and a n 0. A polynomial having only

More information

Algebra III Chapter 2 Note Packet. Section 2.1: Polynomial Functions

Algebra III Chapter 2 Note Packet. Section 2.1: Polynomial Functions Algebra III Chapter 2 Note Packet Name Essential Question: Section 2.1: Polynomial Functions Polynomials -Have nonnegative exponents -Variables ONLY in -General Form n ax + a x +... + ax + ax+ a n n 1

More information

Tenth Maths Polynomials

Tenth Maths Polynomials Tenth Maths Polynomials Polynomials are algebraic expressions constructed using constants and variables. Coefficients operate on variables, which can be raised to various powers of non-negative integer

More information

Menelaus Theorem, Weil Reciprocity, and a Generalisation to Algebraic Curves. School of Mathematics, Trinity College, University of Dublin

Menelaus Theorem, Weil Reciprocity, and a Generalisation to Algebraic Curves. School of Mathematics, Trinity College, University of Dublin Menelaus Theorem, Weil Reciprocity, and a Generalisation to Algebraic Curves School of Mathematics, Trinity College, University of Dublin Eoin Ó Murchadha Summer 2012 Supervisor: Dr Masha Vlasenko Contents

More information

Hodge structures from differential equations

Hodge structures from differential equations Hodge structures from differential equations Andrew Harder January 4, 2017 These are notes on a talk on the paper Hodge structures from differential equations. The goal is to discuss the method of computation

More information

(4) Statements that contain the word "including" reference content that must be

(4) Statements that contain the word including reference content that must be 111.40. Algebra II, Adopted 2012 (One-Half to One Credit). (a) General requirements. Students shall be awarded one-half to one credit for successful completion of this course. Prerequisite: Algebra I.

More information

MATH 2360 REVIEW PROBLEMS

MATH 2360 REVIEW PROBLEMS MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1

More information

Torsion Points of Elliptic Curves Over Number Fields

Torsion Points of Elliptic Curves Over Number Fields Torsion Points of Elliptic Curves Over Number Fields Christine Croll A thesis presented to the faculty of the University of Massachusetts in partial fulfillment of the requirements for the degree of Bachelor

More information

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University Math 30 Calculus II Brian Veitch Fall 015 Northern Illinois University Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something

More information

Section VI.33. Finite Fields

Section VI.33. Finite Fields VI.33 Finite Fields 1 Section VI.33. Finite Fields Note. In this section, finite fields are completely classified. For every prime p and n N, there is exactly one (up to isomorphism) field of order p n,

More information

A characterization of the finite Veronesean by intersection properties

A characterization of the finite Veronesean by intersection properties A characterization of the finite Veronesean by intersection properties J. Schillewaert, J.A. Thas and H. Van Maldeghem AMS subject classification: 51E0, 51A45 Abstract. A combinatorial characterization

More information

MANIN-MUMFORD AND LATTÉS MAPS

MANIN-MUMFORD AND LATTÉS MAPS MANIN-MUMFORD AND LATTÉS MAPS JORGE PINEIRO Abstract. The present paper is an introduction to the dynamical Manin-Mumford conjecture and an application of a theorem of Ghioca and Tucker to obtain counterexamples

More information

Midterm Review. Name: Class: Date: ID: A. Short Answer. 1. For each graph, write the equation of a radical function of the form y = a b(x h) + k.

Midterm Review. Name: Class: Date: ID: A. Short Answer. 1. For each graph, write the equation of a radical function of the form y = a b(x h) + k. Name: Class: Date: ID: A Midterm Review Short Answer 1. For each graph, write the equation of a radical function of the form y = a b(x h) + k. a) b) c) 2. Determine the domain and range of each function.

More information

Regular dessins with abelian automorphism groups

Regular dessins with abelian automorphism groups Jürgen Wolfart and Benjamin Mühlbauer 1 Institut für Mathematik der Goethe Universität, D 60629 Frankfurt a.m., Germany wolfart@math.uni-frankfurt.de Regular dessins with abelian automorphism groups Dedicated

More information

Math 322. Spring 2015 Review Problems for Midterm 2

Math 322. Spring 2015 Review Problems for Midterm 2 Linear Algebra: Topic: Linear Independence of vectors. Question. Math 3. Spring Review Problems for Midterm Explain why if A is not square, then either the row vectors or the column vectors of A are linearly

More information

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are

More information

Elliptic Curves: An Introduction

Elliptic Curves: An Introduction Elliptic Curves: An Introduction Adam Block December 206 Introduction The goal of the following paper will be to explain some of the history of and motivation for elliptic curves, to provide examples and

More information

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1 3 3 THE RIEMANN SPHERE 31 Models for the Riemann Sphere One dimensional projective complex space P(C ) is the set of all one-dimensional subspaces of C If z = (z 1, z ) C \ 0 then we will denote by [z]

More information

Tamagawa Numbers in the Function Field Case (Lecture 2)

Tamagawa Numbers in the Function Field Case (Lecture 2) Tamagawa Numbers in the Function Field Case (Lecture 2) February 5, 204 In the previous lecture, we defined the Tamagawa measure associated to a connected semisimple algebraic group G over the field Q

More information

Describing Resolvent Sextics of Quintic Equations. By Frank D. Grosshans

Describing Resolvent Sextics of Quintic Equations. By Frank D. Grosshans Describing Resolvent Sextics of Quintic Equations By Frank D. Grosshans L. E. Dickson, Bulletin A.M.S. 31, 1925, 515-523 RESOLVENT SEXTICS OF QUINTIC EQUATIONS BY L. E. DICKSON 1. Introduction. The object

More information

Some remarks on the S-unit equation in function fields

Some remarks on the S-unit equation in function fields ACTA ARITHMETICA LXIV.1 (1993) Some remarks on the S-unit equation in function fields by Umberto Zannier (Venezia) Introduction. Let k be an algebraically closed field of zero characteristic, K a function

More information

Math Exam 2, October 14, 2008

Math Exam 2, October 14, 2008 Math 96 - Exam 2, October 4, 28 Name: Problem (5 points Find all solutions to the following system of linear equations, check your work: x + x 2 x 3 2x 2 2x 3 2 x x 2 + x 3 2 Solution Let s perform Gaussian

More information

c ij x i x j c ij x i y j

c ij x i x j c ij x i y j Math 48A. Class groups for imaginary quadratic fields In general it is a very difficult problem to determine the class number of a number field, let alone the structure of its class group. However, in

More information

Section II.1. Free Abelian Groups

Section II.1. Free Abelian Groups II.1. Free Abelian Groups 1 Section II.1. Free Abelian Groups Note. This section and the next, are independent of the rest of this chapter. The primary use of the results of this chapter is in the proof

More information

Trace fields of knots

Trace fields of knots JT Lyczak, February 2016 Trace fields of knots These are the knotes from the seminar on knot theory in Leiden in the spring of 2016 The website and all the knotes for this seminar can be found at http://pubmathleidenunivnl/

More information

The structure of algebraic varieties

The structure of algebraic varieties The structure of algebraic varieties János Kollár Princeton University ICM, August, 2014, Seoul with the assistance of Jennifer M. Johnson and Sándor J. Kovács (Written comments added for clarity that

More information

ALGEBRAIC GEOMETRY I, FALL 2016.

ALGEBRAIC GEOMETRY I, FALL 2016. ALGEBRAIC GEOMETRY I, FALL 2016. DIVISORS. 1. Weil and Cartier divisors Let X be an algebraic variety. Define a Weil divisor on X as a formal (finite) linear combination of irreducible subvarieties of

More information

Lecture 4. Frits Beukers. Arithmetic of values of E- and G-function. Lecture 4 E- and G-functions 1 / 27

Lecture 4. Frits Beukers. Arithmetic of values of E- and G-function. Lecture 4 E- and G-functions 1 / 27 Lecture 4 Frits Beukers Arithmetic of values of E- and G-function Lecture 4 E- and G-functions 1 / 27 Two theorems Theorem, G.Chudnovsky 1984 The minimal differential equation of a G-function is Fuchsian.

More information